
Software Models
How to model software engineering? Sparx

Systems Enterprise Architect has tools to model
software in many coding languages, and to
automate code generation, reverse engineer

code, synchronize code with a model, analyze
execution and trace development.

Enterprise Architect

User Guide Series

Author: Sparx Systems
Date: 2020-01-20

Version: 15.1

CREATED WITH

Table of Contents

Software Models 11
Integrated Development 14
Feature Overview 17
Generate Source Code 20
Generate a Single Class 25
Generate a Group of Classes 28
Generate a Package 30
Update Package Contents 35
Synchronize Model and Code 39

Namespaces 41
Importing Source Code 43
Import Projects 48
Import Source Code 54
Notes on Source Code Import 56
Import Resource Script 61
Import a Directory Structure 65
Import Binary Module 68
Classes Not Found During Import 70

Editing Source Code 71
Languages Supported 76
Configure File Associations 78
Compare Editors 80
Code Editor Toolbar 83

Code Editor Context Menu 90
Create Use Case for Method 97

Code Editor Functions 100
Function Details 101
Intelli-sense 106
Find and Replace 109
Search in Files 116
Find File 122

Search Intelli-sense 126
Code Editor Key Bindings 131

Application Patterns (Model + Code) 139
MDG Integration and Code Engineering 143

Behavioral Models 144
Code Generation - Activity Diagrams 148
Code Generation - Interaction Diagrams 151
Code Generation - StateMachines 153
Legacy StateMachine Templates 163
Java Code Generated From Legacy StateMachine
Template 167

StateMachine Modeling For HDLs 176
Win32 UI Technology 179
Modeling UI Dialogs 182
Import Single Dialog from RC File 186
Import All Dialogs from RC File 187
Export Dialog to RC File 189
Design a New Dialog 191

GoF Patterns 194

ICONIX 197
Configuration Settings 200
Source Code Engineering Options 201
Code Generation Options 205
Import Component Types 208

Source Code Options 210
Options - Code Editors 214
Editor Language Properties 217

Options - Object Lifetimes 222
Options - Attribute/Operations 224

Modeling Conventions 227
ActionScript Conventions 230
Ada 2012 Conventions 233
C Conventions 238
Object Oriented Programming In C 243

C# Conventions 247
C++ Conventions 253
Managed C++ Conventions 258
C++/CLI Conventions 260

Delphi Conventions 263
Java Conventions 267
AspectJ Conventions 271

PHP Conventions 273
Python Conventions 276
SystemC Conventions 277
VB.NET Conventions 281
Verilog Conventions 286

VHDL Conventions 290
Visual Basic Conventions 296

Language Options 299
ActionScript Options - User 302
ActionScript Options - Model 304

Ada 2012 Options - User 306
Ada 2012 Options - Model 308

ArcGIS Options - User 310
ArcGIS Options - Model 312

C Options - User 314
C Options - Model 317

C# Options - User 320
C# Options - Model 322

C++ Options - User 325
C++ Options - Model 328

Delphi Options - User 331
Delphi Options - Model 333
Delphi Properties 335

Java Options - User 337
Java Options - Model 339

PHP Options - User 342
PHP Options - Model 344

Python Options - User 346
Python Options - Model 348

SystemC Options - User 350
SystemC Options - Model 352

VB.NET Options - User 354

VB.NET Options - Model 356
Verilog Options - User 358
Verilog Options - Model 360

VHDL Options - User 362
VHDL Options - Model 364

Visual Basic Options - User 366
Visual Basic Options - Model 368

MDG Technology Language Options 370
Reset Options 373

Set Collection Classes 376
Example Use of Collection Classes 379

Local Paths 383
Local Paths Dialog 385

Language Macros 388
Developing Programming Languages 392
Code Template Framework 395
Code Template Customization 398
Code and Transform Templates 400
Base Templates 404
Export Code Generation and Transformation
Templates 410
Import Code Generation and Transformation
Templates 412
Synchronize Code 414
Synchronize Existing Sections 417
Add New Sections 418
Add New Features and Elements 419

The Code Template Editor 420
Code Template Syntax 423
Literal Text 425
Variables 427
Macros 432
Template Substitution Macros 434
Field Substitution Macros 437
Substitution Examples 439
Attribute Field Substitution Macros 442
Class Field Substitution Macros 445
Code Generation Option Field Substitution
Macros 451
Connector Field Substitution Macros 461
Constraint Field Substitution Macros 470
Effort Field Substitution Macros 472
File Field Substitution Macros 473
File Import Field Substitution Macros 475
Link Field Substitution Macros 478
Linked File Field Substitution Macros 482
Metric Field Substitution Macros 484
Operation Field Substitution Macros 485
Package Field Substitution Macros 488
Parameter Field Substitution Macros 490
Problem Field Substitution Macros 492
Requirement Field Substitution Macros 494
Resource Field Substitution Macros 496
Risk Field Substitution Macros 498

Scenario Field Substitution Macros 499
Tagged Value Substitution Macros 500
Template Parameter Substitution Macros 503
Test Field Substitution Macros 505

Function Macros 507
Control Macros 520
List Macro 521
Branching Macros 525
Synchronization Macros 529
The Processing Instruction (PI) Macro 531

Code Generation Macros for Executable
StateMachines 534
EASL Code Generation Macros 558
EASL Collections 564
EASL Properties 571

Call Templates From Templates 584
The Code Template Editor in MDG Development 586
Create Custom Templates 587
Customize Base Templates 590
Add New Stereotyped Templates 592
Override Default Templates 595

Grammar Framework 597
Grammar Syntax 600
Grammar Instructions 603
Grammar Rules 605
Grammar Terms 607
Grammar Commands 609

AST Nodes 613
Editing Grammars 632
Parsing AST Results 635
Profiling Grammar Parsing 637
Macro Editor 639
Example Grammars 641

Code Miner Framework 642
Code Miner Libraries 644
Code Miner Queries 649
Code Miner Query Language (mFQL) 651
Set Extraction 654
Set Traversal 657
Set Joining 660
Helper Functions 665

Code Miner Service 667
Service Configuration 668
Client Configuration 670

User Guide - Software Models 20 January, 2020

Software Models

Software engineering is the discipline of designing,
implementing and maintaining software. The process of
software engineering starts with requirements and
constraints as inputs, and results in programming code and
schemas that are deployed to a variety of platforms, creating
running systems.

Enterprise Architect has a rich set of tools and features that
assist Software Engineers to perform their work efficiently
and reduce the number of errors in implemented solutions.
The features include design tools to create models of
software, automated code generation, reverse engineering of
source code, binaries and schemas, and tools to synchronize
source code with the design models. The programming code

(c) Sparx Systems 2019 Page 11 of 672

User Guide - Software Models 20 January, 2020

can be viewed and edited directly in the integrated Code
Editors within Enterprise Architect, which provide
Intelli-sense and other features to aid in coding.

Another compelling aspect of the environment is the ability
to trace the implementation Classes back to design elements
and architecture, and then back to the requirements and
constraints and other specifications, and ultimately back to
stakeholders and their goals and visions.

Enterprise Architect supports a wide range of programming
languages and platforms and provides a lightweight and
seamless integration with the two most prevalent Integrated
Development Environments: Visual Studio and Eclipse. In
addition there is a fully featured Execution Analyzer that
allows the Software Engineer to design, build debug and test
software modules right inside Enterprise Architect.

Facilities

Facility Description

Development
Tools

Discover the tightly Integrated
Development Environment with
outstanding tools and functionality.

Code, Build
and Debug

Model, develop, debug, profile and
manage an application from within the
modeling environment.

(c) Sparx Systems 2019 Page 12 of 672

User Guide - Software Models 20 January, 2020

Visual
Analysis of
Executing

Code

Understand your code base by visually
analyzing running code. Use Test Points,
profiling and automated diagram
generation.

Generate
Source Code

Explore some of the ways to generate
source code for a single Class, a selection
of Classes, or a whole Package. Generate
from structural or behavioral models.

Importing
Source Code

Examine existing systems by importing
source code into Enterprise Architect.
View and modify dialog definitions.
Synchronize the model with the latest
updates to source code.

(c) Sparx Systems 2019 Page 13 of 672

User Guide - Software Models 20 January, 2020

Integrated Development

Enterprise Architect provides an unmatched set of tools and
features for the Software Engineer, to assist in the process of
creating robust and error free software systems. The
engineer can start by defining the architecture and ensuring
that it traces back to the requirements and specification.
Technology neutral models can be transformed to target a
comprehensive range of programming languages. The
Model Driven Development Environment fits the bill for
various technologies.

Features

Developmen
t Tools

Model driven development with·
best-in-class UML tools
Generate and reverse engineer code·

(c) Sparx Systems 2019 Page 14 of 672

User Guide - Software Models 20 January, 2020

Customize code generation with·
templates
Analyzer Scripts to manage your·
applications
Code editors to author the code base·
Debuggers to investigate behavior·
Profilers to visualize behavior·
Analyzers to record behavior·
Testpoints for validation of·
programming contracts
Integration with jUnit and nUnit·
Eclipse or Visual Studio Integration·
where required

Traceability At a glance traceability of
Generalizations, Realizations,
Associations, Dependencies and more.
Customize relationship views. Easily
navigate related elements in the model.

Usage Quickly browse element usage across all
diagrams. Perform powerful element
searches using sophisticated queries.

Popular
Languages

C/ C++·

Java·

Microsoft .NET family·

ADA·

(c) Sparx Systems 2019 Page 15 of 672

User Guide - Software Models 20 January, 2020

Python·

Perl·

PHP·

Toolboxes Toolboxes are provided for a vast array of
modeling technologies and programming
languages.

Application
Patterns

Enterprise Architect provides complete
starter projects, including model
information, code and build scripts, for
several basic application types.

(c) Sparx Systems 2019 Page 16 of 672

User Guide - Software Models 20 January, 2020

Feature Overview

Code Engineering with Enterprise Architect broadly
encompasses various processes for the design, generation
and transformation of code from your UML model.

Features

Model
Driven Code
Engineering

Source code generation and reverse·

engineering for many popular
languages, including C++, C#, Java,
Delphi, VB.Net, Visual Basic,
ActionScript, Python and PHP
A built in 'syntax highlighting' source·

code editor
Code generation templates, which·

enable you to customize the generated
source code to your company
specifications

Transformat
ions for

Rapid
Developmen

t

Advanced Model Driven Architecture·

(MDA) transformations using
transformation templates
Built-in transformations for DDL, C#,·

Java, EJB and XSD
One Platform Independent Model can·

(c) Sparx Systems 2019 Page 17 of 672

User Guide - Software Models 20 January, 2020

be used to generate and synchronize
multiple Platform Specific Models,
providing a significant productivity
boost
XSL Transform diagram, toolbox,·

editor and debugger.

Visual
Execution
Analysis /

Debugging,
Verification

and
Visualizatio

n

Execute build, test, debug, run and·

deploy scripts
Integrate UML development and·

modeling with source development and
compilation
Generate NUnit and JUnit test Classes·

from source Classes using MDA
Transformations
Integrate the test process directly into·

the Enterprise Architect IDE
Debug .NET, Mono, Java and·

Microsoft Native (C, C++ and Visual
Basic) applications
Design and execute Test suites based·

on Programming by Contract principles
XSL Stylesheet debugging·

Database
Modeling

Enterprise Architect enables you to:
Reverse engineer from many popular·

DBMSs, including SQL Server, My
SQL, Access, PostgreSQL and Oracle

(c) Sparx Systems 2019 Page 18 of 672

User Guide - Software Models 20 January, 2020

Model database tables, columns, keys,·

foreign keys and complex relationships
using UML and an inbuilt data
modeling profile
Forward generate DDL scripts to create·

target database structures

XML
Technology

Engineering

Enterprise Architect enables you to
rapidly model, forward engineer and
reverse engineer two key W3C XML
technologies:

XML Schema (XSD)·

Web Service Definition Language·

(WSDL)
XSD and WSDL support is critical for the
development of a complete Service
Oriented Architecture (SOA), and the
coupling of UML 2.5 and XML provides
the natural mechanism for implementing
XML-based SOA artifacts within an
organization.

(c) Sparx Systems 2019 Page 19 of 672

User Guide - Software Models 20 January, 2020

Generate Source Code

Source code generation is the process of creating
programming code from a UML model. There are great
benefits in taking this approach as the source code Packages,
Classes and Interfaces are automatically created and
elaborated with variables and methods.

Enterprise Architect can also generate code from a number
of behavioral models, including StateMachine, Sequence
and Activity diagrams. There is a highly flexible template
mechanism that allows the engineer to completely tailor the
way that source code is generated, including the comment
headers in methods and the Collection Classes that are used.

From an engineering and quality perspective, the most
compelling advantage of this approach is that the UML
models and therefore the architecture and design are
synchronized with the programming code. An unbroken
traceable path can be created from the goals, business
drivers and the stakeholder’s requirements right through to
methods in the programming code.

Facilities

Facility Description

(c) Sparx Systems 2019 Page 20 of 672

User Guide - Software Models 20 January, 2020

Languages Enterprise Architect supports code
generation in each of these software
languages:

Action Script·

Ada·

ArcGIS·

C·

C# (for .NET 1.1, .NET 2.0 and .NET·

4.0)
C++ (standard, plus .NET managed·

C++ extensions)
Delphi·

Java (including Java 1.5, Aspects and·

Generics)
JavaScript·

MFQL·

MySql·

PHP·

Python·

Teradata SQL·

Visual Basic·

Visual Basic .NET·

WorkFlowScript·

You can also generate Hardware
Definition Language code in these
languages:

(c) Sparx Systems 2019 Page 21 of 672

User Guide - Software Models 20 January, 2020

VHDL·

Verilog·

SystemC·

Elements Code is generated from Class or Interface
model elements, so you must create the
required Class and Interface elements to
generate from. All other types of element
to contribute to the code (such as
StateMachines or Activities) must be
child elements of a Class.
Add attributes (which become variables)
and operations (which become methods).
Constraints and Receptions are also
supported in the code.

Settings Before you generate code, you should
ensure the default settings for code
generation match your requirements; set
up the defaults to match your required
language and preferences.
Preferences that you can define include
default constructors and destructors,
methods for interfaces and the Unicode
options for created languages.
Languages such as Java support
'namespaces' and can be configured to
specify a namespace root.
In addition to the default settings for

(c) Sparx Systems 2019 Page 22 of 672

User Guide - Software Models 20 January, 2020

generating code, Enterprise Architect
facilitates setting specific generation
options for each of the supported
languages.

Code
Template
Framework

The Code Template Framework (CTF)
enables you to customize the way
Enterprise Architect generates source
code and also enables generation of
languages that are not specifically
supported by Enterprise Architect.

Local Paths Local path names enable you to substitute
tags for directory names.

Behavioral
Code

You can also generate software code
from three UML behavioral modeling
paradigms:

Interaction (Sequence) diagrams·

Activity diagrams·

StateMachine diagrams (using Legacy·

State Machine Templates in the code
generation operations under 'Tasks')
StateMachine diagrams (using an·

Executable State Machine Artifact)

Live Code
Generation

On the 'Develop > Preferences > Options'
drop-down menu, you have the option to
update your source code instantly as you

(c) Sparx Systems 2019 Page 23 of 672

User Guide - Software Models 20 January, 2020

make changes to your model.

Tasks When you generate code, you perform
one or more of these tasks:

Generate a Single Class·

Generate a Group of Classes·

Generate a Package·

Update Package Contents·

Notes

Most of the tools provided by Enterprise Architect for·

code engineering and debugging are available in the
Professional and higher editions of Enterprise Architect;
Behavioral Code Generation is available in the Unified
and Ultimate editions

When security is enabled you require the access·

permissions 'Generate Source Code and DDL' and
'Reverse Engineer from DDL and Source Code'

(c) Sparx Systems 2019 Page 24 of 672

User Guide - Software Models 20 January, 2020

Generate a Single Class

Before you generate code for a single Class, you:

Complete the design of the model element (Class or·

Interface)

Create Inheritance connectors to parents and Associations·

to other Classes that are used

Create Inheritance connectors to Interfaces that your Class·

implements; the system provides an option to generate
function stubs for all interface methods that a Class
implements

Generate code for a single Class

Ste
p

Action

1 Open the diagram containing the Class or Interface
for which to generate code.

2 Click on the required Class or Interface and select
the 'Develop > Source Code > Generate > Generate
Single Element' ribbon option, or press F11.
The 'Generate Code' dialog displays, through which
you can control how and where your source code is
generated.

(c) Sparx Systems 2019 Page 25 of 672

User Guide - Software Models 20 January, 2020

3 In the 'Path' field, click on the button and select a
path name for your source code to be generated to.

4 In the 'Target Language' field, click on the
drop-down arrow and select the language to
generate; this becomes the permanent option for that
Class, so change it back if you are only doing one
pass in another language.

5 Click on the Advanced button.
The 'Object Options' dialog displays, providing
subsets of the 'Source Code Engineering' and code
language options pages on the 'Preferences' dialog.

6 Set any custom options (for this Class alone), then
click on the Close button to return to the 'Generate
Code' dialog.

7 In the 'Import(s) / Header(s)' fields, type any import
statements, #includes or other header information.
Note that in the case of Visual Basic this information
is ignored; in the case of Java the two import text
boxes are merged; and in the case of C++ the first
import text area is placed in the header file and the
second in the body (.cpp) file.

8 Click on the Generate button to create the source
code.

(c) Sparx Systems 2019 Page 26 of 672

User Guide - Software Models 20 January, 2020

9 When complete, click on the View button to see
what has been generated.
Note that you should set up your default
viewer/editor for each language type first; you can
also set up the default editor on the 'Code Editors'
page of the Preferences window ('Start > Desktop >
Preferences > Preferences > Source Code
Engineering > Code Editors').

(c) Sparx Systems 2019 Page 27 of 672

User Guide - Software Models 20 January, 2020

Generate a Group of Classes

In addition to being able to generate code for an individual
Class, you can also select a group of Classes for batch code
generation. When you do this, you accept all the default
code generation options for each Class in the set.

Generate Class Group

Ste
p

Detail

1 Select a group of Classes and/or interfaces in a
diagram.

2 Click on an element in the group and select the
'Develop > Source Code > Generate > Generate
Selected Element(s)' ribbon option (or press
Shift+F11).
If no code exists for the selected elements, the 'Save
As' dialog displays on which you specify the file
path and name for each code file; enter this
information and click on the Save button.

3 The 'Batch Generation' dialog displays, showing the
status of the process as it executes (the process might
be too fast to see this dialog).

(c) Sparx Systems 2019 Page 28 of 672

User Guide - Software Models 20 January, 2020

If code already exists for the selected Class
elements, and changes have been made to the Class
name or structure, the 'Synchronize Element
<package name>.<element name>' dialog might also
display; this dialog helps synchronize the model and
code.

Notes

If any of the elements selected are not Classes or·
interfaces the option to generate code is not available

(c) Sparx Systems 2019 Page 29 of 672

User Guide - Software Models 20 January, 2020

Generate a Package

In addition to generating source code from single Classes
and groups of Classes, you can generate code from a
Package. This feature provides options to recursively
generate code from child Packages and automatically
generate directory structures based on the Package
hierarchy. This helps you to generate code for a whole
branch of your project model in one step.

Access

Ribbon Develop > Source Code > Generate >
Generate All

Keyboard
Shortcuts

Ctrl+Alt+K

Generate code from a Package, on the
Generate Package Source Code dialog

Ste
p

Action

(c) Sparx Systems 2019 Page 30 of 672

User Guide - Software Models 20 January, 2020

1 In the 'Synchronize' field, click on the drop-down
arrow and select the appropriate synchronize option:

'Synchronize model and code': Code for Classes·

with existing files is forward synchronized with
that file; code for Classes with no existing file is
generated to the displayed target file
'Overwrite code': All selected target files are·

overwritten (forward generated)
'Do not generate': Generate code for only those·

selected Classes that do not have an existing file;
all other Classes are ignored

2 Highlight the Classes for which to generate code;
leave unselected any to not generate code for.
If you want to display more of the information
within the layout, you can resize the dialog and its
columns.

3 To make Enterprise Architect automatically generate
directories and filenames based on the Package
hierarchy, select the 'Auto Generate Files' checkbox;
this enables the 'Root Directory' field, in which you
select a root directory under which the source
directories are to be generated.
By default, the 'Auto Generate Files' feature ignores
any file paths that are already associated with a
Class; you can change this behavior by also selecting
the 'Retain Existing File Paths' checkbox.

(c) Sparx Systems 2019 Page 31 of 672

User Guide - Software Models 20 January, 2020

4 To include code for all sub-Packages in the output,
select the 'Include Child Packages' checkbox.

5 Click on the Generate button to start generating
code.
As code generation proceeds, Enterprise Architect
displays progress messages. If a Class requires an
output filename the system prompts you to enter one
at the appropriate time (assuming Auto Generate
Files is not selected). For example, if the selected
Classes include partial Classes, a prompt displays to
enter the filename into which to generate code for
the second partial Class.

Further information on the dialog options

Option Action

Root Package Check the name of the Package for which
code is to be generated.

Synchronize Select options that specify how existing
files should be regenerated.

Auto Specify whether Enterprise Architect

(c) Sparx Systems 2019 Page 32 of 672

User Guide - Software Models 20 January, 2020

Generate
Files

should automatically generate file names
and directories, based on the Package
hierarchy.

Root
Directory

If Auto Generate Files is selected, display
the path under which the generated
directory structures are created.

Retain
Existing File
Paths

If Auto Generate Files is selected, specify
whether to use existing file paths
associated with Classes.
If Auto Generate Files is unselected,
Enterprise Architect generates Class code
to automatically determined paths,
regardless of whether source files are
already associated with the Classes.

Include all
Child
Packages

Also generate code for all Classes in all
sub-Packages of the target Package in the
list.
This option facilitates recursive
generation of code for a given Package
and its sub-Packages.

Select
Objects to
Generate

List all Classes that are available for code
generation under the target Packages;
only code for selected (highlighted)
Classes is generated.
Classes are listed with their target source

(c) Sparx Systems 2019 Page 33 of 672

User Guide - Software Models 20 January, 2020

file.

Select All Mark all Classes in the list as selected.

Select None Mark all Classes in the list as unselected.

Generate Start the generation of code for all
selected Classes.

Cancel Exit the 'Generate Package Source Code'
dialog; no Class code is generated.

(c) Sparx Systems 2019 Page 34 of 672

User Guide - Software Models 20 January, 2020

Update Package Contents

In addition to generating and importing code, Enterprise
Architect provides the option to synchronize the model and
source code, creating a model that represents the latest
changes in the source code and vice versa. You can use
either the model as the source, or the code as the source.

The behavior and actions of synchronization depend on the
settings you have selected on the 'Attributes and Operations'
page of the 'Preferences' dialog. Working with these
settings, you can either protect or automatically discard
information in the model that is not present in the code, and
prompt for a decision on code features that are not in the
model. In these two examples, the appropriate checkboxes
have been selected for maximum protection of data:

You generated some source code, but made subsequent·

changes to the model; when you generate code again,
Enterprise Architect adds any new attributes or methods
to the existing source code, leaving intact what already
exists, which means developers can work on the source
code and then generate additional methods as required
from the model, without having their code overwritten or
destroyed

You might have made changes to a source code file, but·

the model has detailed notes and characteristics you do
not want to lose; by synchronizing from the source code
into the model, you import additional attributes and
methods but do not change other model elements

(c) Sparx Systems 2019 Page 35 of 672

User Guide - Software Models 20 January, 2020

Using the synchronization methods, it is simple to keep
source code and model elements up to date and
synchronized.

Access

Ribbon Develop > Source Code > Synchronize >
Synchronize Package

Synchronize Package contents against source
code

Field/Button Action

Update Type Select the radio button to either Forward
Engineer or Reverse Engineer the
Package Classes, as appropriate.

Include child
packages in
generation

Select the checkbox to include child
Packages in the synchronization.

OK Click on the button to start
synchronization.

(c) Sparx Systems 2019 Page 36 of 672

User Guide - Software Models 20 January, 2020

Enterprise Architect uses the directory
names specified when the project source
was first imported/generated and updates
either the model or the source code
depending on the option chosen. If:

Performing forward synchronization·

AND
There are differences between the·

model and code AND
The 'On forward synch, prompt to·

delete code features not in model'
checkbox is selected in the 'Options -
Attributes and Operations' dialog

THEN the 'Synchronize Element
<package name>.<element name>' dialog
displays.
Otherwise, no further action is required.

Notes

Code synchronization does not change method bodies;·

behavioral code cannot be synchronized, and code
generation only works when generating the entire file

In the Corporate, Unified and Ultimate editions of·

Enterprise Architect, if security is enabled you must have
'Generate Source Code and DDL' permission to

(c) Sparx Systems 2019 Page 37 of 672

User Guide - Software Models 20 January, 2020

synchronize source code with model elements

(c) Sparx Systems 2019 Page 38 of 672

User Guide - Software Models 20 January, 2020

Synchronize Model and Code

You might either:

Synchronize the code for a Package of Classes against the·

model in the Browser window, or

Regenerate code from a batch of Classes in the model·

In such processes, there might be items in the code that are
not present in the model.

If you want to trap those items and resolve them manually,
select the 'On forward synch, prompt to delete code features
not in model' checkbox in the 'Options - Attributes and
Operations' dialog, so that the 'Synchronize Element
<package name>.<element name>' dialog displays,
providing options to respond to each item.

Synchronize Items

Button Detail

Select All Highlight and select all items in the
Feature column.

Clear All Deselect and remove highlighting from
all items in the Feature column.

Delete Mark the selected code features to be

(c) Sparx Systems 2019 Page 39 of 672

User Guide - Software Models 20 January, 2020

removed from the code (the value in the
Action column changes to Delete).

