
Recording
Recording Application Processes in Sparx Systems Enterprise Architect

Enterprise Architect
User Guide Series

Author: Sparx Systems

Date: 2025-05-06

Version: 17.1

CREATED WITH

Table of Contents

Recording 3
How it Works 8
The Recording History 13
Diagram Features 17

Setup for Recording 19
Control Stack Depth 20

Place Recording Markers 22
Set Record Markers 24
Marker Types 26
The Breakpoints and Markers Window 30
Working with Marker Sets 31

Control the Recording Session 36
Recorder Toolbar 37
Working With Recording History 42
Start Recording 45
Step Through Function Calls 48
Nested Recording Markers 49

Generating Sequence Diagrams 50
Reporting State Transitions 53
Reporting a StateMachine 55
Recording and Mapping State Changes 58

State Analyzer 60
Synchronization 69

Recording 6 May, 2025

Recording

Sequence diagrams are a superb aid to understanding
behavior. Class Collaboration diagrams also can be helpful.
In addition to these, sometimes a Call Graph is just what we
need. Then again, if you have this information available,
you could use it to document a Use Case, and why not build
a Test domain while you are at it? The Enterprise Architect
Analyzer can generate all of these for you and from a single
recording. It does this by recording a running program, and
it works on all of the most popular platforms.

Access

Ribbon Execute > Tools > Recorder

Overview

(c) Sparx Systems 2025 Page 3 of 72

Recording 6 May, 2025

At its simplest, a Sequence diagram can be produced in very
few steps, using even a brand new model. You do not even
have to configure an Analyzer Script. Open the Enterprise
Architect code editor (Ctrl+Shift+O), place a recording
marker in a function of your choice, and then attach the
Enterprise Architect Debugger to a program running that
code. Any time that function is called, its behavior will be
captured to form a recording history. From this history these
diagrams can be easily created.

The Sequence diagram from the Example Model recording.

(c) Sparx Systems 2025 Page 4 of 72

Recording 6 May, 2025

The Class Collaboration diagram from the same recording.

The Test Domain diagram from the same recording.

Of course, an Analyzer Script is still the best idea, and
opens up an incredibly rich development environment, but it
is worth noting that significant results can be obtained
without one. This is also true of the Enterprise Architect
Debugger and Profiler tools.

A point of interest: you can view a thread's behavior while it
is recorded. Showing the Call Stack during a recording will

(c) Sparx Systems 2025 Page 5 of 72

Recording 6 May, 2025

show updates to a thread's stack in real-time, much like an
animation. It is a good feedback tool and in some
circumstances it might be all that is required.

Features at a glance

Diagram Generation

Sequence diagram·

Class Collaboration diagram·

Test Domain diagram·

State Transition capture·

Call Graph·

Control

Support multi-threaded and single-threaded models·

Support stack depth control ·

Support filters to restrict capture·

Filter wildcard support·

Real-time stack update·

Integration

Class Model·

(c) Sparx Systems 2025 Page 6 of 72

Recording 6 May, 2025

Test Domain·

StateMachine·

Executable StateMachines·

Unit Tests·

Platforms

Microsoft .NET·

Microsoft Native·

Java·

PHP·

GDB·

Android·

Requirements

Recording is available to users of all editions of·

Enterprise Architect

Notes

The debug and record features of the Visual Execution·

Analyzer are not supported for the Java server platform
'Weblogic' from Oracle

(c) Sparx Systems 2025 Page 7 of 72

Recording 6 May, 2025

How it Works
This topic explains how the Visual Execution Analyzer
generates Sequence diagrams.

Explanation

Points Detail

Usage The Visual Execution Analyzer enables
you to generate a Sequence diagram from
recordings of the live execution of an
application. As the application runs, the
history of each thread is recorded. This
history can be used to generate the
Sequence diagram.
This is a Sequence diagram generated
from a program that calculates the price
of books:

(c) Sparx Systems 2025 Page 8 of 72

Recording 6 May, 2025

How does the recorder know what to
record?

The recorder works from recording·

markers; these are placed by you in the
functions of interest

Call Stacks in Java can stretch further
than the eye can see. How can we restrict
the recording to just ten frames?

The recorder is controlled by the depth·

either set on the recorder toolbar or
associated with a Marker Set stored in
the model

Its the real
thing

In recording, the target application is not
modified; no instrumentation of any
image or module occurs at all. A
recording produced using a 'Release'

(c) Sparx Systems 2025 Page 9 of 72

Recording 6 May, 2025

build of a program is a trustworthy
document of what a program did.

Where do
you start

We have a very large server application;
so where do we start? If you have little or
no understanding of the program you
intend to record and little or no model to
speak off, you might be best starting with
the Profiler. Running the Profiler whilst
using a program in a specific manner can
quickly identify Use Cases from the entry
points and Call Graphs presented. Having
that knowledge can enable you to focus
on areas that are uncovered and record
those functions.
If you have the source code, all you need
to do is place a recording marker in a
function that interests you. We
recommend against placing multiple
recording markers in multiple functions at
the same time. In practice this has shown
to be less helpful. Where do you place a
recording marker? For windows UI
programs, and in relation to some
business use case, you might start by
placing one in the event handlers for a
message that seems most pertinent. If you
are investigating a utility function, just
set a method recording marker at or

(c) Sparx Systems 2025 Page 10 of 72

Recording 6 May, 2025

somewhere near the start.
For services, daemons and batch
processes you might want to profile the
program once for each behavior of
interest and use the report to explore
those areas uncovered.