Reassign Mark the selected code features to be
reassigned to elements in the model.
This is only possible when an appropriate
model element is present that is not
already defined in the code.
The Select the Corresponding Class
Feature dialog displays, from which you
select the Class to reassign the feature to.
Click on the OK button to mark the
feature for reassignment.

Ignore Mark the selected code elements not
present in the model to be ignored
completely (the default; the value in the
Action column remains as or changes to
<none>).

Reset to
Default

Reset the selected items to Ignore (the
value in the Action column changes to
<none>).

OK Make the assigned changes to the items,
and close the dialog.

(c) Sparx Systems 2019 Page 40 of 672

User Guide - Software Models 20 January, 2020

Namespaces

Languages such as Java support Package structures or
namespaces. In Enterprise Architect you can specify a
Package as a namespace root, which denotes where the
namespace structure for your Class model starts; all
subordinate Packages below a namespace root will form the
namespace hierarchy for contained Classes and Interfaces.

To define a Package as a namespace root, click on the
Package in the Browser window and select the 'Develop >
Preferences > Options > Set as Namespace Root' ribbon
option. The Package icon in the Browser window changes to
show a colored corner indicating this Package is a
namespace root.

Generated Java source code, for example, will automatically
add a Package declaration at the beginning of the generated
file, indicating the location of the Class in the Package
hierarchy below the namespace root.

To clear an existing namespace root, click on the namespace
root Package in the Browser window and deselect the
'Develop > Preferences > Options > Set as Namespace Root'
ribbon option

To view a list of namespaces, select the 'Configure >
Reference Data > Settings > Namespace Roots' ribbon
option; the 'Namespaces' dialog displays. If you
double-click on a namespace in the list, the Package is
highlighted in the Browser window; alternatively,

(c) Sparx Systems 2019 Page 41 of 672

User Guide - Software Models 20 January, 2020

right-click on the namespace and select the 'Locate Package
in Browser' option.

You can also clear the selected namespace root by selecting
the 'Clear Namespace Attribute' option.

To omit a subordinate Package from a namespace definition,
select the 'Develop >Preferences > Options > Suppress
Namespace' ribbon option; to include the Package in the
namespace again, deselect the ribbon option.

Notes

When performing code generation, any Package name that·
contains whitespace characters is automatically treated as
a namespace root

(c) Sparx Systems 2019 Page 42 of 672

User Guide - Software Models 20 January, 2020

Importing Source Code

The ability to view programming code and the models it is
derived from at the same time brings clarity to the design of
a system. One of Enterprise Architect's powerful code
engineering features is the ability to Reverse Engineer
source code into a UML model. A wide range of
programming languages are supported and there are options
that govern how the models are generated. Once the code is
in the model it is possible to keep it synchronized with the
model regardless of whether the changes were made directly
in the code or the model itself. The code structures are
mapped into their UML representations; for example, a Java
class is mapped into a UML Class element, variables are
defined as attributes, methods modeled as operations, and
interactions between the Java classes represented by the
appropriate connectors.

The representation of the programming code as model
constructs helps you to gain a better understanding of the
structure of the code and how it implements the design,
architecture and the requirements, and ultimately how it
delivers the business value.

It is important to note that if a system is not well designed,
simply importing the source into Enterprise Architect does
not turn it into an easily understandable UML model. When

(c) Sparx Systems 2019 Page 43 of 672

User Guide - Software Models 20 January, 2020

working with a poorly designed system it is useful to assess
the code in manageable units by examining the individual
model Packages or elements generated from the code; for
example, dragging a specific Class of interest onto a
diagram and then using the 'Insert Related Elements' option
at one level to determine the immediate relationships
between that Class and other Classes. From this point it is
possible to create Use Cases that identify the interaction
between the source code Classes, providing an overview of
the application's operation.

Several options guide how the code is reversed engineered,
including whether comments are imported to notes and how
they are formatted, how property methods are recognized
and whether Dependency relationships are created for
operation return and parameter types.

Copyright Ownership

Situations that typically lend themselves to reverse
engineering tend to operate on source code that:

You have already developed·

Is part of a third-party library that you have obtained·

permission to use

Is part of a framework that your organization uses·

Is being developed on a daily basis by your developers·

If you are examining code that you or your organization do
not own or do not have specific permission to copy and edit,
you must ensure that you understand and comply with the

(c) Sparx Systems 2019 Page 44 of 672

User Guide - Software Models 20 January, 2020

copyright restrictions on that code before beginning the
process of reverse engineering.

Supported languages for Reverse
Engineering

Language

Action Script

Ada 2012 (Unified and Ultimate editions)

C

C #

C++

CORBA IDL (MDG Technology)

Delphi

Java

PHP

(c) Sparx Systems 2019 Page 45 of 672

User Guide - Software Models 20 January, 2020

Python

SystemC (Unified and Ultimate editions)

Verilog (Unified and Ultimate editions)

VHDL (Unified and Ultimate editions)

Visual Basic

Visual Basic .NET

Notes

Reverse Engineering is supported in the Professional,·

Corporate, Unified and Ultimate editions of Enterprise
Architect

If security is enabled you must have 'Reverse Engineer·

From DDL And Source Code' permission to reverse
engineer source code and synchronize model elements
against code

Using Enterprise Architect, you can also import certain·

types of binary file, such as Java .jar files and .NET PE
files

Reverse Engineering of other languages is currently·

available through the use of MDG Technologies listed on

(c) Sparx Systems 2019 Page 46 of 672

User Guide - Software Models 20 January, 2020

the MDG Technology pages of the Sparx Systems website

(c) Sparx Systems 2019 Page 47 of 672

User Guide - Software Models 20 January, 2020

Import Projects

Enterprise Architect provides support for importing software
projects authored in Visual Studio, Mono, Eclipse and
NetBeans. Importing projects has multiple benefits, not least
the immediate access to Enterprise Architect's renowned
modeling tools and management features, but importantly
the access to development tools such as simulation,
debugging and profiling.

Access

Ribbon Develop > Source Code > Solutions >
Import a <project type>

Import Options

Option Description

Prompt for
Missing
Macro
Definitions

For C++ projects, the parser might
encounter unrecognized macros. If you
select this option, you will be prompted
when such an event occurs and will have

(c) Sparx Systems 2019 Page 48 of 672

User Guide - Software Models 20 January, 2020

the opportunity to define the macro. If
you do not select this option, the resultant
Class model could be missing certain
items.

Create
Diagram for
Each
Package

When selected, a Class diagram is created
depicting the Class model for each
Package. The result is a larger but more
colorful model. Deselecting this option
will cause diagram creation to be skipped
and the import to run faster.

Generate
Analyzer
Scripts

Selecting this option will generate
Analyzer Scripts for each project
configuration in addition to scripts for
each Solution configuration. The scripts
will allow for building and debugging the
program(s) described by the solution
immediately after the import completes.
Note: Select the 'Windows' platform. If
you do not select this option, no
Execution Analyzer features will be
configured.

Startup
Project

When this is selected, the script for this
Project will become the model default.
The Execute ribbon and Toolbar buttons
will automatically target this program.

(c) Sparx Systems 2019 Page 49 of 672

User Guide - Software Models 20 January, 2020

Import Visual Studio Solution

This option allows you to import one or more projects from
an existing Visual Studio Solution file or a running instance
of Visual Studio. The wizard will generate a Class model for
each of the projects and the appropriate Analyzer Scripts for
each Visual Studio configuration.

Import Mono Solution

This option allows you to import Mono projects from a
solution file. The dialog that is presented is the same as the
'Visual Studio Import' dialog, but you can choose to target
either Linux or Windows. The wizard will generate a Class
model for each of the projects and configure them for
debugging.

Import Options

Option Description

Find and
Select the

The Mono Solution files have a .sln file
extension, as for Visual Studio.

(c) Sparx Systems 2019 Page 50 of 672

User Guide - Software Models 20 January, 2020

Solution File.

Select the
Projects to
Import

After the solution is selected, the projects
in the solution are displayed. Select the
projects from the list that should be
imported by the wizard.

Prompt for
Missing
Macros

Not applicable.

Create
Diagram for
Each
Package

When selected, a Class diagram is created
depicting the Class model for each
Package. The result is a larger but more
colorful model. Deselecting this option
will cause diagram creation to be skipped
and the import to run faster.

Generate
Analyzer
Scripts

This option allows you to target either
Linux or Windows. If you select Linux, it
is assumed the machine on which
Enterprise Architect is running is Linux,
that the platform (Java or Mono) is
installed there, and that the compiled
programs run on Linux.

Startup
Project

Selecting the Startup project means that
the debugging tools will be set to target
that program by default.

(c) Sparx Systems 2019 Page 51 of 672

User Guide - Software Models 20 January, 2020

Import Eclipse Project

The Eclipse 'Wizard' can reverse engineer a Java project
described by its Eclipse .project file and ANT build. The
feature will result in a UML Class model and Analyzer
Scripts for each of the ANT targets you select. The process
will also generate a script for each debug protocol you select
through the 'Wizard'. You will be presented with the choice
of JDWP (Java Debug Wire Protocol), good for servers, and
JVMTI (Java Virtual Machine Tools Interface), which is
suited to standalone Java applications. These scripts should
be used for debugging the project in Enterprise Architect.

Import NetBeans Project

The NetBeans 'Wizard' can reverse engineer a Java project
described by a NetBeans XML project file and ANT build.
The 'Wizard' will create a UML Class model of the project
and Analyzer Scripts for each of the ANT targets you select.
The process will also generate a script for each debug
protocol you select through the 'Wizard'. These scripts
should be used for debugging the project in Enterprise
Architect. You will be presented with the choice of JDWP
(Java Debug Wire Protocol), good for servers, and JVMTI

(c) Sparx Systems 2019 Page 52 of 672

User Guide - Software Models 20 January, 2020

(Java Virtual Machine Tools Interface), which is suited to
standalone Java applications

(c) Sparx Systems 2019 Page 53 of 672

User Guide - Software Models 20 January, 2020

Import Source Code

You can import source code into your Enterprise Architect
model, to reverse-engineer a module. As the import
proceeds, Enterprise Architect provides progress
information. When all files are imported, Enterprise
Architect makes a second pass to resolve associations and
inheritance relationships between the imported Classes.

Procedure - Import source code

Ste
p

Action

1 In the Browser window, select (or add) a diagram
into which to import the Classes.

2 Click on the diagram background and either:
Select the 'Develop > Source Code > Files' ribbon·

option and click on the appropriate language, or
If the Code Generation toolbar is displayed, click·

on the 'Import' drop-down arrow and select the
language to import

The list of languages will include any customized
languages you have created model structures for.

3 From the file browser that appears, locate and select

(c) Sparx Systems 2019 Page 54 of 672

User Guide - Software Models 20 January, 2020

one or more source code files to import.

4 Click on the Open button to start the import process.

(c) Sparx Systems 2019 Page 55 of 672

User Guide - Software Models 20 January, 2020

Notes on Source Code Import

You can import code into your Enterprise Architect project,
in a range of programming languages. Enterprise Architect
supports most constructs and keywords for each coding
language. You select the appropriate type of source file for
the language, as the source code to import.

If there is a particular feature you require support for that
you feel is missing, please contact Sparx Systems.

Notes

When reverse engineering attributes with parameter·

substitutions (templated attributes):
 - If a Class with proper template parameter definitions
is found, an Association connector is
 created and its parameter substitutions are configured
 - An Association connector is also created if a
matching entry is defined as a Collection Class or
 in the 'Additional Collection Classes' option (for C#,
C++ and Java); for an example, see Example
 Use of Collection Classes

Programming Language notes

(c) Sparx Systems 2019 Page 56 of 672

User Guide - Software Models 20 January, 2020

Language Notes

ActionScript Appropriate type of source file: .as code
file.

C Appropriate type of source file: .h header
files and/or .c files.
When you select a header file, Enterprise
Architect automatically searches for the
corresponding .c implementation file to
import, based on the options for
extension and search path specified in the
C options.
Enterprise Architect does not expand
macros that have been used, these must
be added into the internal list of
Language Macros.

C++ Appropriate type of source file: .h header
file.
Enterprise Architect automatically
searches for the .cpp implementation file
based on the extension and search path
set in the C++ options; when it finds the
implementation file, it can use it to
resolve parameter names and method
notes as necessary.
When importing C++ source code,
Enterprise Architect ignores function

(c) Sparx Systems 2019 Page 57 of 672

User Guide - Software Models 20 January, 2020

pointer declarations.
To import them into your model you
could create a typedef to define a
function pointer type, then declare
function pointers using that type; function
pointers declared in this way are imported
as attributes of the function pointer type.
Enterprise Architect does not expand
macros that have been used; these must
be added into the internal list of
Language Macros.

C# Appropriate type of source file: .cs.

Delphi Appropriate type of source file: .pas.

Java Appropriate type of source file: .java.
Enterprise Architect supports the AspectJ
language extensions.

Aspects are modeled using Classes with
the stereotype aspect; these aspects can

(c) Sparx Systems 2019 Page 58 of 672

User Guide - Software Models 20 January, 2020

then contain attributes and methods as for
a normal Class.
If an intertype attribute or operation is
required, you can add a tag 'className'
with the value being the name of the
Class it belongs to.
Pointcuts are defined as operations with
the stereotype <<pointcut>>, and can
occur in any Java Class, Interface or
aspect; the details of the pointcut are
included in the 'behavior' field of the
method.
Advice is defined as an operation with
the stereotype <<advice>>; the pointcut
this advice operates on is in the 'behavior'
field and acts as part of the method's
unique signature.
afterAdvice can also have one of the
Tagged Values returning or throwing.

PHP Appropriate type of source file: .php,
.php4, or .inc.
Nested if condition syntax is enabled.

Python Appropriate type of source file: .py.

Visual Basic Appropriate type of source file: .cls Class
file.

(c) Sparx Systems 2019 Page 59 of 672

User Guide - Software Models 20 January, 2020

Visual Basic
.NET

Appropriate type of source file: .vb Class
file.

(c) Sparx Systems 2019 Page 60 of 672

User Guide - Software Models 20 January, 2020

Import Resource Script

Enterprise Architect supports the import and export of
Microsoft Windows Resource Scripts (as .rc files), which
contain the Win32® dialog definitions (those with the
stereotype «win32Dialog») for an application's graphical
user interface. Dialog resources are imported and exported
for a specific language, defaulting to the locale of the
current computer system.

Access

Ribbon Develop > Source Code > Files > Import
Resource Script

Keyboard
Shortcuts

F7 (synchronize element with code)

Import dialog resources from a .rc file

Option Action

Resource File Click on the button and locate the .rc

(c) Sparx Systems 2019 Page 61 of 672

User Guide - Software Models 20 January, 2020

file to import the screen elements(s) from.

Resource ID Either:
Leave the default value 'All' to import·

all screen elements from the file, or
Click on the drop-down arrow and·

select the screen ID of a specific dialog
to import

Language Click on the drop-down arrow and select
the language version (such as English -
United States) of the dialog(s) to import.

Import Click on this button to import the screens
from the resource file.
The progress of the import is reported in
the field underneath the 'Language' field.

Export a dialog to a .rc file

Option Action

Screen ID Defaults from the Win32UI ID Tagged
Value of the selected Screen element.
(If the dialog does not have this ID, open

(c) Sparx Systems 2019 Page 62 of 672

User Guide - Software Models 20 January, 2020

the 'Win32UI' page of the element's
'Properties' dialog and provide a value for
the ID tag.)

Resource File Click on the button and locate the .rc
file into which to export the screen
element(s).
If the element was previously imported,
this field defaults to the source file.

Language Click on the drop-down arrow and select
the language version (such as English -
United States) of the exported dialog.

Export Click on this button to export the screens
from the resource file.
The progress of the export is reported in
the field underneath the 'Language' field.

Notes

New dialogs are exported to an existing .rc file·

In an export to an existing .rc file, no dialogs are ever·

deleted from the file, even when they are deleted from the
model

In an import, no dialogs are deleted from the model even·

(c) Sparx Systems 2019 Page 63 of 672

User Guide - Software Models 20 January, 2020

when omitted from the original .rc file

(c) Sparx Systems 2019 Page 64 of 672

User Guide - Software Models 20 January, 2020

Import a Directory Structure

You can import from all source files in a complete directory
structure, which enables you to import or synchronize
multiple files in a directory tree in one pass.

Enterprise Architect creates the necessary Packages and
diagrams during the import process.

Access

Ribbon Develop > Source Code > Files > Import
Source Directory

Keyboard
Shortcuts

Ctrl+Shift+U

Import a directory structure, using the
'Import Source Directory' dialog

Ste
p

Action

1 Select the options you require; you can configure:

(c) Sparx Systems 2019 Page 65 of 672

User Guide - Software Models 20 January, 2020

The source directory·

The source type·

The file extensions to look at·

Whether to process sub directories·

Whether to create a diagram for each Package·

Whether to import additional files as described in·

the 'Import Component Types' dialog
Whether to exclude private members from·

libraries being imported from the model
Whether to Synchronize or Overwrite existing·

Classes when found; if a model Class is found
matching the one in code:
 - 'Synchronize' updates the model Class to
include the details
 from the one in code, which preserves
information not
 represented in code, such as the location of
Classes in diagrams
 - 'Overwrite' deletes the model Class and
generates a new one
 from code, which deletes and does not
replace the additional
 information
Whether to create a Package for every directory,·

namespace or file; this might be restricted
depending on the source type selected
How to handle Classes not found during the·

import (prompt for action enables you to review

(c) Sparx Systems 2019 Page 66 of 672

User Guide - Software Models 20 January, 2020

Classes individually)
What is shown on diagrams created by the import·

2 Click on the OK button to start.

(c) Sparx Systems 2019 Page 67 of 672

User Guide - Software Models 20 January, 2020

Import Binary Module

Enterprise Architect enables you to reverse-engineer certain
types of binary module.

Access

Ribbon Develop > Source Code > Files > Import
Binary Module

Use

Currently the permitted types are:

Java Archive (.jar)·

.NET PE file (.exe, .dll) - Native Windows DLL and EXE·

files are not supported, only PE files containing .NET
assembly data

Intermediate Language file (.il)·

Enterprise Architect creates the necessary Packages and
diagrams during the import process; selecting the 'Do not
import private members' checkbox excludes private
members from libraries from being imported into the model.

When importing .NET files, you can import via reflection or

(c) Sparx Systems 2019 Page 68 of 672

User Guide - Software Models 20 January, 2020

via disassembly, or let the system select the best method -
this might result in both types being used.

The reflection-based importer relies on a .NET program, and
requires the .NET runtime environment to be installed.

The disassembler-based importer relies on a native
Windows program called Ildasm.exe, which is a tool
provided with the MS .NET SDK; the SDK can be
downloaded from the Microsoft website.

A choice of import methods is available because some files
are not compatible with reflection (such as mscorlib.dll) and
can only be opened using the disassembler; however, the
reflection-based importer is generally much faster.

You can also configure:

Whether to Synchronize or Overwrite existing Classes·

when found; if a model Class is found matching the one in
the file:
 - Synchronize updates the model Class to include the
details from the one in the file, which
 preserves information not represented in the file,
such as the location of Classes in diagrams
 - Overwrite deletes the model Class and generates a
new one from the file, which deletes and
 does not replace the additional information

Whether to create a diagram for each Package·

What is shown on diagrams created by the import·

(c) Sparx Systems 2019 Page 69 of 672

User Guide - Software Models 20 January, 2020

Classes Not Found During Import

When reverse engineering from your code, there might be
times when Classes are deliberately removed from your
source code.

The 'Import Source Directory' functionality keeps track of
the Classes it expects to synchronize with and, on the
'Import Directory Structure' dialog, provides options for how
to handle the Classes that weren't found.

You can select the appropriate option to make Enterprise
Architect, at the end of the import, ignore the missing
Classes, automatically delete them or prompt you to manage
them.

On the 'Import Directory Structure' dialog, if you select the
'Prompt For Action' radio button to manually review
missing Classes, a dialog displays on which you specify the
handling for each Class that was missing in the imported
code.

By default, all Classes are marked for deletion; to keep one
or more Classes, select them and click on the Ignore button.

(c) Sparx Systems 2019 Page 70 of 672

User Guide - Software Models 20 January, 2020

Editing Source Code

Enterprise Architect contains a powerful source code editor
that helps you to view, edit and maintain your source code
directly inside the tool. Once source code has been
generated for one or more Classes it can be viewed in this
flexible editing environment. Seeing the code in the context
of the UML models from which it is derived brings clarity
to both the code and the models, and bridges the gap
between design and implementation that has historically
introduced errors into software systems.

The Source Code Editor is fully-featured, with a structure
tree for easy navigation of attributes, properties and
methods. Line numbers can be displayed and syntax
highlight options can be configured. Many of the features
that software engineers are familiar with in their favorite
IDE, such as Intelli-sense and code completion are included
in the editor. There are many additional features, such as
macro recording that makes it easy to manage the source
code inside Enterprise Architect. There are also many
options for managing the code, available through the code
editor context menu, toolbar and function keys.

(c) Sparx Systems 2019 Page 71 of 672

User Guide - Software Models 20 January, 2020

For most programming languages a single file is created
from a UML Class, but in the case of C++ both header and
implementation classes are created and the source code
editor displays these files in separate tabs.

A number of options change the way the source code editor
works; they can be altered using the 'Preferences' dialog
available from the Start ribbon:

 'Start > Desktop > Preferences > Preferences > Source
Code Engineering > Code Editors'

There are variants of the Source Code Editor, with different
access methods. The variants are discussed in the Compare
Editors topic.

Access

(c) Sparx Systems 2019 Page 72 of 672

User Guide - Software Models 20 January, 2020

Ribbon Execute > Source > Edit > Open Source
File (external file) or
Execute > Source > Edit > Edit Element
Source (for an existing source file) or
Execute > Source > Edit > Edit New
Source File or
Design > Element > Behavior or
Develop > Source Code > Behavior

Keyboard
Shortcuts

F12 or Ctrl+E (for existing code for
model elements)
Ctrl+Alt+O (to locate external files)

Facilities

Facility Description

Source Code
editor

By default the Source Code editor is set
to:

Parse all opened files, and show a tree·

of the results
Show line numbers·

(c) Sparx Systems 2019 Page 73 of 672

User Guide - Software Models 20 January, 2020

If you are editing an XML file, the
structure tree mirrors the exact order and
structure of the document.

Structure
Tree

The structure tree is available for
supported language files, such as C++,
C#, Java and XML. The tree can be
helpful to navigate content quickly in
much the same way a table of contents
would for other documents.

Notes

For most selected elements you can use the keys F12 or·

Ctrl+E to view the source code.

When you select an element to view source code, if the·

element does not have a generation file (that is, code has
not been or cannot be generated, such as for a Use Case),
Enterprise Architect checks whether the element has a
link to either an operation or an attribute of another
element - if such a link exists, and that other element has
source code, the code for that element displays

(c) Sparx Systems 2019 Page 74 of 672

User Guide - Software Models 20 January, 2020

You can also locate the directory containing a source file·

that has been created in or imported to Enterprise
Architect, and edit it or its related files using an external
editor such as Notepad or Visual Studio; click on the
element in the Browser window and press Ctrl+Alt+Y

(c) Sparx Systems 2019 Page 75 of 672

User Guide - Software Models 20 January, 2020

Languages Supported

The Source Code Editors can display code in a wide range
of languages, as listed here. For each language, the editor
highlights - in colored text - the standard code syntax.

Ada (.ada, .ads, .adb)·

ActionScript (.as)·

BPEL Document (.bpel)·

C++ (.h, .hh, .hpp, .c, .cpp, .cxx)·

C# (.cs)·

DDL Structured Query Language (.sql)·

Delphi/Pascal (.pas)·

Diff/Patch Files (.diff, .patch)·

Document Type Definition (.dtd)·

DOS Batch Files (.bat)·

DOS Command Scripts (.cmd)·

HTML (.html)·

Interface Definition Language (.idl, .odl)·

Java (.java)·

JavaScript (.javascript)·

JScript (.js)·

Modified Backus-Naur Form Grammar (.mbnf)·

PHP (.php, .php4, .inc)·

Python (.py)·

(c) Sparx Systems 2019 Page 76 of 672

User Guide - Software Models 20 January, 2020

Standard Generalized Markup Language (.sgml)·

SystemC (.sc)·

Visual Basic 6 (.bas)·

VB.NET (.vb)·

VBScript (.vbs)·

Verilog (.v)·

VHSIC Hardware Description Language (.vhdl)·

Visual Studio Resource Configuration (.rc)·

XML (eXtensible Markup Language) (.xml)·

XSD (XML Schema Definition)·

XSL (XML Stylesheet Language)·

(c) Sparx Systems 2019 Page 77 of 672

User Guide - Software Models 20 January, 2020

Configure File Associations

If you are a Windows® user, you can configure Enterprise
Architect to be the default document handler for your
language source files.

Access

Ribbon Start > Desktop > Preferences >
Preferences > Source Code Engineering >
Code Editors : Configure Enterprise
Architect File Associations

Actions

For each file type that you would prefer to open in
Enterprise Architect, click on the checkbox to the left of the
file type name. After selecting all of the document types you
require, click on the Save button.

After this, clicking on any corresponding file in Windows®
Explorer will open it in Enterprise Architect.

(c) Sparx Systems 2019 Page 78 of 672

User Guide - Software Models 20 January, 2020

Notes

You can change the default programs, or documents·

handled by them, directly through the 'Default Programs'
option in Windows ® Control panel.

(c) Sparx Systems 2019 Page 79 of 672

User Guide - Software Models 20 January, 2020

Compare Editors

Enterprise Architect provides four principal code editor
variants, available through a number of access paths. The
most direct access options are identified in these
descriptions.

The first three code editor variants listed have the same
display format, option toolbar, context menu options and
internal function keys. They differ in their method of access
and display mechanism.

Editor Variants

Variant Details

Source Code
View

F12
Ctrl+E
Class context menu | 'View Source Code'
Description: Displays the code on a tab of
the Diagram View; the tab label shows
the file name and extension (such as
.java); again, for C++, there are two tabs
for the Header and Implementation files.
You can display the source code for other
Classes on additional tabs, by reselecting
the menu option/keys on the next Class.

(c) Sparx Systems 2019 Page 80 of 672

User Guide - Software Models 20 January, 2020

Source Code
window
(Dockable)

Alt+7
'Execute > Source > Edit > Open Source
File'
Description: Displays the contents of the
source file for a selected Class (except if
the language is C++, when the window
displays a tab for the Header file and a
tab for the Implementation file).
If you select a different Class, the
window changes to show the code for the
new Class (unless the first Class calls the
second, in which case the window scrolls
down to the second Class's code instead).

Internal
Editor,
External
Source Code

Ctrl+Alt+O
'Execute > Source > Edit > Open Source
File' ribbon option
Description: Use this option if you intend
to edit external code, XML or DDL files
(that is, code not imported to or generated
in Enterprise Architect).
Displays an external browser, then opens
the specific selected code file as a tab of
the Diagram View (for C++, not two code
files); otherwise this is identical to the
F12 option.

External
Editor,

Ctrl+Alt+Y

(c) Sparx Systems 2019 Page 81 of 672

User Guide - Software Models 20 January, 2020

Internal or
External
Source Code

Class context menu | Open Source
Directory
Description: Displays an external file
browser, open to the directory containing
the selected Class's source files; you can
open the files in Notepad, Visual Studio
or other tools you might have on your
system.

(c) Sparx Systems 2019 Page 82 of 672

User Guide - Software Models 20 January, 2020

Code Editor Toolbar

When you are reviewing the code for a part of your model in
the Source Code editor, you can access a wide range of
display and editing functions from the editor toolbar.

Code Editor Toolbar

Toolbar Options

Structure
Tree

Click on this icon to show or hide the
element hierarchy panel (the left panel of
the Source Code editor).

Line
Numbers

Click on this icon to show or hide the line
numbers against the lines of code.

Source Code
Engineering

Properties

Click on the drop-down arrow to display
a menu of options to select individual
'Source Code Engineering' pages of the
'Preferences' dialog, from which you can
configure display and behavior options
for source code engineering:

(c) Sparx Systems 2019 Page 83 of 672

User Guide - Software Models 20 January, 2020

Language·

Syntax Highlighting Options·

Code Editor Options·

Code Engineering Options·

Code Editor Key Bindings·

Editor
Functions

Click on the drop-down arrow to display
a menu providing access to a range of
code editing functions:

Open Corresponding File·

(Ctrl+Shift+O) - opens the header or
implementation file associated with the
currently-open file
Go to Matching Brace (Ctrl+E) - for a·

selected opening or closing brace,
highlights the corresponding closing or
opening brace in the pair
Go to Line (Ctrl+G) - displays a dialog·

on which you select the number of the
line to highlight; click on the OK
button to move the cursor to that line
Cursor History Previous (Ctrl+-) - the·

Source Code viewer keeps a history of
the previous 50 cursor positions,
creating a record when the cursor is
moved either more than 10 lines away
from its previous position, or in a
find-and-replace operation; the menu

(c) Sparx Systems 2019 Page 84 of 672

User Guide - Software Models 20 January, 2020

option moves the cursor to the position
in the immediately-previous cursor
history record
Cursor History Next (Ctrl+Shift+-) - if·

you have moved to an earlier cursor
position, this option moves the cursor
to the position in the
immediately-following cursor history
record
Find (Ctrl+F) - displays a dialog in·

which you define a text string and
search options to locate that text string
in the code
Replace (Ctrl+R) - displays a dialog in·

which you define a text string and
search options to locate that text string
in the code and replace it with another
text string; the dialog has options to
locate and replace each occurrence as
you decide, or to replace all
occurrences immediately
Highlight Matching Words - (Ctrl+3)·

Enables or disables the highlighting of
matching words during a find
operation; by default this option is
enabled
Record Macro - records your next·

keystrokes to be saved as a macro
Stop Recording and Save Macro - stops·

(c) Sparx Systems 2019 Page 85 of 672

User Guide - Software Models 20 January, 2020

recording the keystrokes and displays
the 'Save Macro' dialog on which you
specify a name for the macro
Play Macro - displays the 'Open Macro'·

dialog from which you select and
execute a saved macro, to repeat the
saved keystrokes
Toggle Line Comment (Ctrl+Shift+C) -·

comments out (//) or re-establishes the
code for each full line in which text is
highlighted
Toggle Stream Comment·

(Ctrl+Shift+X) - inserts a stream
comment (/* */) at the cursor position
(comments out only the highlighted
characters and lines), or re-establishes
the commented text as code
Toggle Whitespace Characters·

(Ctrl+Shift+W) - shows or hides the
spacing characters: --> (tab space) and .
(character space)
Toggle EOL Characters (Ctrl+Shift+L)·

- shows or hides the end-of-line
characters: CR (carriage return) and LF
(line feed)
Toggle Tree Synchronization - selects·

the tree item automatically as context
changes within code editor
Open Containing Folder - opens the file·

(c) Sparx Systems 2019 Page 86 of 672

User Guide - Software Models 20 January, 2020

browser at the folder containing the
code file; you can open other files in
your default external editor for
comparison and parallel work

Save Source
and

Resynchroni
ze Class

Click on this icon to save the source code
and resynchronize the code and the Class
in the model.

Code
Templates

Click on this icon to access the Code
Templates Editor, to edit or create code
templates for code generation.

Find in
Project

Browser

For a selected line of code, click on this
icon to highlight the corresponding
structure in the Browser window. If there
is more than one possibility the 'Possible
Matches' dialog displays, listing the
occurrences of the structure from which
you can select the required one.

Search in
Files

Click on this icon to search for the
selected object name in associated files,
and display the results of the search in the
File Search window. You can refine and
refresh the search by specifying criteria
on the Find in Files window toolbar.

Search in Click on this icon to search for the

(c) Sparx Systems 2019 Page 87 of 672

User Guide - Software Models 20 January, 2020

Model selected text throughout the model, and
display the results of the search in the
Find in Project view.

Go to
Declaration

Click on this icon to locate the
declaration of a symbol in the source
code.

Go to
Definition

Click on this icon to locate the definition
of a symbol in the source code
(applicable to languages such as C++ and
Delphi, where symbols are declared and
defined in separate files).

Autocomplet
e List

Click on this icon to display the
autocompletion list of possible values;
double-click on a value to select it.

Parameter
Information

When the cursor is between the
parentheses of an operation's parameter
list, click on this icon to display the
operation's signature, highlighting the
current parameter.

Find
Current
Class in

Browser
Window

Click on this icon to display the name of
the currently-selected Class in the code,
and highlight that name in the Browser
window; if there is more than one
possibility the 'Possible Matches' dialog

(c) Sparx Systems 2019 Page 88 of 672

User Guide - Software Models 20 January, 2020

displays, listing the occurrences of the
Class from which you can select the
required one.

Find
Member

Click on this icon to display the name of
the currently-selected attribute or method
in the code, and highlight that name in
the Browser window; if there is more
than one possibility the 'Possible
Matches' dialog displays, listing the
occurrences of the feature from which
you can select the required one.

Notes

The 'Record Macro' option disables Intelli-sense while the·

macro is being recorded

You can assign key strokes to execute the macro, instead·

of using the toolbar drop-down and 'Open Macro' dialog

(c) Sparx Systems 2019 Page 89 of 672

User Guide - Software Models 20 January, 2020

Code Editor Context Menu

When working on a file with a code editor, you can perform
a number of code search and editing operations to review
the contents of the file. These options are available through
the editor context menu, and can vary depending on which
code editor you are using.

Access

Context
Menu

Right-click on the code text string you
are working on

Options

Go to
Declaration

Locate and highlight the declaration of a
symbol in the source code.

Go to
Definition

Locate and highlight the definition of a
symbol in the source code (applicable to
languages such as C++ and Delphi, where
symbols are declared and defined in
separate places).

(c) Sparx Systems 2019 Page 90 of 672

User Guide - Software Models 20 January, 2020

Open in
Grammar

Editor

Opens a view that lets you examine or
validate the code using the appropriate
grammar.

Synchronize
Tree to
Editor

Finds and displays the current element
(method for example) in the structure
tree.

Auto
Synchronize

Tree and
Editor

When selected, the structure tree will
automatically show the element being
worked on in the editor.

XML
Schema

Validation

Allows an XML schema to validated.

Search for
'<string>'

Display a submenu providing options to
locate the selected text string in a range
of locations.

'Find in Project Browser' - Highlight·

the object containing the selected text
in the Browser window
'Search in Open Files' - Search for the·

selected text string in associated open
files and display the results of the
search in the Find in Files window; you
can refine and refresh the search by
specifying criteria on the Find in Files

(c) Sparx Systems 2019 Page 91 of 672

User Guide - Software Models 20 January, 2020

window toolbar
'Search in Files' - Search for the·

selected text string in all associated
files (closed or open), and display the
results of the search in the Find in Files
window; you can refine and refresh the
search by specifying criteria on the
Find in Files window toolbar (shortcut
key: F12)
'Search in Model' - Perform an·

'Element Name' search in the Model
Search facility, and display the results
on the Model Search tab
'Search in Scripts' - (Available while·

working in the Script Editor) Open the
Find in Files window, set the 'Search
Path' field to 'Search in Scripts' and the
'Search Text' field to the selected text,
then search all scripts for the text string
and display the results of the search;
you can refine and refresh the search
by specifying criteria on the Find in
Files window toolbar
'EA User Guide' - Display the·

description of the code item in the
Enterprise Architect User Guide
'Google' - Display the results of a·

Google search on the text
'MSDN' - Display the results of a·

(c) Sparx Systems 2019 Page 92 of 672

User Guide - Software Models 20 January, 2020

search on the text in the Microsoft
Developer Network (MSDN)
'Sun Java SE' - Display the results of a·

search on the text in the Sun
Microsystems 'Sun Search' facility
'Wikipedia' - Display any entry on the·

object on the Wikipedia web site
'Koders' - Display the results of a·

search for the text string on
Koders.com

Search
Intelli-sense

| <list of
query

names>

Perform an Intelli-sense search on the
specified string using one of the listed
queries, displayling the results in the Find
in Files window, 'Intelli-sense Search'
tab.
Shortcut key: Shift+F12

Set
Debugger to

Line

(If the debugger is executing and has
reached a breakpoint.) Move the
execution point to the current line. Check
that you do not skip over any code or
declarations that affect the next section of
code being debugged.

Display
Variable

(If the debugger is executing.) Open the
Locals window and highlight the local
variable for the current point in the code.

(c) Sparx Systems 2019 Page 93 of 672

User Guide - Software Models 20 January, 2020

Show in
String

Viewer

Display the full contents of a variable
string in the String Viewer.

Create Use
Case for

'<string>'

Display the 'Create Use Case For Method'
dialog, through which you create a Use
Case for the method containing the text
string.

Breakpoint Display a submenu of options for creating
a recording marker on the selected line of
code. The recording markers you can add
include:

Breakpoint·

Start Recording Marker·

End Recording Marker·

Stack Auto Capture Marker·

Method Auto Record Marker·

Tracepoint·

Testpoints Display options to add a new Testpoint,
show the Testpoints Manager (Testpoints
window) or edit an existing Testpoint if
one or more are already defined at the
selected location.
(The sub-options depend on the type of
code file you are reviewing.)

(c) Sparx Systems 2019 Page 94 of 672

User Guide - Software Models 20 January, 2020

XML
Validation

Allows an XML document to be checked
for compliance with its own schema
references or using a user-specified
schema; either a local schema file or a
URL.

Open
(Close) IME

Open (or close) the Input Method Editor,
so that you can enter text in a selected
foreign language script, such as Japanese.
You set the keyboard language using the
Windows Control Panel - Regional and
Language Options facility.

Line
Numbers

(Script Editor only.) Show or hide the
code line numbers on the left hand side of
the editor screen.

Undo
Cut

Copy
Paste

Delete
Select All

These six options provide simple
functions for editing the code.

Notes

The options in the lower half of the 'Search for <string>'·

(c) Sparx Systems 2019 Page 95 of 672

User Guide - Software Models 20 January, 2020

submenu (after 'Search in Scripts') are configurable; you
can add new search tools or remove existing ones by
editing the searchProviders.xml file in the Sparx Systems
> EA > Config folder - this file is in OpenSearch
description document format

(c) Sparx Systems 2019 Page 96 of 672

User Guide - Software Models 20 January, 2020

Create Use Case for Method

Using the code editor context menu, you can create a Use
Case element for a method that you select from the code.
You can also:

Link the Use Case directly to the method·

Add the parent Class to a diagram (if it is not already in·

the selected diagram) and/or add the Use Case element to
the diagram

Block from display any attributes or methods that are not·

also the targets of feature links

Create a Use Case for a method, through the
code editor

Ste
p

Action

1 (If you want to depict the Use Case and its link to the
method in a diagram) click on the diagram name in
the Browser window.

2 In the code editor, right-click on either the method
name or any part of the method body, and select the
'Create Method for <methodname>' option.
The 'Create Use Case for Method' dialog displays.

(c) Sparx Systems 2019 Page 97 of 672

User Guide - Software Models 20 January, 2020

3 The basic function of this dialog is to create a Use
Case for the selected method:

If this is all that is required, click on the OK·

button; the Use Case element is created in the
Browser window, in the same Package as the
parent Class for the method, and with the same
name as the method
If you intend to make the relationship tangible,·

continue with the procedure

4 To create a Trace connector linking the Use Case to
the method, select the 'Link Use Case to Method'
checkbox.

5 To add the method's parent Class to the diagram, if it
is not already there, select the 'Add Class to
Diagram' checkbox.

6 To add the newly-created Use Case to the diagram,
select the 'Add Use Case to Diagram' checkbox; this
would now show the Use Case, Class and Trace
connector on the diagram.

7 To only show the features (attributes and methods)
of the parent Class that are the targets of 'link to
feature' relationships, select the 'Display only linked
features in Class' checkbox.
The Class might contain any number of attributes

(c) Sparx Systems 2019 Page 98 of 672

User Guide - Software Models 20 January, 2020

and methods, but those without a 'link to feature'
relationship are hidden.

8 Click on the OK button to create and depict the Use
Case and relationship; if you selected all options, the
diagram now contains linked elements resembling
this illustration:

(c) Sparx Systems 2019 Page 99 of 672

User Guide - Software Models 20 January, 2020

Code Editor Functions

The common Code Editor provides a variety of functions to
assist with the code editing process, including:

Syntax Highlighting·

Bookmarks·

Cursor History·

Brace Matching·

Automatic Indentation·

Commenting Selections·

Scope Guides·

Zooming·

Line Selection·

Intelli-sense·

Find and Replace·

Find in Files·

A range of these functions is available through keyboard
key combinations and/or context menu options.

You can customize several of the Code Editor features by
setting properties in the Code Editor configuration files; for
example, by default the line containing the cursor is always
highlighted, but you can turn the highlighting off.

(c) Sparx Systems 2019 Page 100 of 672

User Guide - Software Models 20 January, 2020

Function Details

Code Editor Functions

Function Description

Syntax
Highlighting

The Code Editor highlights - in colored
text - the standard code syntax of all
language file formats supported by
Enterprise Architect

You can define how the Code Editor
implements syntax highlighting for each
language, through the 'Code Editors' page
of the 'Preferences' dialog.

Bookmarks Bookmarks denote a line of interest in the
document; you can toggle them on and
off for a particular line by pressing
Ctrl+F2.
Additionally, you can press F2 and
Shift+F2 to navigate to the next or

(c) Sparx Systems 2019 Page 101 of 672

User Guide - Software Models 20 January, 2020

previous bookmark in the document.
To clear all bookmarks in the code file,
press Ctrl+Shift+F2.

Cursor
History

The Code Editor Control keeps a history
of the previous 50 cursor positions; an
entry in the history list is created when:

The cursor is moved more than 10 lines·

from its previous position
The cursor is moved in a find/replace·

operation
You can navigate to an earlier point in the
cursor history by pressing Ctrl+-, and to a
later point by pressing Ctrl+Shift+-.

Brace
Matching

When you place the cursor over a brace
or bracket, the Code Editor highlights its
corresponding partner; you can then
navigate to the matching brace by
pressing Ctrl+E.

Automatic
Indentation

For each supported language, the Code
Editor adjusts the indentation of a new
line according to the presence of control
statements or scope block tokens in the
lines leading up to the cursor position.

(c) Sparx Systems 2019 Page 102 of 672

User Guide - Software Models 20 January, 2020

The levels of indent are indicated by pale
horizontal lines.
You can also manually indent selected
lines and blocks of code by pressing the
Tab key; to un-indent the selected code,
press Shift+Tab.

Commenting
Selections

For languages that support comments, the
Code Editor can comment entire
selections of code.
The Code Editor recognizes two types of
commenting:

Line Commenting - entire lines are·

commented from the start (for
example:
 // This is a comment)
Stream Commenting - sections of a line·

are commented from a specified start
point to a specified end point (for
example:
 /* This is a comment */)

You can toggle comments on the current
line or selection by pressing:

(c) Sparx Systems 2019 Page 103 of 672

User Guide - Software Models 20 January, 2020

Ctrl+Shift+C for line comments, or·

Ctrl+Shift+X for stream comments·

Scope Guides If the cursor is placed over an indentation
marker, the Code Editor performs a 'look
back' to find the line that started the scope
at that indentation level; if the line is
found and is currently on screen, it is
highlighted in light blue.

Alternatively if the line is off screen, a
calltip is displayed advising of the line
number and contents:

Zooming You can zoom into and out of the
contents of the Code Editor using:

Ctrl+keypad + and·

Ctrl+keypad -·

Zoom can be restored to 100% using
Ctrl+keypad /.

Line If you want to move the cursor to a

(c) Sparx Systems 2019 Page 104 of 672

User Guide - Software Models 20 January, 2020

Selection specific line of code, press Ctrl+G and, in
response to the prompt, type in the line
number.
Press the OK button; the editor displays
the specified line of code with the cursor
at the left.

(c) Sparx Systems 2019 Page 105 of 672

User Guide - Software Models 20 January, 2020

Intelli-sense

Intelli-sense is a feature that provides choices of code items
and values as you type. Not all code editors use
Intelli-sense; for example, Intelli-sense is disabled while you
record a macro in the Source Code Viewer.

Intelli-sense provides you with context-based assistance
through autocompletion lists, calltips and mouseover
information.

Facilities

Facility Description

Autocompleti
on List

An autocompletion list provides a list of
possible completions for the current text;
the list is automatically invoked when
you enter an accessor token (such as a
period or pointer accessor) after an object
or type that contains members.

(c) Sparx Systems 2019 Page 106 of 672

User Guide - Software Models 20 January, 2020

You can also invoke the autocompletion
list manually by pressing Ctrl+Space; the
Code Editor then searches for matches for
the word leading up to the invocation
point.
Select an item from the list and press the
Enter key or Tab key to insert the item
into the code; to dismiss the
autocompletion list, press Esc.

Calltips Calltips display the current method's
signature when you type the parameter
list token (for example, opening
parenthesis); if the method is overloaded,
the calltip displays arrows that you can
use to navigate through the different
method signatures

(c) Sparx Systems 2019 Page 107 of 672

User Guide - Software Models 20 January, 2020

Mouseover
Information

You can display supporting
documentation for code elements (for
example, attributes and methods) by
hovering the cursor over the element in
question.

(c) Sparx Systems 2019 Page 108 of 672

User Guide - Software Models 20 January, 2020

Find and Replace

Each of Enterprise Architect's code editors facilitates
searching for and replacing terms in the editor, through the
'Find and Replace' dialog.

Access

Keyboard
Shortcuts

Highlight the required text string and
press:

Ctrl+F for the find controls only, or·

Ctrl+R for both find and replace·

controls
In each instance, the 'Find what' field is
populated with the text currently selected
in the editor. If no text is selected in the
editor, the 'Find what' field is populated
with the word at the current cursor
position. If no word exists at the current
cursor position, the last searched-for term
is used.

Basic Operations - Commands

(c) Sparx Systems 2019 Page 109 of 672

User Guide - Software Models 20 January, 2020

Command Action

Find Next Locate and highlight the next instance
(relative to the current cursor position) of
the text specified in the 'Find what' field.

Replace Replace the current instance of the text
specified in the 'Find what' field with the
text specified in the 'Replace with' field,
and then locate and highlight the next
instance (relative to the current cursor
position) of the text specified in the 'Find
what' field.

Replace All Automatically replace all instances of the
text specified in the 'Find what' field with
the text specified in the 'Replace with'
field.

Basic Operations - Options

Option Action

Match Case Specify that the case of each character in
the text string in the 'Find what' field is

(c) Sparx Systems 2019 Page 110 of 672

User Guide - Software Models 20 January, 2020

significant when searching for matches in
the code.

Match whole
word

Specify that the text string in the 'Find
what' field is a complete word and should
not be matched with instances of the text
that form part of a longer string.
For example, searches for ARE should
not match those letters in instances of the
words AREA or ARENA.

Search up Perform the search from the current
cursor position up to the start of the file,
rather than in the default direction of
current cursor position to end of file.

Use Regular
Expressions

Evaluate specific character sequences in
the 'Find what' and 'Replace with' fields
as Regular Expressions.

Concepts

Concept Description

Regular
Expressions

A Regular Expression is a formal
definition of a Search Pattern, which can

(c) Sparx Systems 2019 Page 111 of 672

User Guide - Software Models 20 January, 2020

be used to match specific characters,
words or patterns of characters.
For the sake of simplicity, the Code
Editor's 'find and replace' mechanism
supports only a subset of the standard
Regular Expression grammar.
Text in the 'Find what' and 'Replace with'
fields is only interpreted as a Regular
Expression if the 'Use Regular
Expressions' checkbox is selected in the
'Find and Replace' dialog.

Metasequenc
es

If the 'Use Regular Expressions'
checkbox is selected, most characters in
the 'Find what' field are treated as literals
(that is, they match only themselves).
The exceptions are called metasequences;
each metasequence recognized in the
Code Editor 'Find and Replace' dialog is
described in this table:

\< - Indicates that the text is the start of·

a word; for example: \<cat is matched
to catastrophe and cataclysm, but not
concatenate
\> - Indicates that the text is the end of·

a word; for example: hat\> is matched
to that and chat, but not hate
(...) - Indicates alternative single·

characters that can be matched - the

(c) Sparx Systems 2019 Page 112 of 672

User Guide - Software Models 20 January, 2020

characters can be specific (chr) or in an
alphabetical or numerical range (a-m);
for example: (hc) at is matched to hat
and cat but not bat, and (a-m) Class is
matched to any name in the range
aClass-mClass
(^...) - Indicates alternative single·

characters that should be excluded
from a match - the characters can be
specific (^chr) or in an alphabetical or
numerical range (^a-m); for example:
(^hc) at is matched to rat and bat, but
hat and cat are excluded, and (^a-m)
Class is matched to any name in the
range nClass to zClass, but aClass to
mClass are excluded
^ - Matches the start of a line·

$ - Matches the end of a line·

* - Matches the preceding character (or·

character set) 0 or more times; for
example: ba*t is matched to bt, bat,
baat, baaat and so on, and b(ea) *t is
matched to bt, bet, bat, beat, beet, baat
and so on
+ - Matches the preceding character (or·

character set) 1 or more times; for
example: ba+t is matched to bat, baat
and baaat but not bt, and b(ea) +t is
matched to bet, bat, beat, beet and baat

(c) Sparx Systems 2019 Page 113 of 672

User Guide - Software Models 20 January, 2020

but not bt
If a single character metasequence is
preceded by a backslash (\) it is treated as
a literal character: c\(at\) matches c(at) as
the brackets are treated literally.
When the 'Use Regular Expressions'
checkbox is selected, a metasequence
helper menu is available to the right of
both of the 'Find what' and 'Replace with'
fields; selecting a metasequence from this
menu inserts the metasequence into the
field, replacing or wrapping the currently
selected text as appropriate.

Tagged
Regions

When 'find and replacing' with Regular
Expressions, up to nine sections of the
original term can be substituted into the
replacement term.
The metasequences '\(' and '\)' denote the
start and the end of a tagged region; the
section of the matched text that falls
within the tagged region can be included
in the replacement text with the
metasequence '\n' (where n is the tagged
region number between 1 and 9).
For example:
 Find: \((A-Za-z) +\)'s things
 Replace with items that belong to \1

(c) Sparx Systems 2019 Page 114 of 672

User Guide - Software Models 20 January, 2020

 Original text: These are all Michael's
things.
 Replaced text: These are all items that
belong to Michael.

(c) Sparx Systems 2019 Page 115 of 672

User Guide - Software Models 20 January, 2020

Search in Files

File Text Searches are provided by the Find in Files window
and from within the Code Editors, to search files for data
names and structures. These files can be external code files,
code files that you have already opened in Enterprise
Architect, internal model scripts or the Help subsystem.

The 'File Search' tab maintains a history of the file paths you
have explored, helping you to quickly return to
frequently-used folders in your file system. You can
similarly select a previously-used search string, if you need
to repeat a search several times. When you are searching
code files, you can also confine the search to files of specific
types, by selecting the file extensions, and to include just the
selected folder or all of its sub-folders as well. Another
useful facility is being able to select to show the results of
the search as either a list of every instance of the string, or a
list of files containing the string with the instances grouped
under the file in which they are found.