Tip It's a good idea to have a quick glance at
the Breakpoints and Markers window
before debugging, and check that the
markers listed here are what you are
expecting.

Scenarios Microsoft Native C and C++, VB·

(Windows programs, Window
Services, Console programs, COM
servers, IIS ISAPI modules, Legacy)
Microsoft .NET·

(ASP.NET, Windows Presentation
Foundation (WPF), Windows Forms,
Workflow Services, devices,
emulators)
Java·

(Apps, Applets, Servlets, Beans)
Android·

(using Android debug bridge for
devices and emulators)
PHP·

(Web site scripts)

(c) Sparx Systems 2025 Page 11 of 72

Recording 6 May, 2025

GDB·

(Windows / Linux interopability)

(c) Sparx Systems 2025 Page 12 of 72

Recording 6 May, 2025

The Recording History
When the execution analysis of an application encounters
user-defined recording markers, all information recorded is
held in the Record & Analyze window.

Access

Ribbon Execute > Tools > Recorder > Open
Recorder

Facilities

Facility Information/Options

Information
Display

The columns in the Record & Analyze
window are:

Sequence - The unique sequence·

number
Threads - The operating system thread·

ID
Delta - The elapsed thread CPU time·

since the start of the sequence
Method - There are two Method·

columns: the first shows the caller for a

(c) Sparx Systems 2025 Page 13 of 72

Recording 6 May, 2025

call or for a current frame if a return;
the second shows the function called or
the function it is returning to
Direction - Stack Frame Movement,·

can be Call, Return, State, Breakpoint
or Escape (Escape is used internally
when producing a Sequence diagram,
to mark the end of an iteration)
Depth - The stack depth at the time of a·

call; used in the generation of Sequence
diagrams
State - The state between sequences·

Source - There are two Source·

columns: the first shows the source
filename and line number of the caller
for a call or, if a return, for a current
frame; the second shows the source
filename and line number of the
function called or function returning
Instance - There are two Instance·

columns, which only have values when
the Sequence diagram produced
contains State Transitions; the values
consist of two items separated by a
comma - the first item is a unique
number for the instance of the Class
that was captured, and the second is the
actual instance of the Class

(c) Sparx Systems 2025 Page 14 of 72

Recording 6 May, 2025

For example: supposing a Class
'CName' has an internal value of 4567
and the program created two instances
of that Class; the values might be:
 - 4567,1
 - 4567,2
The first entry shows the first instance
of the Class and the second entry
shows the second instance

Operations
on
Information

The Record & Analyze window toolbar
provides a range of facilities for
controlling the recording of the execution
of an Analyzer script.
You can perform a number of operations
on the results of a recording, using the
Record & Analyze window context
menu, once the recording is complete.

Notes

The checkbox against each operation is used to control·

whether or not this call can be used to create a Sequence,
Test Domain Class or Collaborative Class diagram from
this history

In addition to enabling or disabling the call using the·

checkbox, you can use context menu options to enable or
disable an entire call, all calls to a given method, or all

(c) Sparx Systems 2025 Page 15 of 72

Recording 6 May, 2025

calls to a given Class

(c) Sparx Systems 2025 Page 16 of 72

Recording 6 May, 2025

Diagram Features
When you generate a Sequence diagram, it includes these
features:

Features

Feature Detail

References When the Visual Execution Analyzer
cannot match a function call to an
operation within the model, it still creates
the Sequence but also creates a reference
for any Class that it cannot locate.
It does this for all languages.

Fragments Fragments displayed in the Sequence
diagram represent loops or iterations of a
section(s) of code.
The Visual Execution Analyzer attempts
to match function scope with method
calls to as accurately as possible represent
the execution visually.

States If a StateMachine has been used during
the recording process, any transitions in
State are presented after the method call
that caused the transition to occur.

(c) Sparx Systems 2025 Page 17 of 72

Recording 6 May, 2025

States are calculated on the return of
every method to its caller.

(c) Sparx Systems 2025 Page 18 of 72

Recording 6 May, 2025

Setup for Recording
This section explains how to prepare to record execution of
the application.

Steps

Step

Prerequisites - To set up the environment for recording
Sequence diagrams you must:

Have completed the basic set up for Build & Debug and·

created Execution Analysis scripts for the Package
Be able to successfully debug the application·

Narrow the focus of a recording by applying filters.

Control the detail of a recording by adjusting the stack
depth.

(c) Sparx Systems 2025 Page 19 of 72

Recording 6 May, 2025

Control Stack Depth
When recording particularly high-level points in an
application, the Stack Frame count can result in a lot of
information being collected; to achieve a quicker and clearer
picture, it is better to limit the stack depth on the toolbar of
either:

The Breakpoint and Markers window or·

The Record & Analyze window·

Access

Ribbon Execute > Tools > Recorder > Open
Recorder

Set the recording stack depth

You set the recording stack depth in the numerical field on
the toolbar of the Breakpoints & Markers window or the
Record & Analyze window:

By default, the stack depth is set to three frames. The
maximum depth that can be entered is 30 frames.