For all searches, you can qualify the search to be
case-sensitive and/or to match the search string to complete
words.

Access

Ribbon Explore > Search > Files

(c) Sparx Systems 2019 Page 116 of 672

User Guide - Software Models 20 January, 2020

Execute > Source > Find
Execute > Source > Edit > Search in Files

Context
Menu

Right-click on selected text | Search for
<selected text> | Search in Files

Keyboard
Shortcuts

F12, Ctrl+Shift+Alt+F

Search Toolbar

You can use the toolbar options in the Find in Files window
to control the search operation. The state of each button
persists over time to always reflect your previous search
criteria.

Options

Option Action

The 'Search Text' field. Type the text
string to search for.
Any text you type in is automatically

(c) Sparx Systems 2019 Page 117 of 672

User Guide - Software Models 20 January, 2020

saved in the drop-down list, up to a
maximum of ten strings; text added after
that overwrites the oldest text string in
the list. You can click on the drop-down
arrow and select one of these saved text
strings, if you prefer.

The 'Search Path' field. Specify the folder
to search, or the type of search.
You can type the folder path to search
directly into the text box, or click on the
drop-down arrow and select 'Browse for
folder' to search using the 'Browse for
Folder' dialog.
Any paths you enter are automatically
saved in the drop-down list, up to a
maximum of ten; paths added after that
overwrite the oldest path in the list. You
can select one of these saved paths if you
prefer.
Apart from 'Browse for folder', there are
three other fixed options in the
drop-down list:

'Search in scripts', which searches the·

local and user-defined scripts in the
'Scripts' tab of the Scripting window
'Search in open files', which confines·

the search to the files that you have
open in Enterprise Architect

(c) Sparx Systems 2019 Page 118 of 672

User Guide - Software Models 20 January, 2020

'Search in local help', which searches·

the local Help files that have been
installed from the Sparx Systems web
site; the results list the Help topics
containing the search term, and the line
number and line in which the text
occurs

These options disable the 'Search File
Types' list box.

The 'Search File Types' field. Click on the
drop-down arrow and select the file types
(file extensions) to search.

Click on this icon to begin the search.
During the course of the search all other
buttons in the toolbar are disabled. You
can cancel the search at any time by
clicking on the Search button again.
If you switch any of these toggle buttons,
you must run the search again to change
the output.

Click on this icon to toggle the case
sensitivity of the search. The tool-tip
message identifies the current setting.

Click on this icon to toggle between
searching for any match and searching for

(c) Sparx Systems 2019 Page 119 of 672

User Guide - Software Models 20 January, 2020

only those matches that form an entire
word. The tool-tip message identifies the
current setting.

Click on this icon to toggle between
limiting the search to a single path and
including all subfolders under that path.
The tool-tip message identifies the
current setting.

Click on this icon to select the
presentation format of the search results;
you have two options:

List View - (as shown) each result line·

consists of the file path and line
number, followed by the line text;
multiple lines from one file are listed as
separate entries
Tree View - () each result line·

consists of the file path that matches
the search criteria, and the number of
lines matching the search text within
that file; you can expand the entry to
show the line number and text of each
line

Click on this icon to add a new search
tab. You can create up to four new search
tabs. Searches can also run concurrently.

(c) Sparx Systems 2019 Page 120 of 672

User Guide - Software Models 20 January, 2020

Click on this icon to clear the results.

If necessary, click on this icon to remove
all the entries in the Search Path, Search
Text and Search File Types drop-down
lists.

Click on this icon to display this Help
topic.

(c) Sparx Systems 2019 Page 121 of 672

User Guide - Software Models 20 January, 2020

Find File

The Find in Files window 'Find File' tab provides a tool that
can help you find files quicker. The tab acts as a file system
explorer and offers a speedy alternative to the common open
file dialog. File searches are quick and simple, allowing you
to look up files of interest without losing your current
workflow. The display can be switched between report and
list view.

Access

Ribbon Explore > Search > Files > Find File

Keyboard
Shortcuts

Ctrl+Shift+Alt+F

Toolbar

The toolbar provides a search filter and folder navigation
combo box. The toolbar provides options to remember
search locations and alternate between list and report views.

(c) Sparx Systems 2019 Page 122 of 672

User Guide - Software Models 20 January, 2020

Options

Click to navigate to the parent folder.

The filter control allows you to exclude
files that do not match the criteria you
type. The wildcard symbol * is
automatically appended to the text so it is
not necessary to add it yourself. To
search for all files that contain the term
jvm simply type jvm. To find png images
containing the term red you could type
red.png. Press the Enter key to update
the results.

Enter the path of a directory and press the
Enter key to display the files in that
location
Use the drop down list to select from
book marked locations. Locations can be
managed by using the toolbar menu.

Allows you to manage the locations
displayed in the directory combo.

(c) Sparx Systems 2019 Page 123 of 672

User Guide - Software Models 20 January, 2020

In this view the list displays the columns
'filename', 'modified date', 'file type' and
'file size'.
Columns can be sorted in either
ascending or descending order. Click the
column a third time to remove the sort
order.

The list view removes columns and is
convenient when a folder contains many
files.

Keyboard Shortcuts

Sets focus to the filter control

Navigates to the parent folder

Navigates to the parent folder

If a folder is selected, opens the folder,
otherwise opens the selected files.

(c) Sparx Systems 2019 Page 124 of 672

User Guide - Software Models 20 January, 2020

(c) Sparx Systems 2019 Page 125 of 672

User Guide - Software Models 20 January, 2020

Search Intelli-sense

The Intelli-sense capabilities of Enterprise Architect are
built using Sparx Systems' Code Miner tool. The Code
Miner provides fast and comprehensive access to the
information in an existing code base. The system provides
complete access to all aspects of the original source code,
either on the fly as one might in a code editor, or as search
results produced by queries written in the Codeminer mFQL
language.

This feature is available from Enterprise Architect Release
14.1.

Access

On the Find in Files window, click on the 'Code Miner' tab.

Ribbon Explore > Search > Files

Keyboard
Shortcuts

Ctrl+Shift+Alt+F

The Code Miner Control

This control presents an interface for performing queries on

(c) Sparx Systems 2019 Page 126 of 672

User Guide - Software Models 20 January, 2020

several code bases at once. The code bases it uses are
databases built using Enterprise Architect's Code Miner tool.
These databases form a library. The Library can also be
shared when deployed as a service. The queries that can be
run are listed and selected using the toolbar. The control
allows easy access to the source code for the queries, for
editing and composition. Queries do not need to be
compiled. They are viewed, edited and saved as one would
any source code file. Queries that take a single parameter
can utilize any selection in an open code editor. The
interface also supports manual parameter entry for queries
that take multiple arguments.

The first control on the toolbar lists the namespaces
available. Selecting a namespace limits the queries that are
displayed to those within that namespace.

The next control is a combo box that lists all the queries in
the query file for the selected namespace.

The next control is an edit combo box. By default a single
query parameter is taken from the selected text in an any
open code editor, but you can also type the parameter(s)
directly into this field. Multiple parameters should be
separated by commas. This is followed by the Search button
to run the query. Queries can be edited at any time using the

(c) Sparx Systems 2019 Page 127 of 672

User Guide - Software Models 20 January, 2020

Edit button next to it.

The results window is a tree control that lists the results of
the query grouped by file.

Code Miner Libraries

Code Miner libraries are a collection of databases that can
be used by Enterprise Architect Intelli-sense providers to
obtain and query for information across several code bases.
Each database is created from the root source code directory
of a code base, using a specialized grammar appropriate for
its language (C++, Java or C#).

The libraries are created, updated, removed or added in the
'Analyzer Script Editor'. A typical scenario for using this
feature would be to create a database for a development
project and additional databases for frameworks referenced
by the project. Your development database can be updated
frequently as code changes accrue, while the static
frameworks would be updated less often. Libraries can be
searched in a similar way to the 'File Search' tool, but offers
advanced search capabilities due to its mFQL language.

(c) Sparx Systems 2019 Page 128 of 672

User Guide - Software Models 20 January, 2020

Multiple domains / frameworks can be searched at once·

A query can be run in a fraction of the time required for a·

File Search

Queries can be coded to assist with complex search·

criteria

Queries can take multiple parameters·

All files are indexed based on equivalent UML constructs,·

allowing intelligent searches producing meaningful results
in a modeling setting

Code Miner Query Files

Code Miner queries are maintained in a single source code
file which should have the .mFQL extension. A basic set of
queries is provided with each Enterprise Architect
installation; these can be located in the config\codeminer
sub directory. This query file should be named by default in
any Analyzer Script you edit.

Before editing any queries it is advisable that you copy this
file to a working location and name the copy in any
Analyzer Script you use. This way you will always have a
reference file to go back to.

Queries are best considered as functions that are written in
the mFQL language. As such they have unique names, can
be qualified by a single namespace and can specify
parameters. The file provides the queries listed in the
Intelli-sense control's toolbar. Whenever edits to a query file

(c) Sparx Systems 2019 Page 129 of 672

User Guide - Software Models 20 January, 2020

are saved, the queries listed in the search toolbar combo box
will be updated accordingly. This image is an example of a
simple query written in mFQL.

(c) Sparx Systems 2019 Page 130 of 672

User Guide - Software Models 20 January, 2020

Code Editor Key Bindings

Keys

Key Description

Ctrl+G Move cursor to a specified line

↓ Move cursor down one line

Shift+↓ Extend selection down one line

Ctrl+↓ Scroll down one line

Alt+Shift+↓ Extend rectangular selection down one
line

↑ Move cursor up one line

Shift+↑ Extend selection up one line

Ctrl+↑ Scroll up one line

Alt+Shift+↑ Extend rectangular selection up one line

Ctrl+(Move cursor up one paragraph

(c) Sparx Systems 2019 Page 131 of 672

User Guide - Software Models 20 January, 2020

Ctrl+Shift+(Extend selection up one paragraph

Ctrl+) Move cursor down one paragraph

Ctrl+Shift+) Extend selection down one paragraph

← Move cursor left one character

Shift+← Extend selection left one character

Ctrl+← Move cursor left one word

Ctrl+Shift+
←

Extend selection left one word

Alt+Shift+← Extend rectangular selection left one
character

→ Move cursor right one character.

Shift+→ Extend selection right one character

Ctrl+→ Move cursor right one word

Ctrl+Shift+
→

Extend selection right one word

Alt+Shift+→ Extend rectangular selection right one

(c) Sparx Systems 2019 Page 132 of 672

User Guide - Software Models 20 January, 2020

character

Ctrl+/ Move cursor left one word part

Ctrl+Shift+/ Extend selection left one word part

Ctrl+\ Move cursor right one word part

Ctrl+Shift+\ Extend selection right one word part

Home Move cursor to the start of the current
line

Shift+Home Extend selection to the start of the current
line

Ctrl+Home Move cursor to the start of the document

Ctrl+Shift+H
ome

Extend selection to the start of the
document

Alt+Home Move cursor to the absolute start of the
line

Alt+Shift+Ho
me

Extend rectangular selection to the start
of the line

End Move cursor to the end of the current line

(c) Sparx Systems 2019 Page 133 of 672

User Guide - Software Models 20 January, 2020

Shift+End Extend selection to the end of the current
line

Ctrl+End Move cursor to the end of the document

Ctrl+Shift+E
nd

Extend selection to the end of the
document

Alt+End Move cursor to the absolute end of the
line

Alt+Shift+En
d

Extend rectangular selection to the end of
the line

Page Up Move cursor up a page

Shift+Page
Up

Extend selection up a page

Alt+Shift+Pa
ge Up

Extend rectangular selection up a page

Page Down Move cursor down a page

Shift+Page
Down

Extend selection down a page

Alt+Shift+Pa Extend rectangular selection down a page

(c) Sparx Systems 2019 Page 134 of 672

User Guide - Software Models 20 January, 2020

ge Down

Delete Delete character to the right of the cursor

Shift+Delete Cut selection

Ctrl+Delete Delete word to the right of the cursor

Ctrl+Shift+D
elete

Delete until the end of the line

Insert Toggle overtype

Shift+Insert Paste

Ctrl+Insert Copy selection

Backspace Delete character to the left of the cursor

Shift+Backsp
ace

Delete character to the left of the cursor

Ctrl+Backspa
ce

Delete word to the left of the cursor

Ctrl+Shift+B
ackspace

Delete from the start of the line to the
cursor

(c) Sparx Systems 2019 Page 135 of 672

User Guide - Software Models 20 January, 2020

Alt+Backspa
ce

Undo delete

Tab Indent cursor one tab

Ctrl+Shift+I Indent cursor one tab

Shift+Tab Unindent cursor one tab

Ctrl+keypad(
+)

Zoom in

Ctrl+keypad(
-)

Zoom out

Ctrl+keypad(
/)

Restore Zoom

Ctrl+Z Undo

Ctrl+Y Redo

Ctrl+X Cut selection

Ctrl+C Copy selection

Ctrl+V Paste

(c) Sparx Systems 2019 Page 136 of 672

User Guide - Software Models 20 January, 2020

Ctrl+L Cut line

Ctrl+T Transpose line

Ctrl+Shift+T Copy line

Ctrl+A Select entire document

Ctrl+D Duplicate selection

Ctrl+U Convert selection to lowercase

Ctrl+Shift+U Convert selection to uppercase

Ctrl+E Move cursor to matching brace

Ctrl+Shift+E Extend selection to matching brace

Ctrl+Shift+C Toggle line comment on selection

Ctrl+Shift+X Toggle stream comment on selection.

Ctrl+F2 Toggle bookmark

F2 Go to next bookmark

Shift+F2 Go to previous bookmark

(c) Sparx Systems 2019 Page 137 of 672

User Guide - Software Models 20 January, 2020

Ctrl+Shift+F
2

Clear all bookmarks in current file

Ctrl+Shift+W Toggle whitespace characters

Ctrl+Shift+L Toggle EOL characters

Ctrl+Space Invoke autocomplete.

Ctrl+- Go backwards in cursor history

Ctrl+Shift+- Go forwards in cursor history

F12 Start/Cancel search for keyword in file(s).

Ctrl+F Find text

Ctrl+R Replace text

Notes

In addition to these keys, you can assign (Ctrl+Alt+<n>)·

key combinations to macros that you define within the
Source Code Editor

(c) Sparx Systems 2019 Page 138 of 672

User Guide - Software Models 20 January, 2020

Application Patterns (Model + Code)

To get you going with a code based project as fast as
possible, Enterprise Architect helps you to generate starter
projects including model information, code and build scripts
for one of several basic application types. Patterns include:

MFC Windows applications·

Java programs·

ASP.NET web services·

Access

Ribbon Design > Model > Add > Model Wizard
> Application Patterns

Context
Menu

In Browser window | Right-click on a
Package | Add a Model using Wizard >
Application Patterns

Keyboard
Shortcuts

Ctrl+Shift+M > Application Patterns

Generate Models

(c) Sparx Systems 2019 Page 139 of 672

User Guide - Software Models 20 January, 2020

Option Action

Technology Select the appropriate technology.

Name Displays the Application Patterns
available for the selected technology;
select the required Pattern to import.

<description> Displays a description of the selected
Pattern.

Destination
folder

Browse for and select the directory in
which to load the source code for the
application.

Use Local
Path

Enable the selection of an existing local
path to place the source code under;

(c) Sparx Systems 2019 Page 140 of 672

User Guide - Software Models 20 January, 2020

changes the 'Destination folder' field to a
drop-down selection.

Compiler
command

Displays the default compiler command
path for the selected technology; you
must either:

Confirm that the compiler can be found·

at this path, or
Edit the path to the compiler location·

Edit Local
Paths

Many application Patterns specify their
compiler using a local path.
The first time you use any Pattern you
must click on this button to ensure the
local path points to the correct location.
The 'Local Paths' dialog displays.

Notes

If required, you can publish custom application Patterns·

by adding files to the AppPatterns directory where
Enterprise Architect is installed; top level directories are
listed as Technologies and can contain an icon file to
customize the icon displayed for the technology
Directories below this are defined as groups in the
Patterns list; the Patterns are identified by the presence of

(c) Sparx Systems 2019 Page 141 of 672

User Guide - Software Models 20 January, 2020

four files with a matching name: a zip file (.zip), XMI file
(.xml), config file (.cfg) and optional icon (.ico)

The config file supports these fields:·

 - [provider], [language], [platform], [url],
[description], [version] - all displayed in the
<description>
 field
 - [xmirootpaths] - the root path of the source code in
the exported XMI; this is replaced with the
 selected destination folder when the user applies the
Application Pattern

(c) Sparx Systems 2019 Page 142 of 672

User Guide - Software Models 20 January, 2020

MDG Integration and Code
Engineering

MDG Integration for Eclipse and MDG Integration for
Visual Studio are products that help you to create and
maintain your UML models directly inside these two
popular Integrated Development Environments, using the
Enterprise Architect Browser window. Models can be
generated to source code using the powerful and flexible
template engine that gives the engineer complete control
over how the code is generated. Existing source code can
also be reverse engineered and synchronized with the UML
models. With the integration installed the IDE will become a
feature rich modeling platform, saving time and effort and
reducing the risk of error by linking requirements
management, architecture and design to source code
engineering.

Rich and expressive documentation can be generated
automatically into a wide range of formats including Docx,
PDF and HTML. The documentation can include diagrams
of requirements, design and architecture as well as source
code descriptions, putting the source code into context.

You can purchase MDG Integration for Eclipse and MDG
Integration for Visual Studio or download Trial Editions,
from the Sparx Systems web site.

(c) Sparx Systems 2019 Page 143 of 672

User Guide - Software Models 20 January, 2020

Behavioral Models

Enterprise Architect’s powerful system engineering
capability can be used to generate code for software, system
and hardware description languages directly from behavioral
models, such as StateMachine, Sequence (Interaction) and
Activity diagrams. The supported languages include C(OO),
C++, C#, Java, VB.Net, VHDL, Verilog and SystemC.

Software code can be generated from StateMachine,
Sequence and Activity diagrams, and hardware description
languages from StateMachine diagrams (using the Legacy
State Machine templates).

Generate code from behavioral diagrams
using the EAExample project

Ste
p

Action

1 Open the EAExample.eap file by selecting the 'Start
> Help > Help > Open the Example Model' ribbon
option.

(c) Sparx Systems 2019 Page 144 of 672

User Guide - Software Models 20 January, 2020

2 From the Browser window, select any of these
Packages:
Software Language Examples:

Example Model > Software Engineering > Java·

Model With Behaviors
 Generate the Account and Order classes

Example Model > Systems Engineering >·

Implementation Model > Software > C#
 Generate the DataProcessor Class

Example Model > Systems Engineering > SysML·

Example > Implementation Model > Software >
C++

 Generate the IO Class
Example Model > Systems Engineering > SysML·

Example > Implementation Model > Software >
Java

 Generate the IO Class
Example Model > Systems Engineering > SysML·

Example > Implementation Model > Software >
VBNet

 Generate the IO Class
Hardware Language Examples:

Example Model > Systems Engineering > SysML·

Example: Portable Audio Player >
Implementation Model > Hardware > SystemC

 Generate the PlayBack Class
Example Model > Systems Engineering > SysML·

(c) Sparx Systems 2019 Page 145 of 672

User Guide - Software Models 20 January, 2020

Example: Portable Audio Player >
Implementation Model > Hardware > VHDL

 Generate the PlayBack Class
Example Model > Systems Engineering > SysML·

Example: Portable Audio Player >
Implementation Model > Hardware > Verilog

 Generate the PlayBack Class

3 When completed, press Ctrl+E to open the generated
source code.
You should see methods generated in the code.

Notes

Software code generation from behavioral models is·

available in the Unified and Ultimate editions of
Enterprise Architect

Hardware code generation from StateMachine models is·

available in the Unified and Ultimate editions of
Enterprise Architect

For C(OO), on the 'C Specifications' page of the·

'Preferences' dialog set the 'Object Oriented Support'
option to True

To be able to generate code from behavioral models, all·

behavioral constructs should be contained within a Class;

(c) Sparx Systems 2019 Page 146 of 672

User Guide - Software Models 20 January, 2020

if the behavioral constructs refer to external elements
outside the current Package, you must add an Import
connector from the current Package to the Package
containing the external elements

Code synchronization is not supported for behavioral code·

(c) Sparx Systems 2019 Page 147 of 672

User Guide - Software Models 20 January, 2020

Code Generation - Activity Diagrams

Code generation from Activity diagrams in a Class requires
a validation phase, during which Enterprise Architect uses
the system engineering graph optimizer to analyze the
diagram and render it into various constructs from which
code can be generated. Enterprise Architect also transforms
the constructs into one of the various action types (if
appropriate), similar to the Interaction diagram constructs.

Actions

Action Description

Call Actions
(Invocation
Actions)

Used to invoke operations or behaviors in
an Activity diagram; the two main
variants of Call Actions supported in
behavioral code generation are:

CallOperation Action - used to invoke·

operations, which can be within the
same Class or in other Classes within
the same Package; if referencing
operations from other Classes within
the same Package, you must have a
target to which the request is passed
CallBehavior Action - used to invoke·

another Activity in an activity flow; the

(c) Sparx Systems 2019 Page 148 of 672

User Guide - Software Models 20 January, 2020

referenced Activity is expected to be
within the same Class

Arguments
Call Actions can specify argument values
corresponding to the parameters in the
associated behavior or behavioral feature.
You can add the arguments manually or
create them automatically using the
Synchronize button of the 'Arguments'
dialog.

CreateObject
Action

Used to denote an object creation in the
activity flow; you can set the result Pin of
the CreateObjectAction as the object to
be created, using the 'Assign Action Pins'
dialog.
The Classifier of the CreateObjectAction
signifies the Classifier for which an
instance is to be created.

DestroyObjec
tAction

Used to denote an object deletion in the
activity flow; you can set the target Pin of
the DestroyObjectAction as the object to
be destroyed, using the 'Assign Action
Pins' dialog.

Loops Enterprise Architect's system engineering
graph optimizer is also capable of
analyzing and identifying loops; an

(c) Sparx Systems 2019 Page 149 of 672

User Guide - Software Models 20 January, 2020

identified loop is internally rendered as
an Action Loop, which is translated by
the EASL code generation macros to
generate the required code.
You can have a single loop, nested loops,
and multiple levels of nested loops.

Conditional
Statements

To model a conditional statement, you
use Decision/Merge nodes.
Alternatively, you can imply
Decisions/Merges internally; the graph
optimizer expects an associated Merge
node for each Decision node, to facilitate
efficient tracking of various branches and
analysis of the code constructs within
them.

Notes

To be able to generate code from behavioral models, all·

behavioral constructs should be contained within a Class

(c) Sparx Systems 2019 Page 150 of 672

User Guide - Software Models 20 January, 2020

Code Generation - Interaction
Diagrams

During code generation from Interaction (Sequence)
diagrams in a Class, Enterprise Architect applies its system
engineering graph optimizer to transform the Class
constructs into programmatic paradigms. Messages and
Fragments are identified as two of the several action types
based on their functionality, and Enterprise Architect uses
the code generation templates to render their behavior
accordingly.

Actions

Action Description

Action Call A Message that invokes an operation.

Action
Create

A Message with Lifecycle = New.

Action
Destroy

A Message with Lifecycle = Delete.

Action Loop A Combined Fragment with Type = Alt.

(c) Sparx Systems 2019 Page 151 of 672

User Guide - Software Models 20 January, 2020

Action If A Combined Fragment with Type = loop.

Assign To A Call Message with a valid target
attribute set using the 'Assign To' field is
rendered in the code as the target attribute
of a Call Action.

Notes

To be able to generate code from behavioral models, all·

behavioral constructs should be contained within a Class

For an Interaction (Sequence) diagram, the behavioral·

code generation engine expects the Sequence diagram and
all its associated messages and interaction fragments to be
encapsulated within an Interaction element

(c) Sparx Systems 2019 Page 152 of 672

User Guide - Software Models 20 January, 2020

Code Generation - StateMachines

A StateMachine illustrates how an object (represented by a
Class) can change state, each change of state being a
transition initiated by a trigger arising from an event, often
under conditions or constraints defined as guards. As you
model how the object changes state, you can generate and
build (compile) code from it in the appropriate software
language and execute the code, visualizing the execution via
the Model Simulator.

It is also possible, in Enterprise Architect, to combine the
StateMachines of separate but related objects to see how
they interact (via Broadcast Events), and to quickly create
and generate code from variants of the model. For example,
you might model the behavior of:

The rear off-side wheel of a vehicle in rear-wheel drive·

and front-wheel drive modes (one StateMachine)

The steering wheel and all four drive wheels of a vehicle·

in 4-wheel drive mode (five StateMachines)

The wheels of an off-road vehicle and of a sports car (two·

Artifacts, instances of a combination of StateMachines)

Of critical importance in generating and testing code for all
of these options is the Executable StateMachine Artifact
element. This acts as the container and code generation unit
for your StateMachine models.

You do not use this method to generate code for Hardware
Definition Languages, but you can also generate both HDL
code and software code from StateMachines using the

(c) Sparx Systems 2019 Page 153 of 672

User Guide - Software Models 20 January, 2020

generic Code Generation facilities in Enterprise Architect
(see the Generate Source Code procedures).

Prerequisites

Select 'Configure > Model > Options > Source Code·

Engineering' and, for the appropriate software coding
language (Java, C, C# or ANSI C++), set the 'Use the new
Statemachine Template' option to 'True'

If working in C++, select 'Configure > Model > Options >·

Source Code Engineering > C++' and set the 'C++
Version' option to 'ANSI'

This code generation method does not apply to the Legacy
StateMachine code generation templates developed prior to
Enterprise Architect Release 11.0, nor to generate Hardware
Definition Language code.

Access

Drag an Executable StateMachine Artifact from the
'Artifacts' page of the Diagram Toolbox, onto your diagram.
The 'Artifacts' page of the Diagram Toolbox can be accessed
using any of the methods outlined in this table.

Ribbon Design > Diagram > Toolbox > Artifacts

Keyboard

(c) Sparx Systems 2019 Page 154 of 672

User Guide - Software Models 20 January, 2020

Shortcuts Ctrl+Shift+3 > Artifacts

Other You can display or hide the Diagram
Toolbox by clicking on the or icons
at the left-hand end of the Caption Bar at
the top of the Diagram View.

Prepare your StateMachine diagram(s)

Ste
p

Action

1 For each StateMachine you want to model, create a
Class diagram.

2 From the 'Class' page of the Diagram Toolbox, drag
the 'Class' icon onto your diagram and give the
element an appropriate name.

3 Right-click on the Class element and select the 'New
Child Diagram | State Machine' context menu option.
Give the StateMachine diagram an appropriate
name.

4 Create the StateMachine model to reflect the
appropriate transitions between States.

(c) Sparx Systems 2019 Page 155 of 672

User Guide - Software Models 20 January, 2020

Set up the Executable StateMachine Artifact

Ste
p

Action

1 Create a new Class diagram to contain the modeled
StateMachine(s) from which you intend to generate
code.

2 From the 'Artifacts' page of the Diagram Toolbox,
drag the 'Executable StateMachine' icon onto the
diagram to create the Artifact element. Name the
element and drag its borders out to enlarge it.

3 From the Browser window, drag the (first) Class
element containing a StateMachine diagram onto the
Artifact element on the diagram.
The 'Paste <element name>' dialog displays. In the
'Drop as' field, click on the drop-down arrow and
select the value 'Property'.
(If the dialog does not display, press Ctrl as you drag
the Class element from the Browser window.)

4 Click on the OK button. The Class element is pasted
inside the Artifact as a Part.

(c) Sparx Systems 2019 Page 156 of 672

User Guide - Software Models 20 January, 2020

5 Repeat steps 3 and 4 for any other Classes with
StateMachines that you want to combine and
generate code for. These might be:

Repeat 'drops' of the same Class and·

StateMachine, modeling parallel objects
Different Classes and StateMachines, modeling·

separate interacting objects

6 Right-click on the Artifact element and select the
'Properties > Properties' option, expand the
'Advanced' category and, in the 'Language' field,
click on the drop-down arrow and set the code
language to the same language as is defined for the
Class elements.
You can now drag this Executable StateMachine
Artifact element from the Browser window onto the
diagram any number of times, and modify the Parts
to model variations of the system or process, or the
same system or process with different programming
languages.

Generate Code From Artifact

Ste
p

Action

(c) Sparx Systems 2019 Page 157 of 672

User Guide - Software Models 20 January, 2020

1 Click on the Executable StateMachine Artifact
element and select the 'Simulate > Executable States
> Statemachine > Generate' ribbon option.
The 'Executable Statemachine Code Generation'
dialog displays.

2 In the 'Project output directory' field, type or browse
for the directory path under which to create the
output files.
During code generation, all existing files in this
directory are deleted.

3 Select the Target System. If you are running on
WIndows select the 'Local' option. If you are
working on Linux choose the 'Remote' option. The
choice affects the scripts generated to support the
Simulation.

4 In the 'Location of <compiler> installation directory'
field, type or browse for the path of the compiler
installation directory, to be automatically mapped to
the local path (displayed to the left of the field). For
each programming language, the paths might
resemble these examples:

Java·

JAVA_HOME C:\Program Files
(x86)\Java\jdk1.7.0_17
C/C++·

(c) Sparx Systems 2019 Page 158 of 672

User Guide - Software Models 20 January, 2020

VC_HOME C:\Program Files (x86)\Microsoft
Visual Studio 9.0
C#·

CS_HOME
C:\Windows\Microsoft.NET\Framework\V3.5

5 Click on the Generate button. The code files are
created appropriate to the programming language.
The System Output window displays with an
'Executable StateMachine Output' tab, showing the
progress and status of the generation.
During code generation, an automatic validation
function is executed to check for diagram or model
errors against the UML constraints. Any errors are
identified by error messages on the 'Executable
StateMachine Output' tab.
Double-click on an error message to display the
modeling structure in which the error occurs, and
correct the mistake before re-generating the code.

6 When the code generates without error, click on the
Artifact element and select the 'Simulate >
Executable States > Statemachine > Build' ribbon
option to compile the code.
The System Output window displays with a 'Build'
tab, showing the progress and status of the
compilation. Notice that the compilation includes
configuration of the simulation operation.

(c) Sparx Systems 2019 Page 159 of 672

User Guide - Software Models 20 January, 2020

Code Generation Macros

You can also use two macros in the code generation for
StateMachines.

Macro Name Description

SEND_EVE
NT

Send an event to a receiver (the Part). For
example:
 %SEND_EVENT("event1",
"Part1")%

BROADCAS
T_EVENT

Broadcast an event to all receivers. For
example:

%BROADCAST_EVENT("event2")%

Execute/Simulate Code From Artifact

Ste
p

Action

1 Select the ribbon option 'Simulate > Dynamic
Simulation > Simulator > Apply Workspace' to

(c) Sparx Systems 2019 Page 160 of 672

User Guide - Software Models 20 January, 2020

display the Simulation window and the Simulation
Events window together
Dock the two windows in a convenient area of the
screen.

2 On the diagram or Browser window, click on the
Artifact element and select the 'Simulate >
Executable States > Statemachine > Run' ribbon
option.
The first StateMachine diagram in the series displays
with the simulation of the process already started. In
the Simulation window, the processing steps are
indicated in this format:
 [03516677]
Part1[Class1].Initial_367_TO_State4_142 Effect
 [03516683] Part1[Class1].StateMachine_State4
ENTRY
 [03516684] Part1[Class1].StateMachine_State4
DO
 [03518375] Blocked

3 Click on the appropriate Simulation window toolbar
buttons to step through the simulation as you prefer.
When the simulation finishes at the Exit or
Terminate element, click on the Stop button in the
Simulation window toolbar.

4 Where the trace shows Blocked, the simulation has

(c) Sparx Systems 2019 Page 161 of 672

User Guide - Software Models 20 January, 2020

reached a point where a Trigger event has to occur
before processing can continue. On the Simulation
Events window, in the 'Waiting Triggers' column,
double-click on the appropriate Trigger.
When the Trigger is fired, the simulation continues
to the next pause point, Trigger or exit.

Notes

If you are making small changes to an existing·

StateMachine model, you can combine the code
generation, build and run operations by selecting the
'Simulate > Executable States > Statemachine > Generate,
build and run' ribbon option

You can also generate code in JavaScript·

(c) Sparx Systems 2019 Page 162 of 672

User Guide - Software Models 20 January, 2020

Legacy StateMachine Templates

Code generation operates using a set of generation
templates. From Release 11.0 of Enterprise Architect, a
different set of templates are available as the default for
software code generation from a StateMachine diagram into
Java, C, ANSI C++ or C# code. You can still use the
original templates, as described here, for models developed
in earlier releases of Enterprise Architect, if you do not want
to upgrade them for the new template facilities.

Switch Between Legacy and Release 11
templates

Access

Display the 'Manage Project Options' dialog, then show the
'Language Specifications' page for your chosen language,
using one of the methods outlined in this table. If necessary,
expand the 'StateMachine Engineering (for current model)'
grouping and set the 'Use the new StateMachine Template'
option to True (to use the later templates) or False (to use
the Legacy templates).

Ribbon Configure > Model > Options > Source

(c) Sparx Systems 2019 Page 163 of 672

User Guide - Software Models 20 January, 2020

Code Engineering > [language name]

Legacy Template Transformations

A StateMachine in a Class internally generates a number of
constructs in software languages to provide effective
execution of the States' behaviors (do, entry and exit) and
also to code the appropriate transition's effect when
necessary.

Model
Objects

Code Objects

Enumerations StateType - consists of an enumeration·

for each of the States contained within
the StateMachine
TransitionType – consists of an·

enumeration for each transition that has
a valid effect associated with it; for
example,
ProcessOrder_Delivered_to_ProcessOr
der_Closed
CommandType – consists of an·

enumeration for each of the behavior
types that a State can contain (Do,
Entry, Exit)

(c) Sparx Systems 2019 Page 164 of 672

User Guide - Software Models 20 January, 2020

Attributes currState:StateType - a variable to hold·

the current State's information
nextState:StateType - a variable to hold·

the next State's information, set by each
State's transitions accordingly
currTransition:TransitionType - a·

variable to hold the current transition
information; this is set if the transition
has a valid effect associated with it
transcend:Boolean - a flag used to·

advise if a transition is involved in
transcending between different
StateMachines (or Submachine states)
xx_history:StateType - a history·

variable for each
StateMachine/Submachine State, to
hold information about the last State
from which the transition took place

Operations StatesProc - a States procedure,·

containing a map between a State's
enumeration and its operation; it
de-references the current State's
information to invoke the respective
State's function
TransitionsProc - a Transitions·

procedure, containing a map between
the Transition's enumeration and its
effect; it invokes the Transition's effect

(c) Sparx Systems 2019 Page 165 of 672

User Guide - Software Models 20 January, 2020

<<State>> - an operation for each of·

the States contained within the
StateMachine; this renders a State's
behaviors based on the input
CommandType, and also executes its
transitions
initializeStateMachine - a function that·

initializes all the framework-related
attributes
runStateMachine - a function that·

iterates through each State, and
executes their behaviors and transitions
accordingly

Notes

To be able to generate code from behavioral models, all·

behavioral constructs should be contained within a Class

(c) Sparx Systems 2019 Page 166 of 672

User Guide - Software Models 20 January, 2020

Java Code Generated From Legacy
StateMachine Template

 private enum StateType: int

 {

 ProcessOrder_Delivered,

 ProcessOrder_Packed,

 ProcessOrder_Closed,

 ProcessOrder_Dispatched,

 ProcessOrder_New,

 ST_NOSTATE

 }

 private enum TransitionType: int

 {

 ProcessOrder_Delivered_to_ProcessOrder_Closed,

 TT_NOTRANSITION

(c) Sparx Systems 2019 Page 167 of 672

User Guide - Software Models 20 January, 2020

 }

 private enum CommandType

 {

 Do,

 Entry,

 Exit

 }

 private StateType currState;

 private StateType nextState;

 private TransitionType currTransition;

 private boolean transcend;

 private StateType ProcessOrder_history;

 private void processOrder_Delivered(CommandType
command)

 {

 switch(command)

 {

 case Do:

 {

 // Do Behaviors..

 setStatus(Delivered);

 // State's Transitions

 if((status==Delivered))

 {

 nextState = StateType.ProcessOrder_Closed;

(c) Sparx Systems 2019 Page 168 of 672

User Guide - Software Models 20 January, 2020

 currTransition =
TransitionType.ProcessOrder_Delivered_to_ProcessOrder_
Closed;

 }

 break;

 }

 default:

 {

 break;

 }

 }

 }

 private void processOrder_Packed(CommandType
command)

 {

 switch(command)

 {

 case Do:

 {

 // Do Behaviors..

 setStatus(Packed);

 // State's Transitions

 nextState =
StateType.ProcessOrder_Dispatched;

 break;

(c) Sparx Systems 2019 Page 169 of 672

User Guide - Software Models 20 January, 2020

 }

 default:

 {

 break;

 }

 }

 }

 private void processOrder_Closed(CommandType
command)

 {

 switch(command)

 {

 case Do:

 {

 // Do Behaviors..

 // State's Transitions

 break;

 }

 default:

 {

 break;

 }

 }

 }

 private void processOrder_Dispatched(CommandType

(c) Sparx Systems 2019 Page 170 of 672

User Guide - Software Models 20 January, 2020

command)

 {

 switch(command)

 {

 case Do:

 {

 // Do Behaviors..

 setStatus(Dispatched);

 // State's Transitions

 nextState = StateType.ProcessOrder_Delivered;

 break;

 }

 default:

 {

 break;

 }

 }

 }

 private void processOrder_New(CommandType
command)

 {

 switch(command)

 {

 case Do:

 {

(c) Sparx Systems 2019 Page 171 of 672

User Guide - Software Models 20 January, 2020

 // Do Behaviors..

 setStatus(new);

 // State's Transitions

 nextState = StateType.ProcessOrder_Packed;

 break;

 }

 default:

 {

 break;

 }

 }

 }

 private void StatesProc(StateType currState,
CommandType command)

 {

 switch(currState)

 {

 case ProcessOrder_Delivered:

 {

 processOrder_Delivered(command);

 break;

 }

 case ProcessOrder_Packed:

 {

 processOrder_Packed(command);

(c) Sparx Systems 2019 Page 172 of 672

User Guide - Software Models 20 January, 2020

 break;

 }

 case ProcessOrder_Closed:

 {

 processOrder_Closed(command);

 break;

 }

 case ProcessOrder_Dispatched:

 {

 processOrder_Dispatched(command);

 break;

 }

 case ProcessOrder_New:

 {

 processOrder_New(command);

 break;

 }

 default:

 break;

 }

 }

 private void TransitionsProc(TransitionType transition)

 {

 switch(transition)

 {

(c) Sparx Systems 2019 Page 173 of 672

User Guide - Software Models 20 January, 2020

 case
ProcessOrder_Delivered_to_ProcessOrder_Closed:

 {

 setStatus(closed);

 break;

 }

 default:

 break;

 }

 }

 private void initalizeStateMachine()

 {

 currState = StateType.ProcessOrder_New;

 nextState = StateType.ST_NOSTATE;

 currTransition =
TransitionType.TT_NOTRANSITION;

 }

 private void runStateMachine()

 {

 while (true)

 {

 if (currState == StateType.ST_NOSTATE)

 {

 break;

 }

(c) Sparx Systems 2019 Page 174 of 672

User Guide - Software Models 20 January, 2020

 currTransition =
TransitionType.TT_NOTRANSITION;

 StatesProc(currState, CommandType.Do);

 // then check if there is any valid transition
assigned after the do behavior

 if (nextState == StateType.ST_NOSTATE)

 {

 break;

 }

 if (currTransition !=
TransitionType.TT_NOTRANSITION)

 {

 TransitionsProc(currTransition);

 }

 if (currState != nextState)

 {

 StatesProc(currState, CommandType.Exit);

 StatesProc(nextState, CommandType.Entry);

 currState = nextState;

 }

 }
 }

(c) Sparx Systems 2019 Page 175 of 672

User Guide - Software Models 20 January, 2020

StateMachine Modeling For HDLs

To efficiently generate Hardware Description Language
(HDL) code from StateMachine models, apply the design
practices described in this topic. Hardware Description
Languages include VHDL, Verilog and SystemC.

In an HDL StateMachine model, you might expect to:

Designate Driving Triggers·

Establish Port–Trigger Mapping·

Add to Active State Logic·

Operations

Operation Description

Designate
Driving
Triggers

A 'Change' Trigger is deemed to be an·

asynchronousTrigger if:
 - There is a transition from the
actual SubMachine State (which
 encapsulates the actual logic) that
it triggers, and
 - The target State of that transition
has a self transition triggered
 by the same Trigger
Asynchronous Triggers should be·

modeled according to this pattern:
 - The Trigger should be of type

(c) Sparx Systems 2019 Page 176 of 672

User Guide - Software Models 20 January, 2020

Change (specification: True / False)
 - The active State (SubMachine
State) should have a transition
 triggered by it
 - The target State of the triggered
transition should have a self
 transition with the same Trigger
A Trigger of type 'Time', which·

triggers the transitions to the active
state (SubMachine State), is deemed to
be the Clock; the specification of this
trigger should conform to the target
language:
 - VHDL - rising_edge /
falling_edge
 - Verilog - posedge / negedge
 - SystemC - positive / negative

Establish
Port-Trigger
Mapping

After successfully modeling the different
operating modes of the component, and
the Triggers associated with them, you
must associate the Triggers with the
component's Ports.
A Dependency relationship from the Port
to the associated Trigger is used to
signify that association.

(c) Sparx Systems 2019 Page 177 of 672

User Guide - Software Models 20 January, 2020

Active State
Logic

Designating the driving Trigger and
establishing the Port-Trigger mapping put
in place the preliminaries required for
efficiently interpreting the hardware
components.
We now model the actual StateMachine
logic within the Active (SubMachine)
State.

Notes

To be able to generate code from behavioral models, all·

behavioral constructs should be contained within a Class

The current code generation engine supports only one·

clock Trigger for a component

(c) Sparx Systems 2019 Page 178 of 672

User Guide - Software Models 20 January, 2020

Win32 UI Technology

Using the MDG Win32 UI Technology, you can design user
interface screens that render as Win32® controls. The user
interface produced can be used in any resource definition
script. Resource definition scripts, or RC files, are a
Microsoft technology that - as for other code - can be
compiled and the assets used by native desktop applications.
User interface screens or dialogs can be created from scratch
or reverse engineered. User interface models can also be
forward engineered using the synchronize code function
(F7). Interface modeling takes place on diagrams in the
exact same fashion as you would work with any technology
in Enterprise Architect. An interesting aspect of User
Interface design in Enterprise Architect is that components
can take an active role in the simulation of StateMachines
and Activities, enabling a simulation to interact with users,
much like a real program!

(c) Sparx Systems 2019 Page 179 of 672

User Guide - Software Models 20 January, 2020

Access

Ribbon Design > Diagram > Add > Type > User
Interface Win32

Context
Menu

Right-click on Package | Add Diagram >
Type | User Interface Win32

Other Browser window caption bar menu | New
Diagram | User Interface Win32

Support

The MDG Win32® User Interface Technology is available
in the Enterprise Architect Professional, Corporate and Suite
editions

Enabling Win32 User Interface Technology

(c) Sparx Systems 2019 Page 180 of 672

User Guide - Software Models 20 January, 2020

The Win32® UI Technology in Enterprise Architect is
enabled or disabled using the 'MDG Technologies' dialog
(select the 'Specialize > Technologies > Manage-Tech'
ribbon option).

Default technology

You can set the MDG Win32® UI Technology as the active
default technology to access the Toolbox pages directly.

(c) Sparx Systems 2019 Page 181 of 672

User Guide - Software Models 20 January, 2020

Modeling UI Dialogs

The Win32 User Interface MDG Technology provides the
tools to help you design a user interface that closely
emulates the visual style and available options for Windows
dialogs.

Win32 Dialog

These user interface components are supported, each
matching the equivalent-named RC resource.

Component Details

win32Dialog The equivalent of the RC format

(c) Sparx Systems 2019 Page 182 of 672

User Guide - Software Models 20 January, 2020

DIALOG and DIALOGEX resources.

win32StaticT
ext

The equivalent of the RC format LTEXT,
RTEXT, CTEXT resources.

win32Edit The equivalent of the RC format
EDITTEXT resource.

win32Button The equivalent of the RC format
BUTTON, DEFPUSHBUTTON and
other resources.

win32Check
Box

The equivalent of the RC format
CHECKBOX resource.

win32ScrollB
arH

The equivalent of the RC format
SCROLLBAR resource with SBS_HORZ
style

win32ScrollB
arV

The equivalent of the RC format
SCROLLBAR resource with SBS_VERT
style.

win32Group
Box

The equivalent of the RC format
GROUPBOX resource.

win32Combo
Box

The equivalent of the RC format
COMBOBOX resource.
Note: When you initially drag the 'Combo

(c) Sparx Systems 2019 Page 183 of 672

User Guide - Software Models 20 January, 2020

Box' icon - of type 'Drop Down' or 'Drop
Down List' - onto a diagram, the middle
'tracking handle' on each side of the
element is white, indicating that you can
only adjust the width of the element. To
adjust the height of the element as well as
the width, click on the drop-down arrow
part of the image; the middle 'tracking
handle' on the bottom edge is now white,
indicating that you can drag the base
down to set the virtual height (the height
of the element when it is expanded to
show all possible values in the drop-down
list).

win32ListBo
x

The equivalent of the RC format
LISTBOX resource.

win32RadioB
utton

The equivalent of the RC format
RADIOBUTTON resource.

win32TabPan
e

The equivalent of the RC format
TABPANE resource.

win32Picture The equivalent of the RC format STATIC
resource with SS_BITMAP style.
The control can render an image when
applied from your model. An image can
be applied by selecting it first and

(c) Sparx Systems 2019 Page 184 of 672

User Guide - Software Models 20 January, 2020

pressing Ctrl+Shift+W to display the
Image Manager. Afterwards, you might
need to change the value of the resource
ID in the appropriate Tagged Value.

win32Custo
mControl

The equivalent of the RC format
CONTROL resource.

(c) Sparx Systems 2019 Page 185 of 672

User Guide - Software Models 20 January, 2020

Import Single Dialog from RC File

You can quickly import a single dialog by name.

Access

In the Browser window, click on the target Package.

Ribbon Develop > Source Code > Files > Import
Resource Script

(c) Sparx Systems 2019 Page 186 of 672

User Guide - Software Models 20 January, 2020

Import All Dialogs from RC File

All dialogs in a single RC file can be imported into your
model. This image was captured one minute into the import,
at which time over 200 large dialog definitions had been
imported.

Access

Ribbon Develop > Source Code > Files > Import
Resource Script

(c) Sparx Systems 2019 Page 187 of 672

User Guide - Software Models 20 January, 2020

(c) Sparx Systems 2019 Page 188 of 672

User Guide - Software Models 20 January, 2020

Export Dialog to RC File

Once a screen design is modified or a new one created, you
might want to get it back to the RC file you use to build
your application, so that you can see how it looks with real
data. Begin by selecting the Win32Dialog element in the
Browser window, then use the ribbon to perform the
synchronization.

Access

Click on the win32Dialog element.

Ribbon Develop > Source Code > Generate >
Generate Single Element

Keyboard
Shortcuts

F11

(c) Sparx Systems 2019 Page 189 of 672

User Guide - Software Models 20 January, 2020

(c) Sparx Systems 2019 Page 190 of 672

User Guide - Software Models 20 January, 2020

Design a New Dialog

Creating a new Win32 dialog is easy and mostly visual. You
will probably need a workspace that shows:

The new diagram (select the 'Design > Diagram > Add >·

User Interface - Win32 > User Interface - Win32' ribbon
path)

The Win32 User Interface Toolbox (select the 'Design >·

Diagram > Tooolbox' ribbon option) and

The Tagged Values tab of the Properties window·

(c) Sparx Systems 2019 Page 191 of 672

User Guide - Software Models 20 January, 2020

The UI Toolbox

All of the common RC elements can be found on the UI
toolbox

The Tags Tab

This tab is provided on the Properties window and
'Properties' dialog for an object, and is where all the
properties of a control can be viewed and edited.

(c) Sparx Systems 2019 Page 192 of 672

User Guide - Software Models 20 January, 2020

Using the Picture Control

Images from your model (see Image Manager) can be
applied by selecting the control on the dialog and pressing
Ctrl+Shift+W. You might have to enter the value of the
resource ID in the appropriate Tagged Value.

Note

You can copy and paste dialog Packages·

(c) Sparx Systems 2019 Page 193 of 672

User Guide - Software Models 20 January, 2020

GoF Patterns

A Design Pattern is a template for solving commonly
recurring design problems; it consists of a series of elements
and connectors that can be reused in a new context. The
advantage of using Patterns is that they have been tested and
refined in a number of contexts and so are typically robust
solutions to common problems. Enterprise Architect
provides the Gang of Four Patterns as an MDG Technology
that can be loaded into the current repository.

The Gang of Four (Gof) Patterns are a group of twenty three
Design Patterns originally published in a seminal book
entitled Design Patterns: Elements of Reusable
Object-Oriented Software; the term 'Gang of Four' refers to
the four authors. Enterprise Architect displays these Patterns
in its powerful Pattern engine, helping you to visualize the
elements of the Pattern and adjust the Pattern to the context
of your software design problem.

GoF Patterns in Enterprise Architect

Features Description

GoF Pattern
Facilities

The GoF Patterns are provided in the
form of:

GoF Behavioral Patterns, GoF·

Creational Patterns and GoF Structural

(c) Sparx Systems 2019 Page 194 of 672

User Guide - Software Models 20 January, 2020

Patterns pages in the Toolbox
Gang of Four Pattern entries in the·

Toolbox Shortcut Menu
GoF Pattern Toolbox Pages
You can access the 'GoF Pattern' pages of
the Toolbox by clicking on to display
the 'Find Toolbox Item' dialog and
specifying 'GoF Patterns'; these icons are
available:

When you drag one of the Pattern

(c) Sparx Systems 2019 Page 195 of 672

User Guide - Software Models 20 January, 2020

elements onto a new diagram, the 'Add
Pattern GoF <pattern group><pattern
type>' dialog displays; if necessary,
modify the action and/or default for the
component elements, then click on the
OK button to create a diagram based on
the Pattern.

(c) Sparx Systems 2019 Page 196 of 672

User Guide - Software Models 20 January, 2020

ICONIX

The ICONIX process is a proprietary software development
methodology based on UML. The process is Use Case
driven and uses UML-based diagrams to define four
milestones. The main feature of the process is a concept
called robustness modeling, based on the early work of Ivar
Jacobson, which helps bridge the gap between analysis and
design.

This text is derived from the ICONIX entry in the online
Wikipedia:

'The ICONIX Process is a minimalist, streamlined approach
to Use Case driven UML modeling that uses a core subset of
UML diagrams and techniques to provide thorough
coverage of object-oriented analysis and design. Its main
activity is robustness analysis, a method for bridging the gap
between analysis and design. Robustness analysis reduces
the ambiguity in use case descriptions, by ensuring that they
are written in the context of an accompanying domain
model. This process makes the use cases much easier to
design, test and estimate.'