The depth is relative to the stack frame where a recording
marker is encountered; so, when recording begins, if the

(c) Sparx Systems 2025 Page 20 of 72

Recording 6 May, 2025

stack frame is 6 and the stack depth is set to 3, the Debugger
records the frames 6 through 8.

For situations where the stack is very large, it is
recommended that you first use a low stack depth of 2 or 3.
From there you can gradually increase the stack recording
depth and insert additional recording markers to expand the
picture until all the necessary information is displayed.

(c) Sparx Systems 2025 Page 21 of 72

Recording 6 May, 2025

Place Recording Markers
This section explains how to place recording markers, which
enable you to silently record code execution between two
points. The recording can be used to generate a Sequence
diagram.

As this process records the execution of multiple threads, it
can be particularly useful in capturing event driven
sequences (such as mouse and timer events).

Access

Ribbon Execute > Windows > Breakpoints

Actions

Action

Different recording markers can be used for recording the
execution flow; see the related links for information on
the properties and usage of these markers.

Manage breakpoints in the Breakpoint & Markers
window.

(c) Sparx Systems 2025 Page 22 of 72

Recording 6 May, 2025

Activate and deactivate markers.

Working with Marker Sets - when you create a breakpoint
or marker, it is automatically added to a marker set, either
the Default set or a set that you create for a specific
purpose.

Notes

The Breakpoint and Marker Management topic (Software·

Engineering) describes a different perspective

(c) Sparx Systems 2025 Page 23 of 72

Recording 6 May, 2025

Set Record Markers
Markers are set in the source code editor. They are placed
on a line of code; when that line of code executes, the
Execution Analyzer performs the recording action
appropriate to the marker.

Access

Use one of the methods outlined here, to display the Code
Editor window and load the source code associated with the
selected Class or Class element.

Ribbon Execute > Source > Edit > Edit Element
Source
Execute > Source > Edit > Open Source
File

Keyboard
Shortcuts

On an element press Ctrl+E or F12
To bring up the 'Open Source File'
browser press Ctrl+Alt+O

Set a recording marker

Ste
p

Action

(c) Sparx Systems 2025 Page 24 of 72

Recording 6 May, 2025

1 Open the source code to debug, in the integrated
source code editor.

2 Find the appropriate code line and right-click in the
left (Breakpoint) margin to bring up the
breakpoint/marker context menu; select the required
marker type:

3 If a Start Recording Marker has been set, you must
also set an End Recording Marker.

(c) Sparx Systems 2025 Page 25 of 72

Recording 6 May, 2025

Marker Types
Markers are really fantastic. Unusual by their very light
footprint when used with care, their impact on the
performance of the programs being recorded can be
negligible. Markers come in several flavors (well colors
actually) and more are always being added. They are placed
and are visible in the left margin of the editor, so you will
need to have some source code.

Use to

Record a single function·

Record parts of a function·

Use Cases spanning multiple functions·

Record call stacks·

Generate Sequence diagrams·

Generate Test Domain diagrams·

Generate Class Collaboration diagrams·

Reference

Marker Detail

Start / End
Recording
markers

Place the markers at the start and end
lines of the code to record. These need
not be within the same function.

(c) Sparx Systems 2025 Page 26 of 72

Recording 6 May, 2025

When the program encounters a start
recording marker, a new recording is
initiated (the camera starts rolling!).
When an end marker is encountered, the
current recording ends (it's a take). How
you use these markers is up to you and
your knowledge of the system under your
care.
Advanced Stuff (nested markers):
If a Start recording marker is encountered
while a recording is in progress, but
where capture is inhibited by the Stack
depth value in use, a separate recording
will be initiated. Each recording is kept
on a stack. When one ends, it is removed.
This technique can be used in Enterprise
Architect to record and render scenes in
very complex systems. It resembles
splicing short scenes from a video to
create a trailer. If you only want to record
a single function, you should use an Auto
record marker.

(c) Sparx Systems 2025 Page 27 of 72

Recording 6 May, 2025

Method Auto
Record
marker

A Method Auto Record marker enables
you to record a particular function. The
debugger will automatically end the
recording when the function completes.
This is good because recording is an
intensive operation.
The function marker combines a Start
Recording marker and an End Recording
marker in one, so recording is executed
after the marker point, and always stops
when this function exits.

Recording markers can be nested. When
a new Method Auto Record marker is hit
while recording, the stack depth to record
to will be extended to include the current
method and the required depth from that
function.

Stack
Auto-Capture
marker

(c) Sparx Systems 2025 Page 28 of 72

Recording 6 May, 2025

Stack markers enable you to capture any
unique stack traces that occur at a point in
an application; they provide a quick and
useful picture of where a point in an
application is being called from.
To insert a marker at the required point in
code, right-click on the line and select the
'Add Stack Auto Capture Marker' option.
Each time the debugger encounters the
marker it performs a stack trace; if the
stack trace is not in the recording history,
it is copied, and the application continues
running.