The ICONIX Process was developed by Doug Rosenberg;
for more information on ICONIX, refer to ICONIX
Software Engineering Inc.

Aspects

(c) Sparx Systems 2019 Page 197 of 672

User Guide - Software Models 20 January, 2020

Aspect Detail

ICONIX in
Enterprise
Architect

Enterprise Architect enables you to
develop models under ICONIX quickly
and simply, through use of an MDG
Technology integrated with the
Enterprise Architect installer.
The ICONIX facilities are provided in the
form of:

A set of ICONIX pages in the Toolbox·

ICONIX element and relationship·

entries in the 'Toolbox Shortcut' menu
and Quick Linker

To further help you develop and manage
a project under ICONIX, Enterprise
Architect also provides a white paper on
the ICONIX Roadmap.

ICONIX
Toolbox
Pages

Within the Toolbox, Enterprise Architect
provides ICONIX versions of the pages
for UML Analysis, Use Case, Class,
Interaction (Sequence), Activity and
Custom diagrams (which often form the
basis for Robustness diagrams).
Compared to the standard Toolbox pages,
these have slightly different element and
relationship sets; you can access them by
either:

(c) Sparx Systems 2019 Page 198 of 672

User Guide - Software Models 20 January, 2020

Specifying 'ICONIX' in the 'Find·

Toolbox Item' dialog and selecting a
specific Toolbox page
Selecting the 'ICONIX' option in the·

drop-down field of the Default Tools
toolbar, which adds all six pages to the
Toolbox; all pages are closed up

(c) Sparx Systems 2019 Page 199 of 672

User Guide - Software Models 20 January, 2020

Configuration Settings

You can set the default code options such as the editors for
each of the programming languages available for Enterprise
Architect and special options for how source code is
generated or reverse engineered. These options are defined
according to whether they apply to:

All users of the current model, set on the 'Manage Project·

Options' dialog, or

All models that you access (other users can define their·

own settings that apply to the same models), set on the
'Preferences' dialog

You can also:

For each programming language used in the model, for all·

users working on the model, define Collection Classes for
generating code from Association connectors where the
target role has a multiplicity setting greater than 1

Define a local path for yourself, using the 'Local Path'·

dialog; these settings apply to all Enterprise Architect
models that you access

Define language macros within the model, which are·

useful in reverse engineering and can be exported from
and imported to the model

(c) Sparx Systems 2019 Page 200 of 672

User Guide - Software Models 20 January, 2020

Source Code Engineering Options

The 'Source Code Engineering' options apply to the
languages in which you generate code from Enterprise
Architect. They are divided into Model-specific options and
User-specific options, as explained here.

Model-Specific Options

These options are defined on the 'Manage Project Options'
dialog.

Access

Ribbon Configure > Model > Options > Source
Code Engineering

Types of Option

Option Type Detail

Source Code You can define a number of settings for

(c) Sparx Systems 2019 Page 201 of 672

User Guide - Software Models 20 January, 2020

Generation
Options

generating code in the model, such as the
default language to generate code in and
the Unicode character set for code
generation.

Options -
Object
Lifetimes

You can configure various options
concerning Object Lifetimes.

Code
Language
Options

For each of the code languages that
Enterprise Architect supports, you can
define the model-specific options and set
any Collection Classes required.

User-Specific Options

These options are defined on the 'Preferences' dialog.

Access

On the 'Preferences' dialog, click on 'Source Code
Engineering' in the left-hand list.

Ribbon Start > Desktop > Preferences >

(c) Sparx Systems 2019 Page 202 of 672

User Guide - Software Models 20 January, 2020

Preferences

Keyboard
Shortcuts

Ctrl+F9

Types of Option

Option Type Detail

Source Code
Generation
Options

You can define a number of settings for
generating code in any model that you
access under the same user ID.

Code Editors These are options for accessing and
configuring the source code editor.

Attributes/Op
erations

Use these options for configuring
attributes and operations.

Code
Language
Options

For each of the code languages that
Enterprise Architect supports, you can
define the user-specific options that apply
to any model that you access under your
user ID.

(c) Sparx Systems 2019 Page 203 of 672

User Guide - Software Models 20 January, 2020

(c) Sparx Systems 2019 Page 204 of 672

User Guide - Software Models 20 January, 2020

Code Generation Options

When you generate code for your model, you can set certain
options. These include:

The default language·

Whether to generate methods for implemented interfaces·

The Unicode options for code generation·

Access

Ribbon Configure > Model > Options > Source
Code Engineering

Configure code generation options

Option Action

Always
synchronize
with existing
file
(recommende
d)

Select the radio button to synchronize
imported code with an existing file.

(c) Sparx Systems 2019 Page 205 of 672

User Guide - Software Models 20 January, 2020

Replace
(overwrite)
existing
source file

Select the radio button to overwrite the
existing source file with imported code.

Component
Types

Click on this button to open the 'Import
component types' dialog, to set up the
importation of component types.

Default
Language for
Code
Generation

Click on the drop-down arrow and select
the default language for code generation.

DDL Name
Templates

Click on the button to define the
template names for Primary Key, Unique
Constraint, Foreign Key and Foreign Key
Index Name templates.

Default name
for associated
attrib

Type in a default name to be generated
from imported attributes.

Generate
methods for
implemented
interfaces

Select the checkbox to indicate that
methods are generated for implemented
interfaces.

(c) Sparx Systems 2019 Page 206 of 672

User Guide - Software Models 20 January, 2020

Code page
for source
editing

Click on the drop-down arrow and select
the appropriate Unicode character
embedding format to apply.

Notes

It is worthwhile to configure these settings, as they serve·

as the defaults for all Classes in the model; you can
override most of these on a per-Class basis using the
custom settings (from the 'Code Generation' dialog)

(c) Sparx Systems 2019 Page 207 of 672

User Guide - Software Models 20 January, 2020

Import Component Types

Using the 'Import Component Types' dialog you can
configure what elements you want to be created for files of
any extension found while importing a source code
directory.

Access

Ribbon Configure > Model > Options > Source
Code Engineering: Component Types

Define Import Component Types

Option Action

Extension Type in the extension name for a
component type.

Type Click on the drop-down arrow and select
the component type.

Stereotype Type in any stereotype name that further

(c) Sparx Systems 2019 Page 208 of 672

User Guide - Software Models 20 January, 2020

identifies a component of this type.

Component
List

Lists the currently-defined component
types.

Save Click on this button to saves the
component definition and add it to the
component list.

New Click on this button to clear the dialog
fields so that you can define a new
component type.

Delete Click on this button to delete the selected
component type from the component list.

Notes

You can transport these import component types between·

models, using the 'Configure > Model > Transfer > Export
Reference Data' and 'Import Reference Data' ribbon
options

(c) Sparx Systems 2019 Page 209 of 672

User Guide - Software Models 20 January, 2020

Source Code Options

You can set a wide range of options for generating code in
the models you work with. These include:

How to format the generated code·

How to respond to certain events during code generation·

Whether to generate a diagram from the code·

Access

On the 'Preferences' dialog, select the 'Source Code
Engineering' option

Ribbon Start > Desktop > Preferences >
Preferences

Keyboard
Shortcuts

Ctrl+F9

Configure code generation options

Field Action

Wrap long Type in the number of characters to allow

(c) Sparx Systems 2019 Page 210 of 672

User Guide - Software Models 20 January, 2020

comment
lines at

in a comment line before wrapping the
text to the next line.

Auto Layout
Diagram on
Import

Click on the drop-down arrow and select
if and when a diagram is automatically
generated on code import.

Output files
use both CR
& LF

Select the checkbox to include carriage
returns and line feeds; set this option
according to what operating system is
currently in use, as code might not render
correctly.

Prompt when
synchronizin
g (reversing)

Select the checkbox to display a prompt
when synchronization occurs.

Remove hard
breaks from
comments on
import

Select the checkbox to remove hard
breaks from commented sections on
importation.

Auto
generate role
names when
creating code

Select the checkbox to generate role
names when creating code.

Do not
generate

Select the checkbox to prevent generation
of members if the Association direction is

(c) Sparx Systems 2019 Page 211 of 672

User Guide - Software Models 20 January, 2020

members
where
association
direction is
'Unspecified'

unspecified.

Create
dependencies
for operation
returns and
parameter
types

Select the checkbox to generate
dependencies for operation returns and
parameter types.

Comments:
Generate

Select the checkbox to generate
comments.

Comments:
Reverse

Select the checkbox to generate reverse
comments.

Remove
prefixes
when
generating
Get/Set
properties

Type in the prefixes, separated by
semi-colons, used in your variable
naming conventions, to be removed in the
variables' corresponding get/set functions.

Treat as
suffixes

Select the checkbox to use the prefixes
defined in the 'Remove prefixes when
generating Get/Set properties' field as

(c) Sparx Systems 2019 Page 212 of 672

User Guide - Software Models 20 January, 2020

suffixes.

Capitalized
Attribute
Name for
Properties

Select the checkbox to capitalize attribute
names for properties.

Use 'Is' for
Boolean
property
Get()

Select the checkbox to use the Is keyword
for the Boolean property Get().

Notes

It is worthwhile to configure these settings, as they serve·

as the defaults for all Classes in the model; you can
override most of these on a per-Class basis using the
custom settings (from the 'Code Generation' dialog)

(c) Sparx Systems 2019 Page 213 of 672

User Guide - Software Models 20 January, 2020

Options - Code Editors

You access the source code editor options via the 'DDL'
page of the 'Preferences' dialog. On this page you can
configure options for Enterprise Architect's internal editor,
as well as the default editor for DDL scripts. You can
configure external editors for code languages on each
language options page.

Access

On the 'Preferences' dialog, select the 'Source Code
Engineering > Code Editors' option.

Ribbon Start > Desktop > Preferences >
Preferences

Keyboard
Shortcuts

Ctrl+F9

Options

Option Action

(c) Sparx Systems 2019 Page 214 of 672

User Guide - Software Models 20 January, 2020

DDL Editor Defaults to blank, indicating that the
Enterprise Architect code editor is the
DDL editor in use.
You can select a different default editor if
necessary; click on the button to
browse for and select the required DDL
editor. The editor name then displays in
the 'DDL Editor' field.

Default
Database

Click on the drop-down arrow and select
the default database to be used.

MySQL
Storage

Click on the drop-down arrow and select
the MySQL storage engine to be used.

Use inbuilt
editor if no
external
editor set

Select the checkbox to use the inbuilt
editor for code in any language if no
external editor is defined for that
language in the user-specific options.

Show Line
Numbers

Select the checkbox to display line
numbers in the editor.

Show
Structure
Tree

Select the checkbox to show a tree with
the results of parsing the open file (if the
file is parsed successfully).

Automaticall
y Reverse

If you select this checkbox, pressing
Ctrl+S to save in the source code editor

(c) Sparx Systems 2019 Page 215 of 672

User Guide - Software Models 20 January, 2020

Engineer on
File Save

automatically reverse engineers the code
in the same way as the Save Source and
Re-Synchronize Class button does.

Don't parse
files larger
than

Click on the drop-down arrow and select
the upper limit on file size for parsing.
Setting this option prevents performance
decrease due to parsing very large files.

Syntax
Highlighting
Options

Click on the button to display the
'Editor Language Properties' dialog, in
which you can set both global and
language-specific editor language
properties.

Configure
Enterprise
Architect File
Associations

Click on the button to display the 'Set
Associations for a Program' dialog, and
select the file extensions for files that you
want to open through the Enterprise
Architect Document Handler.

(c) Sparx Systems 2019 Page 216 of 672

User Guide - Software Models 20 January, 2020

Editor Language Properties

Using the 'Editor Language Properties' dialog, you can
specify syntax highlighting properties for any of the
programming languages that Enterprise Architect supports
at installation.

Access

In the 'Preferences' dialog, select the 'Source Code
Engineering | Code Editors' option and click on the
button next to 'Syntax Highlighting Options'.

Ribbon Start> Desktop > Preferences >
Preferences, select 'Source Code
Engineering | Code Editors' option > click
on the button next to 'Syntax
Highlighting Options'

Other In the Code Editor window, click on the
toolbar icon | Syntax Highlighting
Options

Options

(c) Sparx Systems 2019 Page 217 of 672

User Guide - Software Models 20 January, 2020

Panel Description

Language
Panel

The panel on the left of the dialog lists
the languages for which you can set
properties.
At the top of the list are three
non-language options:

(Dark Theme) - assigns a dark·

background to the property fields and
to the code panel in the code editor
screen (you can apply a different color
to specific properties)
(Light Theme) - assigns a pale·

background to the property fields and
to the code panel in the code editor
screen (you can apply a different color
to specific properties)
You can also set the background
themes on the 'Application Look'
dialog
(Global) provides properties that you·

can set for all programming languages;
however, you can reset a global
property to a different value for a
particular language, in the properties
specifically for that language
Resetting a global property for one
language does not affect that property's
value for the other languages

(c) Sparx Systems 2019 Page 218 of 672

User Guide - Software Models 20 January, 2020

Click on the required language in the list,
to display the properties for that
language:

Properties shown in bold indicate that·

this is the highest level at which this
property can be defined (for most
language options other than 'Global',
this is effectively the only point at
which the property is defined)
Properties shown in normal font are·

generally the global properties that you
can reset just for the current language

Properties
Panel

Scroll through the property categories and
individual properties for the language.
You can collapse and expand categories
as necessary, using the expansion box
next to the category name ().
When you click on a property name, an
explanation of that property displays in
the panel at the bottom right of the dialog.
To define a property, click on the value
field following the property name;
depending on the type of property, either
the field is enabled for direct editing or a
drop-down arrow or button displays
(as described for the 'Tags' tab of the
Properties window) so that you can select
the values to define the property.

(c) Sparx Systems 2019 Page 219 of 672

User Guide - Software Models 20 January, 2020

Select or type in the required values.
Use the Toolbar icons to:

Save your changes to the properties·

Reset all properties fields to the default·

settings shipped with Enterprise
Architect
Reset the current style field to the·

default setting (not enabled for
non-style fields)

Assign Keys
to Macros

In the 'Macros' category of the properties,
you can assign (Ctrl+Alt+<n>) keystroke
combinations to coding macros that you
have created yourself in the 'Source Code
Viewer'.
When you click on the Browse button in
a selected 'Macro' field, the 'Open Macro'
dialog displays; this dialog lists the
existing macros and, if a key combination
has been assigned to a macro, what that
key combination is.
Click on the name of the macro and on
the Open button to assign the selected
keys to the macro.

Notes

(c) Sparx Systems 2019 Page 220 of 672

User Guide - Software Models 20 January, 2020

You cannot currently set properties for any additional·

languages you include through an MDG Technology

You can resize this dialog, if required·

(c) Sparx Systems 2019 Page 221 of 672

User Guide - Software Models 20 January, 2020

Options - Object Lifetimes

You can use these options to configure various Object
Lifetime settings such as:

Defining constructor details when generating code·

Specifying whether to create a copy constructor·

Defining Destructor details·

Access

Ribbon Configure > Model > Options > Source
Code Engineering > Object Lifetimes

Options

Option Action

Constructor If necessary, select the checkboxes to
specify that a constructor is generated and
(for C++) that the constructor is in-line.
Click on the drop-down arrow and select
the appropriate visibility of the default

(c) Sparx Systems 2019 Page 222 of 672

User Guide - Software Models 20 January, 2020

constructor - Private, Protected or Public.

Copy
Constructor

If necessary, select the checkboxes to
specify that a copy constructor is
generated and (for C++) that the copy
constructor is in-line.
Click on the drop-down arrow and select
the appropriate visibility of the default
copy constructor - Private, Protected or
Public.

Destructor If necessary, select the checkboxes to
specify that a destructor is generated and
(for C++) that the destructor is in-line
and/or virtual.
Click on the drop-down arrow and select
the appropriate visibility of the default
destructor - Private, Protected or Public.

(c) Sparx Systems 2019 Page 223 of 672

User Guide - Software Models 20 January, 2020

Options - Attribute/Operations

Your use of attributes and operations can be configured in a
number of ways. You can set options to:

Delete model attributes not included in the code during·

reverse synchronization

Delete model methods not included in the code during·

reverse synchronization

Delete code from features contained in the model during·

forward synchronization

Delete model associations and aggregations that·

correspond to attributes not included in the code during
reverse synchronization

Define whether or not the bodies of methods are included·

and saved in the model when reverse engineering

Create features in quick succession, clearing the·

Properties window when you click on 'Save' so that you
can enter another feature name

You configure these options on the 'Attribute/Operations'
page of the 'Preferences' dialog.

Access

On the 'Preferences' dialog, select the 'Source Code
Engineering > Attribute/Operations' option.

(c) Sparx Systems 2019 Page 224 of 672

User Guide - Software Models 20 January, 2020

Ribbon Start > Desktop > Preferences >
Preferences

Keyboard
Shortcuts

Ctrl+F9

Options

Field Action

On reverse
synch, delete
model
attributes not
in code

Select the checkbox to indicate that on
reverse synchronization, attributes in the
model that are not included within code
are automatically removed from the
model.

On reverse
synch, delete
model
associations
not in code

Select the checkbox to indicate that on
reverse synchronization, associations in
the model that are not included within
code are automatically removed from the
model.

On reverse
synch, delete
model
methods not

Select the checkbox to indicate that on
reverse synchronization, methods in the
model that are not included within code
are automatically removed from the

(c) Sparx Systems 2019 Page 225 of 672

User Guide - Software Models 20 January, 2020

in code model.

Include
method
bodies in
model when
reverse
engineering

Select the checkbox to indicate that on
reverse engineering code, method bodies
in the code are included within your
model.

After Save,
re-select
edited item

Select the checkbox to indicate that after
saving an attribute or operation, the
properties definition continues to display
the details of the selected feature.
If deselected, indicates that the fields of
the properties definition will clear so that
you can enter another attribute or
operation name and details immediately.

On forward
synch,
prompt to
delete code
features not
in model

Select the checkbox to indicate that,
during forward synchronization, the
'Synchronize Element <package
name>.<element name>' dialog displays,
so that you can either ignore, reassign or
delete features in the code that are not in
the model.

(c) Sparx Systems 2019 Page 226 of 672

User Guide - Software Models 20 January, 2020

Modeling Conventions

The synchronization between UML models and
programming code is achieved using a set of modeling
conventions (mappings) between UML constructs and
programming code syntax. The Software Engineer is
advised to become familiar with these conventions in order
to work with the code generation process for the
programming languages they intend to target. There are a
range of constructs used, including elements, features,
connectors, connector ends, stereotypes and Tagged Values.
The newcomer will require a little time to become familiar
with these conventions but after a short time they will be
translating between programming code and UML constructs
without effort.

Supported Languages

Language

Action Script

Ada 2012 (Unified and Ultimate editions)

(c) Sparx Systems 2019 Page 227 of 672

User Guide - Software Models 20 January, 2020

C

C#

C++

Delphi

Java

PHP

Python

SystemC (Unified and Ultimate editions)

Verilog (Unified and Ultimate editions)

VHDL (Unified and Ultimate editions)

Visual Basic

Visual Basic .NET

Notes

(c) Sparx Systems 2019 Page 228 of 672

User Guide - Software Models 20 January, 2020

Enterprise Architect incorporates a number of visibility
indicators or scope values for its supported languages; these
include, for:

All languages - Public (+), Protected (#) and Private (-)·

Java - Package (~)·

Delphi - Published (^)·

C# - Internal (~), Protected Internal (^)·

ActionScript - Internal (~)·

VB.NET - Friend (~), Protected Friend (^)·

PHP - Package (~)·

Python - Package (~)·

C - Package (~)·

C++ - Package (~)·

(c) Sparx Systems 2019 Page 229 of 672

User Guide - Software Models 20 January, 2020

ActionScript Conventions

Enterprise Architect supports round trip engineering of
ActionScript 2 and 3, where these conventions are used.

Stereotypes

Stereotype Applies To

literal Operation
Corresponds To: A literal method
referred to by a variable.

property get Operation
Corresponds To: A 'read' property.

property set Operation
Corresponds To: A 'write' property.

Tagged Values

Tag Applies To

(c) Sparx Systems 2019 Page 230 of 672

User Guide - Software Models 20 January, 2020

attribute_nam
e

Operation with stereotype property get or
property set
Corresponds To: The name of the
variable behind this property.

dynamic Class or Interface
Corresponds To: The 'dynamic' keyword.

final ActionScript 3: Operation
Corresponds To: The 'final' keyword.

intrinsic ActionScript 2: Class
Corresponds To: The 'intrinsic' keyword.

namespace ActionScript 3: Class, Interface,
Attribute, Operation
Corresponds To: The namespace of the
current element.

override ActionScript 3: Operation
Corresponds To: The 'override' keyword.

prototype ActionScript 3: Attribute
Corresponds To: The 'prototype'
keyword.

rest ActionScript 3: Parameter

(c) Sparx Systems 2019 Page 231 of 672

User Guide - Software Models 20 January, 2020

Corresponds To: The rest parameter (...)

Common Conventions

Package qualifiers (ActionScript 2) and Packages·

(ActionScript 3) are generated when the current Package
is not a namespace root

An unspecified type is modeled as 'var' or an empty 'Type'·

field

ActionScript 3 Conventions

The Is Leaf property of a Class corresponds to the sealed·

keyword

If a namespace tag is specified it overrides the Scope that·

is specified

(c) Sparx Systems 2019 Page 232 of 672

User Guide - Software Models 20 January, 2020

Ada 2012 Conventions

Enterprise Architect supports round trip engineering of Ada
2012, where these conventions are used.

Stereotypes

Stereotype Applies To

adaPackage Class
Corresponds To: A Package specification
in Ada 2012 without a tagged record.

adaProcedure Class
Corresponds To: A procedure
specification in Ada 2012.

delegate Operation
Corresponds To: Access to a subprogram.

enumeration Inner Class
Corresponds To: An enumerated type.

struct Inner Class
Corresponds To: A record definition.

(c) Sparx Systems 2019 Page 233 of 672

User Guide - Software Models 20 January, 2020

typedef Inner Class
Corresponds To: A type definition,
subtype definition, access type definition,
renaming.

Tagged Values

Tag Applies To

Aspect Inner Class with stereotype typedef
Operation
Corresponds to: Aspect specification
(Precondition and Postcondition of
Subprogram type 'invariant', subtype
'predicate').

InstantiatedU
nitType

Inner Class with stereotype typedef
Corresponds To: The instantiated unit's
type (Package / Procedure / Function).

IsAccess Parameter
Corresponds To: Determination of
whether the parameter is an access
variable.

(c) Sparx Systems 2019 Page 234 of 672

User Guide - Software Models 20 January, 2020

IsAliased Function parameter
Corresponds to: Aliased function
parameter.

Discriminant Inner Class with stereotype typedef
Corresponds To: The type's discriminant.

PartType Inner Class with stereotype typedef
Corresponds To: The part type ('renames'
or 'new').

Type Inner Class with stereotype typedef
Corresponds To: If 'Value' = 'SubType',
set 'subtype'
If 'Value' = 'Access', set 'access type'.

Other Conventions

Appropriate type of source files: Ada specification file,·

.ads

Ada 2012 imports Packages defined as either·

<<adaPackage>> Class or Class, based on the settings in
the Ada 2012 options

A Package in the Ada specification file is imported as a·

Class if it contains a Tagged Record, the name of which is

(c) Sparx Systems 2019 Page 235 of 672

User Guide - Software Models 20 January, 2020

governed by the options 'Use Class Name for Tagged
Record' and 'Alternate Tagged Record Name'; all
attributes defined in that Tagged Record are absorbed as
the Class's attributes

A procedure / function in an Ada specification file is·

considered as the Class's member function if its first
parameter satisfies the conditions specified in the options
'Ref Param Style', 'Ignore Reference parameter name' and
'Ref parameter name'

The option 'Define Reference for Tagged Record', if·

enabled, creates a reference type for the Class, the name
of which is determined by the option 'Reference Type
Name'; for example:

 HelloWorld.ads

 package HelloWorld is

 type HelloWorld is tagged record

 Att1: Natural;

 Att3: Integer;

 end record;

 -- Public Functions

 function MyPublicFunction (P: HelloWorld)
return String;

 procedure MyPublicFunction (P1: in out
HelloWorld; AFlag: Boolean);

 private

 -- Private Functions

(c) Sparx Systems 2019 Page 236 of 672

User Guide - Software Models 20 January, 2020

 function MyPrivateFunction (P: HelloWorld)
return String;

 procedure MyPrivateFunction (P1: in out
HelloWorld; AFlag: Boolean);

 end HelloWorld;

Notes

Ada 2012 support is available in the Unified and Ultimate·

editions of Enterprise Architect

(c) Sparx Systems 2019 Page 237 of 672

User Guide - Software Models 20 January, 2020

C Conventions

Enterprise Architect supports round trip engineering of C,
where these conventions are used:

Stereotype

Stereotype Applies To

enumeration Inner Class
Corresponds To: An enumerated type.

struct Inner Class
Corresponds To: A 'struct' type.

Attribute A keyword struct in variable definition.

typedef Inner Class
Corresponds To: A 'typedef' statement,
where the parent is the original type
name.

union Inner Class
Corresponds To: A union type.

Attribute A keyword union in variable definition.

(c) Sparx Systems 2019 Page 238 of 672

User Guide - Software Models 20 January, 2020

Tagged Values

Tag Applies To

anonymous Class also containing the Tagged Value
typedef
Corresponds To: The name of this Class
being defined only by the typedef
statement.

bitfield Attribute
Corresponds To: The size, in bits,
allowed for storage of this attribute.

bodyLocation Operation
Corresponds To: The location the method
body is generated to; expected values are
header, classDec or classBody.

typedef Class with stereotype other than 'typedef'
Corresponds To: This Class being
defined in a 'typedef' statement.

typeSynonym Class

(c) Sparx Systems 2019 Page 239 of 672

User Guide - Software Models 20 January, 2020

s Corresponds To: The 'typedef' name
and/or fields of this type.