Limiting the
recording
depth

You can limit the depth of frames in any
recording using the stack depth control on
either the recorder and breakpoints
toolbars.

(c) Sparx Systems 2025 Page 29 of 72

Recording 6 May, 2025

The Breakpoints and Markers Window
Using the Breakpoints & Markers window, you can apply
control to Visual Execution Analysis when recording
execution to generate Sequence diagrams; for example, you
can:

Enable, disable and delete markers·

Manage markers as sets·

Organize how markers are displayed, either in list view or·

grouped by file or Class

Access

Ribbon Execute > Windows > Breakpoints

(c) Sparx Systems 2025 Page 30 of 72

Recording 6 May, 2025

Working with Marker Sets
Marker sets enable you to create markers as a named group,
which you can reapply to a code file for specific purposes.

You can perform certain operations from the Breakpoints &
Markers window alone, but to understand and use markers
and marker sets you should also display the appropriate
code file in the 'Source Code Viewer' (click on the Class
element and press F12).

Access

Ribbon Execute > Windows > Breakpoints :
toolbar icon

Using Marker Sets

Action Details

Example of
Use

You might create a set of Method Auto
Record markers to record the action of
various functions in the code, and a set of
Stack Capture markers to record the
sequence of calls that cause those
functions to be called.

(c) Sparx Systems 2025 Page 31 of 72

Recording 6 May, 2025

You could then create Sequence diagrams
from the recordings under each set.

Create a
Marker Set

To create a marker set from the
Breakpoints & Markers window, click on
the drop-down arrow on the icon and
select the 'New Set' option.
The 'New Breakpoint Marker Set' dialog
displays; in the 'Enter New Set Name'
field, type a name for the set, and click on
the Save button.
The set name displays in the text field to
the left of the 'Set Options' icon.
Alternatively, you can select the 'Save as
Set' option from the 'Set Options'
drop-down to make an exact copy of the
currently-selected set, which you can then
edit.

Accessing
Sets

To access a marker set, click on the
drop-down arrow on the text field to the
left of the 'Set Options' icon, and select
the required set from the list.
The markers in the set are listed in the
Breakpoints & Markers window.
You would normally load a marker set
prior to the point at which an action is to
be captured.
For example, to record a sequence

(c) Sparx Systems 2025 Page 32 of 72

Recording 6 May, 2025

involving a particular dialog, when you
begin debugging you would load the set
prior to invoking the dialog; once you
bring up the dialog in the application, the
operations you have marked are recorded.

Add Markers
to Set

To add markers to a marker set, add each
required marker to the appropriate line of
code in the 'Source Code Viewer'.
The marker is immediately added to
whichever set is currently listed in the
Breakpoints & Markers window.
Each marker listed on the dialog has a
checkbox in the 'Enabled' column;
newly-added markers are automatically
enabled, but you can disable and
re-enable the markers quickly as you
check the code.

Storage of
Sets

When you create a marker set it is
immediately saved within the model; any
user using the model has access to that
set.
However, the Default set, which always
exists for a model, is a personal
workspace, is not shared and is stored
external to the model.

Delete a Right-click on the marker and select the

(c) Sparx Systems 2025 Page 33 of 72

Recording 6 May, 2025

Marker from
a Set

'Delete Breakpoint' option.

Delete a Set If you no longer require a marker set,
access it on the Breakpoints & Markers
window and select the 'Delete Selected
Set' option from the 'Set Options'
drop-down list.
You can also clear all user-defined
marker sets by selecting the 'Delete all
sets' option; a prompt displays to confirm
the deletion.

Notes

Marker Sets are very simple and flexible but, as they are·

available for use by any user of the model, they can be
easily corrupted; consider these guidelines:
 - When naming a set, use your initials in the name and
try to indicate its use, so that other model
 users can recognize its owner and purpose
 - When using a set other than Default, avoid excessive
experimentation so that you don't add
 lots of ad-hoc markers to the set
 - Make sure you are aware of which marker set is
exposed in the Breakpoints & Markers window
 as you can easily inadvertently add markers to the set
that are not relevant to the code file the

(c) Sparx Systems 2025 Page 34 of 72

Recording 6 May, 2025

 set was created for
 - In any set, if you have added markers that don't have
to be kept, delete them to maintain the
 purpose of the set; this is especially true of the
Default set, which can quickly accumulate
 redundant ad-hoc markers

(c) Sparx Systems 2025 Page 35 of 72

Recording 6 May, 2025

Control the Recording Session
The Record & Analyze window enables you to control a
recording session. The control has a toolbar, and a history
window that displays the recording history as it is captured.
Each entry in this window represents a call sequence made
up of one or more function calls.

Access

Open the Record & Analyze window using one of the
methods outlined here.

You must also open the Execution Analyzer window
('Execute > Analyzer | Analyzer Scripts'), which lists all the
scripts in the model; you must select and activate the
appropriate script for the recording.

Ribbon Execute > Tools > Recorder > Open
Recorder

(c) Sparx Systems 2025 Page 36 of 72

Recording 6 May, 2025

Recorder Toolbar
You can access facilities for starting, stopping and
moderating an execution analysis recording session through
the Record & Analyze toolbar.

Access

Ribbon Execute > Tools > Recorder > Open
Recorder
Explore > Portals > Show Toolbar >
Record

Buttons

Button Description

Display a menu of options for defining
what the recording session operates on.

Attach to Process - enabled even if no·

Analyzer Script exists, this option
displays a dialog through which you
select a process to record and a
debugging platform to use; you can
also optionally select a record marker

(c) Sparx Systems 2025 Page 37 of 72

Recording 6 May, 2025

set and/or a StateMachine to use during
the recording
Generate Sequence Diagram from·

Recording - generate a Sequence/State
diagram from the Execution Analyzer
trace
Generate Testpoint Diagram from·

History - generate a Test Domain
diagram from the Execution Analyzer
trace, that can be used with the
Testpoint facility
Generate Class Diagram from History -·

generate a Collaboration Class diagram
from the Execution Analyzer trace,
depicting only those Classes and
operations involved in the recorded
action (Use Case)
Generate Call Graph from History -·

generate a dynamic Call Graph from
the recording history, as you might see
in the VEA Profile workspace
execution analysis layout; this can be
more useful than the Sequence diagram
in identifying the unique call stacks
involved
Generate All - generate the Sequence,·

Testpoint and Collaboration Class
diagrams together from the Execution
Analyzer trace

(c) Sparx Systems 2025 Page 38 of 72

Recording 6 May, 2025

Save as Artifact - create an Artifact·

element that contains the current
recording history, under the
currently-selected Package in the
Browser window; if you subsequently
drag this Artifact element onto a Class
diagram and double-click on it, the
history recorded in the Artifact is
copied back into the Record & Analyze
window
Load Sequence History from file -·

select an XML file from which to
restore a previously-saved recording
history
Save Sequence History to file - save·

the recording history to an XML file

Select the recording stack depth for the
marker set; that is, the number of frames
from the point at which recording began.

Launch and record the application
described in the script; you can optionally
select a record marker set and/or a
StateMachine to use during the recording.
The icon is enabled when the active
Analyzer Script is configured for
debugging.

(c) Sparx Systems 2025 Page 39 of 72

Recording 6 May, 2025

Perform ad-hoc manual recording of the
current thread during a debug session.
Use this function with the 'step' buttons of
the debugger; each function that is called
due to a step command is logged to the
history window.
The icon is enabled if no recording is
taking place and you are currently at a
breakpoint (that is, debugging).

Perform ad-hoc auto-recording during a
debug session.
When you click on this icon, the
Analyzer begins recording and does not
stop until either the program ends, you
stop the debugger or you click on the
Stop icon.
This icon is enabled if no recording is
taking place and you are currently at a
breakpoint (that is, debugging).

Step into a function, record the function
call in the History window, and step back
out.
Enabled for manual recording only.

Stop recording the execution trace.

(c) Sparx Systems 2025 Page 40 of 72

Recording 6 May, 2025

Display the 'Synchronize Model' dialog
through which you can synchronize the
model with the code files generated
during a Record Profile operation.

(c) Sparx Systems 2025 Page 41 of 72

Recording 6 May, 2025

Working With Recording History
You can perform a number of operations on or from the
results of a recording session, using the Record & Analyze
window context menu.

Options

Option Action

Show Source
for Caller

Display the source code, in the Source
Code Viewer, for the method calling the
sequence.

Show Source
for Callee

Display the source code, in the Source
Code Viewer, for the method being called
by the sequence.

Generate
Diagram for
Selected
Sequence

Generate a Sequence diagram for a single
sequence selected in the recording
history.

Generate
Sequence
Diagram

Generate a Sequence diagram including
all sequences in the recording history.

Clear Clear the recording history currently

(c) Sparx Systems 2025 Page 42 of 72

Recording 6 May, 2025

displayed in the Record & Analyze
window.

Save
Recording
History to
File

Save the recording history to an XML
file.
A browser window displays, on which
you specify the file path and name for the
XML file.

Load
Recording
History From
File

Load a previously saved recording
history from an XML file.
A browser window displays, on which
you specify the file path and name for the
XML file to load.

Disable All
Calls

Disable every call listed in the Record &
Analyze window.

Disable This
Call

Disable the selected call.

Disable This
Method

Disable the selected method.

Disable This
Class

Disable the selected Class.

Disable All
Calls Outside

Disable every call listed in the Record &
Analyze window except for the selected

(c) Sparx Systems 2025 Page 43 of 72

Recording 6 May, 2025

This Call call.

Enable All
Calls

Enable every call listed in the Record &
Analyze window.

Enable This
Call

Enable the selected call.

Enable This
Method

Enable the selected method.

Enable This
Class

Enable the selected Class.

Help Display the Help topic for the Record &
Analyze window.

(c) Sparx Systems 2025 Page 44 of 72

Recording 6 May, 2025

Start Recording
When you are recording execution flow as a Sequence
diagram, you start the recording by selecting the 'Recording'
icon on the Record & Analyze window toolbar. The 'Record'
dialog displays with the recording options set to the
defaults; that is, the current Breakpoint and Markers Set, the
filters defined in the current Analyzer Script and the
recording mode as basic.