C Code Generation for UML Model

UML C Code

A Class A pair of C files (.h + .c)
Notes: File name is the same as Class
name

Operation
(public &
protected)

Function declaration in .h file and
definition in .c file
Notes:

Operation
(private)

Function definition in .c file only
Notes:

Operation
(static)

Function definition in .c file only
Notes: Static functions will only appear
in the .c file regardless of their scope.

Attribute
(public &
protected)

Variable definition in .h file
Notes:

(c) Sparx Systems 2019 Page 240 of 672

User Guide - Software Models 20 January, 2020

Attribute
(private)

Variable definition in .c file
Notes:

Inner Class
(without
stereotype)

(N/A)
Notes: This inner Class would be ignored

Capture #define value to be generated in C
code

For example, #define PI 3.14.

Ste
p

Process

1 Add an attribute to the Class, with Name = PI and
Initial Value = 3.14.

2 In the properties panel of the 'Attributes' page,
update the 'Static' and 'Const' fields.

3 On the 'Tagged Values' tab of the 'Attributes' page,
add a tag called 'define' with the value True.

(c) Sparx Systems 2019 Page 241 of 672

User Guide - Software Models 20 January, 2020

Notes

Separate conventions apply to Object Oriented·

programming in C

(c) Sparx Systems 2019 Page 242 of 672

User Guide - Software Models 20 January, 2020

Object Oriented Programming In C

In Enterprise Architect, you apply a number of conventions
for Object-Oriented programming in C.

To configure the system to support Object-Oriented
programming using C, you must set the 'Object Oriented
Support' option to True on the 'C Specifications' page of the
'Preferences' dialog.

Stereotypes

Stereotype Applies To

enumeration Class
Corresponds To: An enumerated type.

struct Class
Corresponds To: A 'struct' type.

Attribute A keyword struct in variable definition.

typedef Class
Corresponds To: A 'typedef' statement,
where the parent is the original type
name.

(c) Sparx Systems 2019 Page 243 of 672

User Guide - Software Models 20 January, 2020

union Class
Corresponds To: A union type.

Attribute A keyword union in variable definition.

Tagged Values

Tag Applies To

anonymous Class with stereotype of 'enumeration',
'struct' or 'union'
Corresponds To: The name of this Class
being defined only by the typedef
statement.

bodyLocation Operation
Corresponds To: The location the method
body is generated to; expected values are
'header', 'classDec' or 'classBody'.

define Attribute
Corresponds To: '#define' statement.

typedef Class with stereotype of 'enumeration',
'struct' or 'union'

(c) Sparx Systems 2019 Page 244 of 672

User Guide - Software Models 20 January, 2020

Corresponds To: This Class being
defined in a 'typedef' statement.

Object-Oriented C Code Generation for UML
Model

The basic idea of implementing a UML Class in C code is to
group the data variable (UML attributes) into a structure
type; this structure is defined in a .h file so that it can be
shared by other Classes and by the client that referred to it.

An operation in a UML Class is implemented in C code as a
function; the name of the function must be a fully qualified
name that consists of the operation name, as well as the
Class name to indicate that the operation is for that Class.

A delimiter (specified in the 'Namespace Delimiter' option
on the 'C Specifications' page) is used to join the Class name
and function (operation) name.

The function in C code must also have a reference parameter
to the Class object - you can modify the 'Reference as
Operation Parameter', 'Reference Parameter Style' and
'Reference Parameter Name' options on the 'C
Specifications' page to support this reference parameter.

Limitations of Object-Oriented Programming

(c) Sparx Systems 2019 Page 245 of 672

User Guide - Software Models 20 January, 2020

in C

No scope mapping for an attribute: an attribute in a UML·

Class is mapped to a structure variable in C code, and its
scope (private, protected or public) is ignored

Currently an inner Class is ignored: if a UML Class is the·

inner Class of another UML Class, it is ignored when
generating C code

Initial value is ignored: the initial value of an attribute in a·

UML Class is ignored in generated C code

(c) Sparx Systems 2019 Page 246 of 672

User Guide - Software Models 20 January, 2020

C# Conventions

Enterprise Architect supports the round trip engineering of
C#, where these conventions are used.

Stereotypes

Stereotype Applies To

enumeration Class
Corresponds To: An enumerated type.

event Operation
Corresponds To: An event.

extension Operation
Corresponds To: A Class extension
method, represented in code by a 'this'
parameter in the signature.

indexer Operation
Corresponds To: A property acting as an
index for this Class.

partial Operation
Corresponds To: The 'partial' keyword on

(c) Sparx Systems 2019 Page 247 of 672

User Guide - Software Models 20 January, 2020

an operation.

property Operation
Corresponds To: A property possibly
containing both read and write code.

struct Class
Corresponds To: A 'struct' type.

Tagged Values

Tag Applies To

argumentNa
me

Operation with stereotype extension
Corresponds To: The name given to this
parameter.

attribute_nam
e

Operation with stereotype property or
event
Corresponds To: The name of the
variable behind this property or event.

className Operation with stereotype extension
Corresponds To: The Class that this
method is being added to.

(c) Sparx Systems 2019 Page 248 of 672

User Guide - Software Models 20 January, 2020

const Attribute
Corresponds To: The const keyword.

definition Operation with stereotype partial
Corresponds To: Whether this is the
declaration of the method, or the
definition.

delegate Operation
Corresponds To: The 'delegate' keyword.

enumType Operation with stereotype property
Corresponds To: The datatype that the
property is represented as.

expressionBo
dy

Operation, Operation with stereotype
property or indexer
Corresponds To: 'True' if the 'Behavior
Code' is from an expression body
function member.

extern Operation
Corresponds To: The 'extern' keyword.

fixed Attribute
Corresponds To: The 'fixed' keyword.

(c) Sparx Systems 2019 Page 249 of 672

User Guide - Software Models 20 January, 2020

generic Operation
Corresponds To: The generic parameters
for this operation.

genericConst
raints

Templated Class or Interface, Operation
with tag 'generic'
Corresponds To: The constraints on the
generic parameters of this type or
operation.

Implements Operation
Corresponds To: The name of the method
this implements, including the interface
name.

ImplementsE
xplicit

Operation
Corresponds To: The presence of the
source interface name in this method
declaration.

initializer Operation
Corresponds To: A constructor
initialization list.

new Class, Interface, Operation
Corresponds To: The 'new' keyword.

override Operation

(c) Sparx Systems 2019 Page 250 of 672

User Guide - Software Models 20 January, 2020

Corresponds To: The 'override' keyword.

params Parameter
Corresponds To: A parameter list using
the 'params' keyword.

partial Class, Interface
Corresponds To: The 'partial' keyword.

propertyInitia
lizer

Operation with stereotype property
Corresponds To: A property initializer.

readonly Operation, <<struct>>Class
Corresponds To: The 'readonly' keyword.

ref Operation, <<struct>>Class
Corresponds To: The 'ref' keyword.

sealed Operation
Corresponds To: The 'sealed' keyword.

static Class
Corresponds To: The 'static' keyword.

unsafe Class, Interface, Operation
Corresponds To: The 'unsafe' keyword.

(c) Sparx Systems 2019 Page 251 of 672

User Guide - Software Models 20 January, 2020

virtual Operation
Corresponds To: The 'virtual' keyword.

writeonly Operation with stereotype property
Corresponds To: This property only
defining 'write' code.

Other Conventions

Namespaces are generated for each Package below a·

namespace root

The Const property of an attribute corresponds to the·

readonly keyword, while the tag const corresponds to the
const keyword

The value of inout for the Kind property of a parameter·

corresponds to the ref keyword

The value of out for the Kind property of a parameter·

corresponds to the out keyword

Partial Classes can be modeled as two separate Classes·

with the partial tag

The Is Leaf property of a Class corresponds to the sealed·

keyword

(c) Sparx Systems 2019 Page 252 of 672

User Guide - Software Models 20 January, 2020

C++ Conventions

Enterprise Architect supports round trip engineering of C++,
including the Managed C++ and C++/CLI extensions, where
these conventions are used.

Stereotypes

Stereotype Applies To

enumeration Class
Corresponds To: An enumerated type.

friend Operation
Corresponds To: The 'friend' keyword.

property get Operation
Corresponds To: A 'read' property.

property set Operation
Corresponds To: A 'write' property.

struct Class
Corresponds To: A 'struct' type.

typedef Class

(c) Sparx Systems 2019 Page 253 of 672

User Guide - Software Models 20 January, 2020

Corresponds To: A 'typedef' statement,
where the parent is the original type
name.

alias Class
Corresponds to an 'Alias' declaration,
where the parent is the original type
name.

union Class
Corresponds To: A union type.

Tagged Values

Tag Applies To

afx_msg Operation
Corresponds To: The afx_msg keyword.

anonymous Class also containing the Tagged Value
typedef
Corresponds To: The name of this Class
being only defined by the typedef
statement.

(c) Sparx Systems 2019 Page 254 of 672

User Guide - Software Models 20 January, 2020

attribute_nam
e

Operation with stereotype property get or
property set
Corresponds To: The name of the
variable behind this property.

bitfield Attribute
Corresponds To: The size, in bits,
allowed for storage of this attribute.

bodyLocation Operation
Corresponds To: The location the method
body is generated to; expected values are
header, classDec or classBody.

callback Operation
Corresponds To: A reference to the
CALLBACK macro.

explicit Operation
Corresponds To: The 'explicit' keyword.

initializer Operation
Corresponds To: A constructor
initialization list.

inline Operation
Corresponds To: The inline keyword and
inline generation of the method body.

(c) Sparx Systems 2019 Page 255 of 672

User Guide - Software Models 20 January, 2020

mutable Attribute
Corresponds To: The 'mutable' keyword.

scoped Class with stereotype enumeration
Corresponds To: Either the 'class' or
'struct' keyword.

throws Operation
Corresponds To: The exceptions that are
thrown by this method.

typedef Class with stereotype other than 'typedef'
Corresponds To: This Class being
defined in a 'typedef' statement.

typeSynonym
s

Class
Corresponds To: The 'typedef' name
and/or fields of this type.

volatile Operation
Corresponds To: The 'volatile' keyword.

Other Conventions

(c) Sparx Systems 2019 Page 256 of 672

User Guide - Software Models 20 January, 2020

Namespaces are generated for each Package below a·

namespace root

By Reference attributes correspond to a pointer to the type·

specified

The Transient property of an attribute corresponds to the·

volatile keyword

The Abstract property of an attribute corresponds to the·

virtual keyword

The Const property of an operation corresponds to the·

const keyword, specifying a constant return type

The Is Query property of an operation corresponds to the·

const keyword, specifying the method doesn't modify any
fields

The Pure property of an operation corresponds to a pure·

virtual method using the "= 0" syntax

The Fixed property of a parameter corresponds to the·

const keyword

(c) Sparx Systems 2019 Page 257 of 672

User Guide - Software Models 20 January, 2020

Managed C++ Conventions

These conventions are used for managed extensions to C++
prior to C++/CLI. In order to set the system to generate
managed C++ you must modify the C++ version in the C++
Options.

Stereotypes

Stereotype Applies To

property Operation
Corresponds To: The '__property'
keyword.

property get Operation
Corresponds To: The '__property'
keyword and a read property.

property set Operation
Corresponds To: The '_ _property'
keyword and a 'write' property.

reference Class
Corresponds To: The '__gc' keyword.

(c) Sparx Systems 2019 Page 258 of 672

User Guide - Software Models 20 January, 2020

value Class
Corresponds To: The '__value' keyword.

Tagged Values

Tag Applies To

managedTyp
e

Class with stereotype reference, value or
enumeration; Interface
Corresponds To: The keyword used in
declaration of this type; expected values
are 'class' or 'struct'.

Other Conventions

The typedef and anonymous tags from native C++ are not·

supported

The Pure property of an operation corresponds to the·

keyword __abstract

(c) Sparx Systems 2019 Page 259 of 672

User Guide - Software Models 20 January, 2020

C++/CLI Conventions

These conventions are used for modeling C++/CLI
extensions to C++. In order to set the system to generate
managed C++/CLI you must modify the C++ version in the
C++ Options.

Stereotypes

Stereotype Applies To

event Operation
Description: Defines an event to provide
access to the event handler for this Class.

property Operation, Attribute
Description: This is a property possibly
containing both read and write code.

reference Class
Description: Corresponds to the 'ref class'
or 'ref struct' keyword.

value Class
Description: Corresponds to the 'value
class' or 'value struct' keyword.

(c) Sparx Systems 2019 Page 260 of 672

User Guide - Software Models 20 January, 2020

Tagged Values

Tag Applies To

attribute_nam
e

Operation with stereotype property or
event
Description: The name of the variable
behind this property or event.

generic Operation
Description: Defines the generic
parameters for this Operation.

genericConst
raints

Templated Class or Interface, Operation
with tag generic
Description: Defines the constraints on
the generic parameters for this Operation.

initonly Attribute
Description: Corresponds to the 'initonly'
keyword.

literal Attribute
Description: Corresponds to the literal

(c) Sparx Systems 2019 Page 261 of 672

User Guide - Software Models 20 January, 2020

keyword.

managedTyp
e

Class with stereotype reference, value or
enumeration; Interface
Description: Corresponds to either the
'class' or 'struct' keyword.

Other Conventions

The typedef and anonymous tags are not used·

The property get/property set stereotypes are not used·

The Pure property of an operation corresponds to the·

keyword abstract

(c) Sparx Systems 2019 Page 262 of 672

User Guide - Software Models 20 January, 2020

Delphi Conventions

Enterprise Architect supports round trip engineering of
Delphi, where these conventions are used:

Stereotypes

Stereotype Applies To

constructor Operation
Corresponds To: A constructor.

destructor Operation
Corresponds To: A destructor.

dispinterface Class, Interface
Corresponds To: A dispatch interface.

enumeration Class
Corresponds To: An enumerated type.

metaclass Class
Corresponds To: A metaclass type.

object Class
Corresponds To: An object type.

(c) Sparx Systems 2019 Page 263 of 672

User Guide - Software Models 20 January, 2020

operator Operation
Corresponds To: An operator.

property get Operation
Corresponds To: A 'read' property.

property set Operation
Corresponds To: A 'write' property.

struct Class
Corresponds To: A record type.

Tagged Values

Tag Applies To

attribute_nam
e

Operation with stereotype property get or
property set
Corresponds To: The name of the
variable behind this property.

overload Operation
Corresponds To: The 'overload' keyword.

(c) Sparx Systems 2019 Page 264 of 672

User Guide - Software Models 20 January, 2020

override Operation
Corresponds To: The 'override' keyword.

packed Class
Corresponds To: The 'packed' keyword.

property Class
Corresponds To: A property; see Delphi
Properties for more information.

reintroduce Operation
Corresponds To: The 'reintroduce'
keyword.

Other Conventions

The Static property of an attribute or operation·

corresponds to the 'class' keyword

The Fixed property of a parameter corresponds to the·

'const' keyword

The value of inout for the Kind property of a parameter·

corresponds to the 'Var' keyword

The value of out for the Kind property of a parameter·

corresponds to the 'Out' keyword

(c) Sparx Systems 2019 Page 265 of 672

User Guide - Software Models 20 January, 2020

(c) Sparx Systems 2019 Page 266 of 672

User Guide - Software Models 20 January, 2020

Java Conventions

Enterprise Architect supports round trip engineering of Java
- including AspectJ extensions - where these conventions
are used.

Stereotypes

Stereotype Applies To

annotation Interface
Corresponds To: An annotation type.

default Operation
Corresponds To: The 'default' keyword.

enum Attributes within a Class stereotyped
enumeration
Corresponds To: An enumerated option,
distinguished from other attributes that
have no stereotype.

enumeration Class
Corresponds To: An enumerated type.

operator Operation

(c) Sparx Systems 2019 Page 267 of 672

User Guide - Software Models 20 January, 2020

Corresponds To: An operator.

property get Operation
Corresponds To: A 'read' property.

property set Operation
Corresponds To: A 'write' property.

static Class or Interface
Corresponds To: The 'static' keyword.

Tagged Values

Tag Applies To

annotations Anything
Corresponds To: The annotations on the
current code feature.

arguments Attribute with stereotype enum
Corresponds To: The arguments that
apply to this enumerated value.

attribute_nam
e

Operation with stereotype property get or
property set

(c) Sparx Systems 2019 Page 268 of 672

User Guide - Software Models 20 January, 2020

Corresponds To: The name of the
variable behind this property.

dynamic Class or Interface
Corresponds To: The 'dynamic' keyword.

generic Operation
Corresponds To: The generic parameters
to this operation.

parameterList Parameter
Corresponds To: A parameter list with
the ... syntax.

throws Operation
Corresponds To: The exceptions that are
thrown by this method.

transient Attribute
Corresponds To: The 'transient' keyword.

Other Conventions

Package statements are generated when the current·

Package is not a namespace root

(c) Sparx Systems 2019 Page 269 of 672

User Guide - Software Models 20 January, 2020

The Const property of an attribute or operation·

corresponds to the final keyword

The Transient property of an attribute corresponds to the·

volatile keyword

The Fixed property of a parameter corresponds to the final·

keyword

(c) Sparx Systems 2019 Page 270 of 672

User Guide - Software Models 20 January, 2020

AspectJ Conventions

These are the conventions used for supporting AspectJ
extensions to Java.

Stereotypes

Stereotype Applies To

advice Operation
Corresponds To: A piece of advice in an
AspectJ aspect.

aspect Class
Corresponds To: An AspectJ aspect.

pointcut Operation
Corresponds To: A 'pointcut' in an
AspectJ aspect.

Tagged Values

Tag Applies To

(c) Sparx Systems 2019 Page 271 of 672

User Guide - Software Models 20 January, 2020

className Attribute or operation within a Class
stereotyped aspect
Corresponds To: The Classes this
AspectJ intertype member belongs to.

Other Conventions

The specifications of a pointcut are included in the·

'Behavior' field of the method

(c) Sparx Systems 2019 Page 272 of 672

User Guide - Software Models 20 January, 2020

PHP Conventions

Enterprise Architect supports the round trip engineering of
PHP 4 and 5, where these conventions are used.

Stereotypes

Stereotype Applies To

trait Class
Corresponds To: A 'trait'.

property get Operation
Corresponds To: A 'read' property.

property set Operation
Corresponds To: A 'write' property.

Tagged Values

Tag Applies To

attribute_nam Operation with stereotype property get or

(c) Sparx Systems 2019 Page 273 of 672

User Guide - Software Models 20 January, 2020

e property set
Corresponds To: The name of the
variable behind this property.

final Operations in PHP 5
Corresponds To: The 'final' keyword.

Common Conventions

An unspecified type is modeled as var·

Methods returning a reference are generated by setting the·

Return Type to var*

Reference parameters are generated from parameters with·

the parameter Kind set to inout or out

PHP 5 Conventions

The final Class modifier corresponds to the Is Leaf·

property

The abstract Class modifier corresponds to the Abstract·

property

Parameter type hinting is supported by setting the Type of·

a parameter

(c) Sparx Systems 2019 Page 274 of 672

User Guide - Software Models 20 January, 2020

The value of inout or out for the Kind property of a·

parameter corresponds to a reference parameter

(c) Sparx Systems 2019 Page 275 of 672

User Guide - Software Models 20 January, 2020

Python Conventions

Enterprise Architect supports the round trip engineering of
Python, where these conventions are used.

Tagged Values

Tag Applies To

Decorators Class, Operation
Corresponds To: The decorators applied
to this element in the source.

Other Conventions

Model members with Private Scope correspond to code·

members with two leading underscores

Attributes are only generated when the Initial value is not·

empty

All types are reverse engineered as var·

(c) Sparx Systems 2019 Page 276 of 672

User Guide - Software Models 20 January, 2020

SystemC Conventions

Enterprise Architect supports round-trip engineering of
SystemC, where these conventions are used.

Stereotypes

Stereotype Applies To

delegate Method
Corresponds To: A delegate.

enumeration Inner Class
Corresponds To: An enum type.

friend Method
Corresponds To: A friend method.

property Method
Corresponds To: A property definition.

sc_ctor Method
Corresponds To: A SystemC constructor.

sc_module Class
Corresponds To: A SystemC module.

(c) Sparx Systems 2019 Page 277 of 672

User Guide - Software Models 20 January, 2020

sc_port Attribute
Corresponds To: A port.

sc_signal Attribute
Corresponds To: A signal.

struct Inner Class
Corresponds To: A struct or union.

Tagged Values

Tag Applies To

kind Attribute (Port)
Corresponds To: Port kind (clocked, fifo,
master, slave, resolved, vector).

mode Attribute (Port)
Corresponds To: Port mode (in, out,
inout).

overrides Method
Corresponds To: The Inheritance list of a
method declaration.

(c) Sparx Systems 2019 Page 278 of 672

User Guide - Software Models 20 January, 2020

throw Method
Corresponds To: The exception
specification of a method.

Other Conventions

SystemC also inherits most of the stereotypes and Tagged·

Values of C++

SystemC Toolbox Pages

To model a SystemC design, drag these icons onto a
diagram from the 'SystemC Constructs' page of the Diagram
Toolbox.

Page Icon

SystemC Module
Action: Defines a SystemC Module.
An sc_module -stereotyped Class
element.

SystemC
Features

Port
Action: Defines a SystemC Port.

(c) Sparx Systems 2019 Page 279 of 672

User Guide - Software Models 20 January, 2020

An sc_port- stereotyped attribute.

Access

Ribbon Design > Diagram > Toolbox : >
Specify 'SystemC Constructs' in the 'Find
Toolbox Item' dialogs

Keyboard
Shortcuts

Ctrl+Shift+3 : > Specify 'SystemC
Constructs' in the 'Find Toolbox Item'
dialog

Other You can display or hide the Diagram
Toolbox by clicking on the or icons
at the left-hand end of the Caption Bar at
the top of the Diagram View.

(c) Sparx Systems 2019 Page 280 of 672

User Guide - Software Models 20 January, 2020

VB.NET Conventions

Enterprise Architect supports round-trip engineering of
Visual Basic.NET, where these conventions are used.
Earlier versions of Visual Basic are supported as a different
language.

Stereotypes

Stereotype Applies To

event Operation
Corresponds To: An event declaration.

import Operation
Corresponds To: An operation to be
imported from another library.

module Class
Corresponds To: A module.

operator Operation
Corresponds To: An operator overload
definition.

partial Operation

(c) Sparx Systems 2019 Page 281 of 672

User Guide - Software Models 20 January, 2020

Corresponds To: The 'partial' keyword on
an operation.

property Operation
Corresponds To: A property possibly
containing both read and write code.

Tagged Values

Tag Applies To

Alias Operation with stereotype import
Corresponds To: The alias for this
imported operation.

attribute_nam
e

Operation with stereotype property
Corresponds To: The name of the
variable behind this property.

Charset Operation with stereotype import
Corresponds To: The character set clause
for this import - one of the values 'Ansi',
'Unicode' or 'Auto'.

delegate Operation

(c) Sparx Systems 2019 Page 282 of 672

User Guide - Software Models 20 January, 2020

Corresponds To: The 'delegate' keyword.

enumTag Operation with stereotype property
Corresponds To: The datatype that this
property is represented as.

Handles Operation
Corresponds To: The 'handles' clause on
this operation.

Implements Operation
Corresponds To: The 'implements' clause
on this operation.

Lib Operation with stereotype import
Corresponds To: The library this import
comes from.

MustOverrid
e

Operation
Corresponds To: The 'MustOverride'
keyword.

Narrowing Operation with stereotype operator
Corresponds To: The 'Narrowing'
keyword.

NotOverridea
ble

Operation
Corresponds To: The 'NotOverrideable'

(c) Sparx Systems 2019 Page 283 of 672

User Guide - Software Models 20 January, 2020

keyword.

Overloads Operation
Corresponds To: The 'overloads'
keyword.

Overrides Operation
Corresponds To: The 'overrides' keyword.

parameterArr
ay

Parameter
Corresponds To: A parameter list using
the 'ParamArray' keyword.

partial Class, Interface
Corresponds To: The 'partial' keyword.

readonly Operation with stereotype property
Corresponds To: This property only
defining 'read' code.

shadows Class, Interface, Operation
Corresponds To: The 'Shadows' keyword.

Shared Attribute
Corresponds To: The 'Shared' keyword.

Widening Operation with stereotype operator

(c) Sparx Systems 2019 Page 284 of 672

User Guide - Software Models 20 January, 2020

Corresponds To: The 'Widening'
keyword.

writeonly Operation with stereotype property
Corresponds To: This property only
defining 'write' code.

Other Conventions

Namespaces are generated for each Package below a·

namespace root

The Is Leaf property of a Class corresponds to the·

NotInheritable keyword

The Abstract property of a Class corresponds to the·

MustInherit keyword

The Static property of an attribute or operation·

corresponds to the Shared keyword

The Abstract property of an operation corresponds to the·

MustOverride keyword

The value of in for the Kind property of a parameter·

corresponds to the ByVal keyword

The value of inout or out for the Kind property of a·

parameter corresponds to the ByRef keyword

(c) Sparx Systems 2019 Page 285 of 672

User Guide - Software Models 20 January, 2020

Verilog Conventions

Enterprise Architect supports round-trip engineering of
Verilog, where these conventions are used.