Access

Ribbon Execute > Tools > Recorder > Open
Recorder :

Record Dialog Options

Field/Button Detail

Recording
Set

Recording markers determine what is
recorded.
If you have a recording set to use, click
on the drop-down arrow and select it.

Additional Filters are used by the debugger to

(c) Sparx Systems 2025 Page 45 of 72

Recording 6 May, 2025

Filters exclude matching function calls from the
recording history. Recording filters are
defined in the Analyzer Script.
In the 'Additional Filters' field you can
add other filters for this specific run. if
you specify more than one filter, separate
them with a semi-colon.

Basic
Recording
Mode

In basic mode the debugger records a
history of the function calls made by the
program whenever it encounters an
appropriate recording marker.

Track
Instances of
Named
Classes

In Track Instances mode the debugger
also captures the creation of instances of
the Classes you specify. It then includes
that information in the history. The
resulting Sequence diagram can then
show lifelines for each instance of that
Class with, where appropriate, function
calls linked to the lifeline.

Track State
Transitions

The recording can also capture changes in
State using a specified StateMachine
diagram. The StateMachine diagram must
exist as a child of a Class.
The Execution Analyzer captures
instances of that Class and calculates the
State of each instance whenever a

(c) Sparx Systems 2025 Page 46 of 72

Recording 6 May, 2025

function in the current recording
sequence returns.

OK Click on this button to start the debugger.

(c) Sparx Systems 2025 Page 47 of 72

Recording 6 May, 2025

Step Through Function Calls
The 'Step Through' command can be executed by clicking
on the Step Through button on the Record & Analyze
window toolbar.

Alternatively, press Shift+F6 or select the 'Execute > Run >
Step In' ribbon option.

The 'Step Through' command causes a 'Step Into' command
to be executed; if any function is detected, then that function
call is recorded in the History window.

The Debugger then steps out, and the process can be
repeated.

This button enables you to record a call without having to
actually step into a function; the button is only enabled
when at a breakpoint and in manual recording mode.

(c) Sparx Systems 2025 Page 48 of 72

Recording 6 May, 2025

Nested Recording Markers
When a recording marker is first encountered, recording
starts at the current stack frame and continues until the
frame pops, recording additional frames up to the depth
defined on the Recording toolbar. Consider this call
sequence:

A -> B -> C -> D -> E -> F -> G -> H -> I -> J -> K -> L ->
M -> N -> O -> P -> Q -> R -> S -> T -> U -> V -> W -> X
-> Y -> Z

If you set a recording marker at K and set the recording
depth to 3, this would record the call sequence:

K -> L -> M

If you also wanted to record the calls X, Y and Z as part of
the Sequence diagram, you would place another recording
marker at X and the analyzer would record:

K -> L -> M -> X -> Y -> Z

However, when recording ends for the X-Y-Z component
(frame X is popped), recording will resume when frame M
of the K-L-M sequence is re-entered. Using this technique
can help where information from the recorded diagram
would be excluded due to the stack depth, and it lets you
focus on the particular areas to be captured.

(c) Sparx Systems 2025 Page 49 of 72

Recording 6 May, 2025

Generating Sequence Diagrams
This topic describes what you might do with the recording
of an execution analysis session.

Access

Ribbon Execute > Tools > Recorder > Open
Recorder

Reference

Action Detail

Generate a
diagram

Select the appropriate Package in the
Browser window, in which to store the
Sequence diagram.
To create the diagram from all recorded
sequences, either:

Click on the 'Recorder Menu' icon·

() in the Record & Analyze window
toolbar, and select the 'Generate
Sequence Diagram from Recording'
option, or
Right-click on the body of the window·

(c) Sparx Systems 2025 Page 50 of 72

Recording 6 May, 2025

and select the 'Generate Sequence
Diagram' option

To create the diagram from a single
sequence, either:

Click on the 'Recorder Menu' icon·

() in the Record & Analyze window
toolbar, and select the 'Generate
Sequence Diagram from Recording'
option, or
Right-click on the sequence and select·

the 'Generate Diagram from Selected
Sequence' option

Save a
recorded
sequence to
an XML file

Click on the sequence, click on the
'Recorder Menu' icon () in the Record
& Analyze window toolbar, and select
the 'Save Sequence History to File'
option.

Access an
existing
sequence
XML file

Either:
Click on the in the Record &·

Analyze window toolbar, and select the
'Load Sequence History from File'
option, or
Right-click on a blank area of the·

screen and click on the 'Load Sequence
From File' option

The 'Windows Open' dialog displays,

(c) Sparx Systems 2025 Page 51 of 72

Recording 6 May, 2025

from which you select the file to open.

Use to

Generate a Sequence diagram from a recorded execution·

analysis session, for:

all recorded sequences or·

a single sequence in the session·

Save the recorded sequence to file·

Retrieve the saved recording and load it into the Record &·

Analyze window

(c) Sparx Systems 2025 Page 52 of 72

Recording 6 May, 2025

Reporting State Transitions
This section describes how you can generate Sequence
diagrams that show transitions in state as a program
executes.

Use to

Generate Sequence diagrams that report user-defined
transitions in state as a program executes (as shown in the
example generated diagram)

Topic

(c) Sparx Systems 2025 Page 53 of 72

Recording 6 May, 2025

Create a StateMachine under the Class to be reported.

Set the constraints against each State to define the change
in state to be reported.

(c) Sparx Systems 2025 Page 54 of 72

Recording 6 May, 2025

Reporting a StateMachine
The Execution Analyzer can record a Sequence diagram, we
know that. What you might not know is that it can use a
StateMachine at the same time to detect State transitions
that might occur along the way. These States are represented
at the point in time on the lifeline of the object. The
transitions also are apparent from the lifelines. Any invalid
or illegal transition will be highlighted with a red border.
Have a look.

Process

Firstly you model a StateMachine for the appropriate Class
element.

You then compose the expressions that define each State
using the 'Constraints' tab of each State.

These simple expressions are formed using attribute names
from Class model and actual code base. They are not OCL
statements. Each expression should appear on a separate
line.

 m_strColor == "Blue"

You then use the Recorder window to launch the debugger.

The Recorder window Run button is different from the
button on other debugger toolbars.

The Recorder window will allow you to browse for a
StateMachine if you do not know the StateMachine name.
The 'State Transition' dialog presents a list of StateMachines

(c) Sparx Systems 2025 Page 55 of 72

Recording 6 May, 2025

for the entire model, in which you locate and select the
appropriate diagram (see the example).

When you generate the Sequence diagram, it depicts not
only the sequence but changes in State at the various points
in the sequence; each Class instance participating in the
detection process is displayed with its own lifeline.

Example

The Stations StateMachine shows the different States within
the Melbourne Underground Loop subway system.

A train traveling on the subway network can be stopped at
any of the stations represented on the StateMachine.

The Stations StateMachine is a child of the CTrain Class.

When you browse for the diagram in the 'State Transition
Recorder' dialog, the hierarchy shows only the root Package,
parent Class and child SubMachine and diagram; no other
model components are listed.

(c) Sparx Systems 2025 Page 56 of 72

Recording 6 May, 2025

(c) Sparx Systems 2025 Page 57 of 72

Recording 6 May, 2025

Recording and Mapping State Changes
This topic discusses how to set constraints against each
State in the StateMachine under a Class, to define the
change in state to be recorded.

Example

This example of a State 'Properties' dialog is for the State
called Parliament; the 'Constraints' tab is open to show how
the State is linked to the Class CXTrain.

A State can be defined by a single constraint or by many; in
the example, the Parliament State has two constraints:

The values of constraints can only be compared for
elemental, enum and string types

The CXTrain Class has a member called Location of type
int, and a member called Departing.Name of type CString;
what this constraint means is that this State is evaluated to
True when:

an instance of the CXTrain Class exists and·

its member variable Location has the value 0 and·

the member variable Departing.Name has the value·

Parliament

(c) Sparx Systems 2025 Page 58 of 72

Recording 6 May, 2025

Operators in Constraints

There are two types of operator you can use on constraints
to define a State:

Logical operators AND and OR can be used to combine·

constraints

Equivalence operators {= and !=} can be used to define·

the conditions of a constraint

All the constraints for a State are subject to an AND
operation unless otherwise specified; you can use the OR
operation on them instead, so you could rewrite the
constraints in the example as:

 Location=0 OR

 Location=1 AND

 Departing.Name!=Central

Here are some examples of using the equivalence operators:

 Departing.Name!=Central AND

 Location!=1

Notes

Quotes around strings are optional; the comparison for·

strings is always case-sensitive in determining the truth of
a constraint

(c) Sparx Systems 2025 Page 59 of 72

Recording 6 May, 2025

State Analyzer
The State Analyzer is a feature that can analyze, detect and
record states for instances of a Class. The feature works by
combining a state definition (defined on a Class as a
constraint) and markers called State points. It is available for
any languages supported by the Execution Analyzer,
including Microsoft.NET, Mono, Java and native C++.

We begin by selecting a Class and composing our state
definition.

We can get a picture of all the state definitions we've
defined by placing the Class on a diagram and linking to the
Class notes that themselves link to a particular state

(c) Sparx Systems 2025 Page 60 of 72

Recording 6 May, 2025

definition constraint. We explain how to do that in a later
section.

State points are set by placing one or more markers in
relevant source code.

The program to be analyzed is run using the State Analyzer
control. When the Execution Analyzer encounters any State
point, the current instance of the Class is analyzed. Where
the value domain of the instance matches the state
definition, a state is recorded. Each time the instance varies,
new states are thus detected. The control lists each state as
it is discovered. Under each state the control lists the
discrete set of transitions to other states made by instances

(c) Sparx Systems 2025 Page 61 of 72

Recording 6 May, 2025

of the class.

The information can be used to create a StateMachine.

Using the same information we can easily produce a Heat
Map. This example shows a 'Train' Class, its 'Bulletin' State
Definition (as a linked note), and the Heat Map it produced.
The Figures in the map are percentages. From the map we
can observe that trains were in the 'In Transit' state 46% of
the time.

(c) Sparx Systems 2025 Page 62 of 72

Recording 6 May, 2025

This is the analysis for the 'Bulletin' State Definition that
produced our Heat Map.

Access

Ribbon Execute > Tools > Recorder > Open
Recorder > State Analyzer
Design > Element > Editors >
Constraints

(c) Sparx Systems 2025 Page 63 of 72

Recording 6 May, 2025

State Definitions

State Definitions are composed in the Constraints properties
of a Class element. The constraint type should be named
StateDefinition.name, where 'name' is your choice of title
for the definition. These titles are listed in the combo box of
the State Analyzer whenever a Class is selected. You select
a single definition from this combo box prior to running the
program. The State Definition in our example is named
'StateDefinition.Location'. It defines states based on the
location of instances of the CTrain Class.

State Definitions are composed of one or more
specifications. Each state specification begins with the
keyword 'statedef' which is then followed by one or more
statements. Statements define the constraints that describe
the state, and optionally a variable whose value can be used
to name the state. Statements are enclosed in curly brackets
and are terminated with a semi colon as shown:

statedef {

 Location=0;

 Departing.Name;

}

Naming states using variables

In this example, 'Location' is a constant and
'Departing.name' is a variable. An additional statement

(c) Sparx Systems 2025 Page 64 of 72

Recording 6 May, 2025

follows the constraints and instructs the name of the State to
be assigned from the variable value. Here is the definition
with the naming directive.

statedef {

 Location=0;

 Departing.Name;

}

name=Departing.Name;

Naming states using literals

In this example the State Definition only contains constants
and the state is named using a literal.

statedef {

 Location=100;

}

name='Central';

A single State Definition defining multiple State
specifications.

statedef {

 Passengers > 100;

}

(c) Sparx Systems 2025 Page 65 of 72

Recording 6 May, 2025

name=Busy;

statedef {

 Passengers >= 50;

}

name=Quiet;

statedef {

 Passengers < 50;

}

name=Very Quiet;

statedef {

 Passengers = 0;

}

name=Idle;

Default State

A State definition can specify a default 'catch all' state that
will describe the state of an instance when no other state
holds true. You define a default state for the definition with
a statement resembling this:

statedef {

 Location=0;

 Departing.Name;

}

(c) Sparx Systems 2025 Page 66 of 72

Recording 6 May, 2025

name=Departing.Name;

default=Moving;

In this example, while execution is in progress any instance
detected having a non-zero 'Location' attribute will be
recorded as being in the 'Moving' state.

You can choose to exclude the recording of the default state
by disabling the 'Include default state' option on the drop
down menu of the State Analyzer toolbar. This would
exclude transitions to any 'default' state being recorded.

Creating Notes on a Class element that
display State Definitions

This section describes how to create the Class diagram that
shows all the State Definitions defined for the Class.

Actions

Display a
Class

diagram

Open an existing Class diagram or create
a new one.

Create a link
to the Class

Drag the Class of interest on to the
diagram as a link.

(c) Sparx Systems 2025 Page 67 of 72

Recording 6 May, 2025

element

Create a note
element

Create a note element on the diagram and
link it to the class.

Link the note
to the State
Definition

Select the link between the Note and the
Class and, using its context menu, select
the 'Link Note to Element Feature' option.

Choose the
definition to
display on
the Note

From the element dialog, choose
'Constraints' from the drop combo. Any
defined State Definitions will be listed for
you to choose from.

Repeat Repeat the procedure for any other State
Definitions on the class.

(c) Sparx Systems 2025 Page 68 of 72

Recording 6 May, 2025

Synchronization
The recording produces a number of assets, the recording
history being the main one. Recording also identifies a set of
source code files. This set can be used to produce Class and
Test Domain diagrams, but can also be used to synchronize
your model.

A synchronized model provides quick and accurate
navigation between diagram elements and the Class model.

Access

Ribbon Execute > Tools > Recorder > Open
Recorder > Toolbar button

Context
Menu

Right-click on the Record & Analyze
window | Synchronize Model with Source
Code

Synchronize Model

(c) Sparx Systems 2025 Page 69 of 72

Recording 6 May, 2025

Field/Button Action

Package Click on the Select button and select the
target Package into which to
reverse-engineer the code files.

Files/Action Lists the files identified during one or
more recording(s). The appropriate action
is listed next to each file.

Select All Click on this button to select the
checkbox against every file in the 'Files'
list.

Select None Click on this button to clear the checkbox
against every file in the 'Files' list.

OK Click on this button to start the operation.
The progress of the synchronization will
be displayed.

(c) Sparx Systems 2025 Page 70 of 72

Recording 6 May, 2025

Cancel Click on this button to abort
synchronization and close the dialog.

(c) Sparx Systems 2025 Page 71 of 72

Recording 6 May, 2025

(c) Sparx Systems 2025 Page 72 of 72

	Recording
	How it Works
	The Recording History
	Diagram Features

	Setup for Recording
	Control Stack Depth

	Place Recording Markers
	Set Record Markers
	Marker Types
	The Breakpoints and Markers Window
	Working with Marker Sets

	Control the Recording Session
	Recorder Toolbar
	Working With Recording History
	Start Recording
	Step Through Function Calls
	Nested Recording Markers

	Generating Sequence Diagrams
	Reporting State Transitions
	Reporting a StateMachine
	Recording and Mapping State Changes

	State Analyzer
	Synchronization