Stereotypes

Stereotype Applies To

asynchronous Method
Corresponds To: A concurrent process.

enumeration Inner Class
Corresponds To: An enum type.

initializer Method
Corresponds To: An initializer process.

module Class
Corresponds To: A module.

part Attribute
Corresponds To: A component
instantiation.

port Attribute

(c) Sparx Systems 2019 Page 286 of 672

User Guide - Software Models 20 January, 2020

Corresponds To: A port.

synchronous Method
Corresponds To: A sequential process.

Tagged Values

Tag Applies To

kind Attribute (signal)
Corresponds To: The signal kind (such as
register, bus).

mode Attribute (Port)
Corresponds To: The Port mode (in, out,
inout).

Portmap Attribute (part)
Corresponds To: The generic/Port map of
the component instantiated.

sensitivity Method
Corresponds To: The sensitivity list of a
sequential process.

(c) Sparx Systems 2019 Page 287 of 672

User Guide - Software Models 20 January, 2020

type Attribute
Corresponds To: The range or type value
of an attribute.

Verilog Toolbox Pages

Access: 'Design > Diagram > Toolbox : 'Hamburger' icon >
HDL | Verilog Constructs'

Drag these icons onto a diagram to model a Verilog design.

Item Action

Module Defines a Verilog Module. A
module-stereotyped Class element.

Enumeration Defines an Enumerated Type. An
enumeration element.

Port Defines a Verilog Port. A
port-stereotyped attribute.

Part Defines a Verilog component
instantiation. A part-stereotyped attribute.

Attribute Defines an attribute.

(c) Sparx Systems 2019 Page 288 of 672

User Guide - Software Models 20 January, 2020

Procedure Defines a Verilog process:
Concurrent - An·

asynchronous-stereotyped method
Sequential - A·

synchronous-stereotyped method
Initializer - An initializer-stereotyped·

method

(c) Sparx Systems 2019 Page 289 of 672

User Guide - Software Models 20 January, 2020

VHDL Conventions

Enterprise Architect supports round-trip engineering of
VHDL, where these conventions are used.

Stereotypes

Stereotype Applies To

architecture Class
Corresponds To: An architecture.

asynchronous Method
Corresponds To: An asynchronous
process.

configuration Method
Corresponds To: A configuration.

enumeration Inner Class
Corresponds To: An enumerated type.

entity Interface
Corresponds To: An entity.

part Attribute

(c) Sparx Systems 2019 Page 290 of 672

User Guide - Software Models 20 January, 2020

Corresponds To: A component
instantiation.

port Attribute
Corresponds To: A port.

signal Attribute
Corresponds To: A signal declaration.

struct Inner Class
Corresponds To: A record definition.

synchronous Method
Corresponds To: A synchronous process.

typedef Inner Class
Corresponds To: A type or subtype
definition.

Tagged Values

Tag Applies To

isGeneric Attribute (port)
Corresponds To: The 'port' declaration in

(c) Sparx Systems 2019 Page 291 of 672

User Guide - Software Models 20 January, 2020

a generic interface.

isSubType Inner Class (typedef)
Corresponds To: A subtype definition.

kind Attribute (signal)
Corresponds To: The signal kind (such as
'register', 'bus').

mode Attribute (Port)
Corresponds To: The Port mode ('in',
'out', 'inout', 'buffer', 'linkage').

portmap Attribute (part)
Corresponds To: The generic/Port map of
the component instantiated.

sensitivity Method (synchronous)
Corresponds To: The 'sensitivity' list of a
synchronous process.

type Inner Class (typedef)
Corresponds To: The 'type' indication of a
'type' declaration.

typeNameSp
ace

Attribute (part)
Corresponds To: The 'type' namespace of
the instantiated component.

(c) Sparx Systems 2019 Page 292 of 672

User Guide - Software Models 20 January, 2020

VHDL Toolbox Pages

Access

To model a VHDL design, drag icons from the VHDL
toolbox pages and drop them on your diagram.

Ribbon Design > Diagram > Toolbox : >
Specify 'VHDL Constructs' in the 'Find
Toolbox Item' dialog

Keyboard
Shortcuts

Ctrl+Shift+3 : > Specify 'VHDL
Constructs' in the 'Find Toolbox Item'
dialog

Other You can display or hide the Diagram
Toolbox by clicking on the or icons
at the left-hand end of the Caption Bar at
the top of the Diagram View.

(c) Sparx Systems 2019 Page 293 of 672

User Guide - Software Models 20 January, 2020

VHDL Toolbox Page

Item Action

Architecture Defines an architecture to be associated
with a VHDL entity.
An architecture-stereotyped Class
element.

Entity Defines a VHDL entity to contain the
Port definitions.
An entity-stereotyped interface element.

Enumeration Defines an Enumerated Type.
An Enumeration element.

Struct Defines a VHDL record.
A struct-stereotyped Class element.

Typedef Defines a VHDL type or subtype.
A typedef-stereotyped Class element.

VHDL Features Toolbox Page

(c) Sparx Systems 2019 Page 294 of 672

User Guide - Software Models 20 January, 2020

Item Action

Part Defines a VHDL component
instantiation.
A part-stereotyped attribute.

Port Defines a VHDL Port.
A port-stereotyped attribute.

Signal Defines a VHDL signal.
A signal-stereotyped attribute.

Procedure Defines a VHDL process:
Concurrent - An·

asynchronous-stereotyped method
Sequential - A·

synchronous-stereotyped method
Configuration - An·

configuration-stereotyped method

(c) Sparx Systems 2019 Page 295 of 672

User Guide - Software Models 20 January, 2020

Visual Basic Conventions

Enterprise Architect supports the round trip engineering of
Visual Basic 5 and 6, where these conventions are used.

Visual Basic .NET is supported as a different language.

Stereotypes

Stereotype Applies To

global Attribute
Corresponds To: The 'Global' keyword.

import Operation
Corresponds To: An operation to be
imported from another library.

property get Operation
Corresponds To: A property 'get'.

property set Operation
Corresponds To: A property 'set'.

property let Operation
Corresponds To: A property 'let'.

(c) Sparx Systems 2019 Page 296 of 672

User Guide - Software Models 20 January, 2020

with events Attribute
Corresponds To: The 'WithEvents'
keyword.

Tagged Values

Tag Applies To

Alias Operation with stereotype import
Corresponds To: The alias for this
imported operation.

attribute_nam
e

Operation with stereotype property get,
property set or property let
Corresponds To: The name of the
variable behind this property.

Lib Operation with stereotype import
Corresponds To: The library this import
comes from.

New Attribute
Corresponds To: The 'new' keyword.

(c) Sparx Systems 2019 Page 297 of 672

User Guide - Software Models 20 January, 2020

Other Conventions

The value of in for the Kind property of a parameter·

corresponds to the ByVal keyword

The value of inout or out for the Kind property of a·

parameter corresponds to the ByRef keyword

(c) Sparx Systems 2019 Page 298 of 672

User Guide - Software Models 20 January, 2020

Language Options

You can set up various options for how Enterprise Architect
handles a particular language when generating and
reverse-engineering code. These options are either specific
to:

Your user ID, for all models or·

The model in which they are defined, for all users·

Access

Ribbon Start > Desktop > Preferences >
Preferences > Source Code Engineering >
<language name>
Configure > Model > Options > Source
Code Engineering > <language name>

Keyboard
Shortcuts

Ctrl+F9 ('Preferences' dialog)

Languages Supported

Language

(c) Sparx Systems 2019 Page 299 of 672

User Guide - Software Models 20 January, 2020

Action Script

Ada 2012 (in the Unified and Ultimate editions of
Enterprise Architect)

ArcGIS

ANSI C

C#

C++

Delphi

Java

PHP

Python

SystemC

Verilog (Unified and Ultimate editions)

VHDL (Unified and Ultimate editions)

(c) Sparx Systems 2019 Page 300 of 672

User Guide - Software Models 20 January, 2020

Visual Basic

Visual Basic .NET

(c) Sparx Systems 2019 Page 301 of 672

User Guide - Software Models 20 January, 2020

ActionScript Options - User

If you intend to generate ActionScript code from your
model, you can configure the code generation options using
the 'ActionScript Specifications' page of the 'Preferences'
dialog to:

Specify the default source directory·

Specify the editor for ActionScript code·

Access

Ribbon Start > Desktop > Preferences >
Preferences > Source Code Engineering >
ActionScript

Keyboard
Shortcuts

Ctrl+F9

Options

Option Action

Disable Leave this checkbox unselected to

(c) Sparx Systems 2019 Page 302 of 672

User Guide - Software Models 20 January, 2020

Language support ActionScript code generation.
Select this checkbox to disable
ActionScript code support.

Options for
the current
user

In the 'Default Source Directory' and
'Editor' fields, click on the button and
browse for the source directory and
external file editor that you will use.

Notes

These options apply to all models that you access·

(c) Sparx Systems 2019 Page 303 of 672

User Guide - Software Models 20 January, 2020

ActionScript Options - Model

If you intend to generate ActionScript code from your
model, you can configure the model-specific code
generation options using the 'ActionScript Specifications'
page of the 'Manage Project Options' dialog to:

Specify default ActionScript version to generate (AS2.0·

or AS3.0)

Specify default file extensions·

Specify the Collection Class definitions for Association·

connectors

Access

Ribbon Configure > Model > Options > Source
Code Engineering > ActionScript

Options

Option Action

Options for
the current

Type in the default ActionScript version
and default file extension to apply when

(c) Sparx Systems 2019 Page 304 of 672

User Guide - Software Models 20 January, 2020

model generating ActionScript source code.

Collection
Classes

Click on this button to open the
'Collection Classes for Association Roles'
dialog, through which you specify the
Collection Class definitions for
Association connectors.

Notes

These options affect all users of the current model;·

however, they do not apply to other models

(c) Sparx Systems 2019 Page 305 of 672

User Guide - Software Models 20 January, 2020

Ada 2012 Options - User

If you intend to generate Ada 2012 code from your model,
you can configure the code generation options using the
'Ada' page of the 'Preferences' dialog to:

Inform the reverse engineering process whether the name·

of the Tagged Record is the same as the Package name

Advise the engine of the alternate Tagged Record name to·

locate

Specify whether the engine should create a reference type·

for the Tagged Record (if one is not defined)

Supply the name of the reference type to be created·

(default is Ref)

Specify the reference parameter of a Reference / Access·

type

Tell the engine to ignore the name of the reference·

parameter

Indicate the name of the reference parameter to locate·

Access

Ribbon Start > Desktop > Preferences >
Preferences > Source Code Engineering >
Ada

(c) Sparx Systems 2019 Page 306 of 672

User Guide - Software Models 20 January, 2020

Keyboard
Shortcuts

Ctrl+F9

Options

Option Action

Disable
Language

Leave this checkbox unselected to
support Ada 2012 code generation.
Select this checkbox to disable Ada 2012
code support.

Options for
the current
user

Specifies the options used for the current
user; these options apply to all models
that are accessed by the user.

Notes

Ada 2012 support is available in the Unified and Ultimate·

editions of Enterprise Architect

(c) Sparx Systems 2019 Page 307 of 672

User Guide - Software Models 20 January, 2020

Ada 2012 Options - Model

If you intend to generate Ada 2012 code from your model,
you can configure the model-specific code generation
options using the 'Ada' page of the 'Manage Project Options'
dialog to:

Specify the default file extension and·

Specify the Collection Class definitions for Association·

connectors

Access

Ribbon Configure > Model > Options > Source
Code Engineering > Ada

Options

Option Action

Options for
the current
model

Type in the default file extension to apply
when generating Ada source code.

(c) Sparx Systems 2019 Page 308 of 672

User Guide - Software Models 20 January, 2020

Collection
Classes

Click on this button to open the
'Collection Classes for Association Roles'
dialog, through which you specify the
Collection Class definitions for
Association connectors.

Notes

These options affect all users of the current model;·

however, they do not apply to other models

Ada 2012 support is available in the Unified and Ultimate·

editions of Enterprise Architect

(c) Sparx Systems 2019 Page 309 of 672

User Guide - Software Models 20 January, 2020

ArcGIS Options - User

If you intend to generate ArcGIS code from your model,
you can configure the code generation options using the
'ArcGIS' page of the 'Preferences' dialog to:

Specify default source directory·

Specify the editor for ArcGIS code·

ArcGIS must be enabled in the 'MDG Technologies' dialog
('Specialize > Technologies > Manage') in order for the
'ArcGIS' page to be available.

Access

Ribbon Start > Desktop > Preferences >
Preferences > Source Code Engineering >
ArcGIS

Keyboard
Shortcuts

Ctrl+F9

Options

Option Action

(c) Sparx Systems 2019 Page 310 of 672

User Guide - Software Models 20 January, 2020

Disable
Language

Leave this checkbox unselected to
support ArcGIS code generation.
Select this checkbox to disable ArcGIS
code support.

Options for
the current
user

Specifies the options used for the current
user; these options apply to all models
that are accessed by the user.

(c) Sparx Systems 2019 Page 311 of 672

User Guide - Software Models 20 January, 2020

ArcGIS Options - Model

If you intend to generate ArcGIS code from your model,
you can configure the model-specific code generation
options using the 'ArcGIS' page of the 'Manage Project
Options' dialog to:

Specify default file extensions·

Specify the Collection Class definitions for Association·

connectors

Access

Ribbon Configure > Model > Options > Source
Code Engineering > ArcGIS

Options

Option Action

Options for
the current
model

Type in the default file extension to apply
when generating ArcGIS source code.

(c) Sparx Systems 2019 Page 312 of 672

User Guide - Software Models 20 January, 2020

Collection
Classes

Click on this button to open the
'Collection Classes for Association Roles'
dialog, through which you specify the
Collection Class definitions for
Association connectors.

Notes

These options affect all users of the current model;·

however, they do not apply to other models

(c) Sparx Systems 2019 Page 313 of 672

User Guide - Software Models 20 January, 2020

C Options - User

If you intend to generate C code from your model, you can
configure the code generation options using the 'C
Specifications' page of the 'Preferences' dialog.

Access

Ribbon Start > Desktop > Preferences >
Preferences > Source Code Engineering >
C

Keyboard
Shortcuts

Ctrl+F9

Options

Option Action

Disable
Language

Leave this checkbox unselected to
support C code generation.
Select this option to disable C code
support.

(c) Sparx Systems 2019 Page 314 of 672

User Guide - Software Models 20 January, 2020

Options for
the current
user

In the value fields, specify the options
that apply under your own user ID in all
models that you access:

The default attribute type to create·

(fixed as int)
Whether a #define constant is imported·

as an attribute in imported C code (if
'Object Oriented programming' is set to
True on the 'C Specifications' page of
the 'Manage Project Options' dialog)
Whether to generate comments for C·

methods to the declaration, and to
reverse engineer comments from the
declaration
Whether to generate comments for C·

methods to the implementation, and to
reverse engineer comments from the
implementation
Whether to update comments in·

regenerating code from the model
Whether to update the implementation·

file in re-generating code from the
model
The default source code directory·

location (click on the button)
The default file extensions to read·

when importing a directory of C code

(c) Sparx Systems 2019 Page 315 of 672

User Guide - Software Models 20 January, 2020

The Code Editor to use (click on the ·

button)
The search path for the implementation·

file relative to the header file path

(c) Sparx Systems 2019 Page 316 of 672

User Guide - Software Models 20 January, 2020

C Options - Model

If you intend to generate C code from your model, you can
configure the model-specific code generation options using
the 'C Specifications' page of the 'Manage Project Options'
dialog to:

Specify default file extensions (header and source)·

Define support for Object Oriented programming·

Set the StateMachine engineering options·

Specify the Collection Class definitions for Association·

connectors

Access

Ribbon Configure > Model > Options > Source
Code Engineering > C

Options

Option Action

Options for
the current

In the value fields, specify these options:

(c) Sparx Systems 2019 Page 317 of 672

User Guide - Software Models 20 January, 2020

model The default header and source file·

extensions for the code files
Support for Object Oriented·

programming; if this is True, then set:
 - The Namespace delimiter
character
 - Whether the first parameter of an
operation is a Class reference
 - The parameter reference style in
generated C code
 - The reference parameter name in
generated code
 - The default Constructor name in
generated code
 - The default Destructor name in
generated code

StateMachine
Engineering

In the value fields, use the drop-down
arrows to set the options to True or False;
these options apply to generating code
from StateMachine models in the current
model only:

'Use the new StateMachine Template' -·

set to True to use the code generation
templates from Enterprise Architect
Release 11 and later, set to False to
apply the EASL Legacy templates
Generate Trace Code - set to True to·

generate Trace code, False to omit it

(c) Sparx Systems 2019 Page 318 of 672

User Guide - Software Models 20 January, 2020

Collection
Classes

Click on this button to open the
'Collection Classes for Association Roles'
dialog, through which you specify the
Collection Class definitions for
Association connectors.

Notes

These options affect all users of the current model;·

however, they do not apply to other models

(c) Sparx Systems 2019 Page 319 of 672

User Guide - Software Models 20 January, 2020

C# Options - User

If you intend to generate C# code from your model, you can
configure the code generation options using the 'C#
Specifications' page of the 'Preferences' dialog

Access

Ribbon Start > Desktop > Preferences >
Preferences > Source Code Engineering >
C#

Keyboard
Shortcuts

Ctrl+F9

Options

Option Action

Disable
Language

Leave this checkbox unselected to
support C# code generation.
Select this checkbox to disable C# code
support.

(c) Sparx Systems 2019 Page 320 of 672

User Guide - Software Models 20 January, 2020

Options for
the current
user

In the value fields, specify the options
that apply under your own user ID in all
models that you access:

The default attribute type to create·

Whether Namespaces should be·

generated when generating C# Classes
Whether to remove new lines (hard·

carriage returns) from the summary tag
when importing XML.NET style
comments
Whether to generate a Finalizer method·

when generating code for a C# Class
Whether to generate a Dispose method·

when generating code for a C# Class
The default source code directory·

location (click on the button)
The Code Editor to use (click on the ·

button)

(c) Sparx Systems 2019 Page 321 of 672

User Guide - Software Models 20 January, 2020

C# Options - Model

If you intend to generate C# code from your model, you can
configure the model-specific code generation options using
the 'C# Specifications' page of the 'Manage Project Options'
dialog to:

Specify the default file extension·

Indicate additional Collection Classes - to define custom·

Collection Classes, which can be simple substitutions
(such as CArray<#TYPE#>) or a mix of other strings and
substitutions (such as
Cmap<CString,LPCTSTR,#TYPE#*,#TYPE#*>); these
Collection Classes are defined by default:
 - List<#TYPE#>;Stack<#TYPE#>;Queue<#TYPE#>;

Set the StateMachine Engineering options·

Specify the Collection Class definitions for Association·

connectors

Access

Ribbon Configure > Model > Options > Source
Code Engineering > C#

(c) Sparx Systems 2019 Page 322 of 672

User Guide - Software Models 20 January, 2020

Options

Option Action

Options for
the current
model

Type in the default file extension to apply
when generating C# source code, and a
list of any additional Collection Classes
you want to define.

StateMachine
Engineering

In the value fields, use the drop-down
arrows to set the options to True or False;
these options apply to generating code
from StateMachine models in the current
model only:

'Use the new StateMachine Template' -·

set to True to use the code generation
templates from Enterprise Architect
Release 11 and later, set to False to
apply the EASL Legacy templates
'Generate Trace Code' - set to True to·

generate Trace code, False to omit it

Collection
Classes

Click on this button to open the
'Collection Classes for Association Roles'
dialog, through which you specify the
Collection Class definitions for
Association connectors.

(c) Sparx Systems 2019 Page 323 of 672

User Guide - Software Models 20 January, 2020

Notes

These options affect all users of the current model;·

however, they do not apply to other models

(c) Sparx Systems 2019 Page 324 of 672

User Guide - Software Models 20 January, 2020

C++ Options - User

If you intend to generate C++ code from your model, you
can configure the code generation options using the 'C++
Specifications' page of the 'Preferences' dialog.

Access

Ribbon Start > Desktop > Preferences >
Preferences > Source Code Engineering >
C++

Keyboard
Shortcuts

Ctrl+F9

Options

Option Action

Disable
Language

Leave this checkbox unselected to
support C++ code generation.
Select this option to disable C++ code
support.

(c) Sparx Systems 2019 Page 325 of 672

User Guide - Software Models 20 January, 2020

Options for
the current
user

In the value fields, specify the options
that apply under your own user ID in all
models that you access:

The default attribute type to create·

Whether Namespaces should be·

generated when generating C++
Classes
What style to apply when generating·

and processing comments for C++
Whether to generate comments for C++·

methods to the declaration, or reverse
engineer comments from the
declaration
Whether to generate comments for C++·

methods to the implementation, or
reverse engineer comments from the
implementation
Whether to update comments in·

re-generating code from the model
Whether to update the implementation·

file in re-generating code from the
model
The default source code directory·

location (click on the button)
The default file extensions to read·

when importing a directory of C++
code

(c) Sparx Systems 2019 Page 326 of 672

User Guide - Software Models 20 January, 2020

The Code Editor to use (click on the ·

button)
The search path for the implementation·

file relative to the header file path

(c) Sparx Systems 2019 Page 327 of 672

User Guide - Software Models 20 January, 2020

C++ Options - Model

If you intend to generate C++ code from your model, you
can configure the model-specific code generation options
using the 'C++ Specifications' page of the 'Manage Project
Options' dialog to:

Indicate the version of C++ to generate; this controls the·

set of templates used and how properties are created

Specify the default reference type used when a type is·

specified by reference

Specify the default file extensions·

Specify default Get/Set prefixes·

Specify the Collection Class definitions for Association·

connectors

Define additional Collection Classes - to define custom·

Collection Classes, which can be simple substitutions
(such as CArray<#TYPE#>) or a mix of other strings and
substitutions (such as
Cmap<CString,LPCTSTR,#TYPE#*,#TYPE#*>); these
Collection Classes are defined by default:
 -
CArray<#TYPE#>;CMap<CString,LPCTSTR,#TYPE#*,
#TYPE#*>;

Set the StateMachine Engineering options·

Access

(c) Sparx Systems 2019 Page 328 of 672

User Guide - Software Models 20 January, 2020

Ribbon Configure > Model > Options > Source
Code Engineering > C++

Options

Option Action

Options for
the current
model

In the value fields, specify the options
that affect all users of the current model:

The version of C++ you are using·

(which determines which templates to
use when generating code)
The default reference type to use when·

creating properties for C++ attributes
by reference
The default header and source file·

extensions for the code files
The default 'Get' prefix·

The default 'Set' prefix·

The additional Collection Classes·

StateMachine
Engineering
Options

In the value fields, use the drop-down
arrows to set the options to True or False;
these options apply to generating code

(c) Sparx Systems 2019 Page 329 of 672

User Guide - Software Models 20 January, 2020

from StateMachine models in the current
model only:

'Use the new StateMachine Template' -·

set to True to use the code generation
templates from Enterprise Architect
Release 11 and later, set to False to
apply the EASL Legacy templates
'Generate Trace Code' - set to True to·

generate Trace code, False to omit it

Collection
Classes

Click on this button to open the
'Collection Classes for Association Roles'
dialog, through which you specify the
Collection Class definitions for
Association connectors.

Notes

These options affect all users of the current model;·

however, they do not apply to other models

(c) Sparx Systems 2019 Page 330 of 672

User Guide - Software Models 20 January, 2020

Delphi Options - User

If you intend to generate Delphi code from your model, you
can configure the code generation options using the 'Delphi
Specifications' page of the 'Preferences' dialog to:

Set the default attribute type·

Indicate a default source directory·

Set the default code editor to use to edit Delphi source·

code

Access

Ribbon Start > Desktop > Preferences >
Preferences > Source Code Engineering >
Delphi

Keyboard
Shortcuts

Ctrl+F9

Options

Option Action

(c) Sparx Systems 2019 Page 331 of 672

User Guide - Software Models 20 January, 2020

Disable
Language

Leave this checkbox unselected to
support Delphi code generation.
Select this option to disable Delphi code
support.

Options for
the current
user

Specifies the options used for the current
user; these options apply to all models
that are accessed by the user.

(c) Sparx Systems 2019 Page 332 of 672

User Guide - Software Models 20 January, 2020

Delphi Options - Model

If you intend to generate Delphi code from your model, you
can configure the model-specific code generation options
using the 'Delphi Specifications' page of the 'Manage Project
Options' dialog to:

Specify default file extensions (header and source)·

Specify the Collection Class definitions for Association·

connectors

Access

Ribbon Configure > Model > Options > Source
Code Engineering > Delphi

Options

Option Action

Options for
the current
model

Type in the default file extension to apply
when generating Delphi source code.

(c) Sparx Systems 2019 Page 333 of 672

User Guide - Software Models 20 January, 2020

Collection
Classes

Click on this button to open the
'Collection Classes for Association Roles'
dialog, through which you specify the
Collection Class definitions for
Association connectors.

Notes

These options affect all users of the current model;·

however, they do not apply to other models

(c) Sparx Systems 2019 Page 334 of 672

User Guide - Software Models 20 January, 2020

Delphi Properties

Enterprise Architect has comprehensive support for Delphi
properties. These are implemented as Tagged Values, with a
specialized property editor to help create and modify Class
properties. By using the 'Feature Visibility' element context
menu option, you can display the 'tags' compartment that
contains the properties. Imported Delphi Classes with
properties have this feature automatically made visible for
your convenience.

Manually activate the property editor

In the selected Class set the code generation language to·

'Delphi'

Right-click on the Class and select 'Delphi Properties' to·

open the editor

Using the Delphi Properties editor, you can build properties
quickly and simply; from here you can:

Change the name and scope (only Public and Published·

are currently supported)

Change the property type (the drop-down list includes all·

defined Classes in the project)

Set the Read and Write information (the drop-down lists·

have all the attributes and operations from the current
Class; you can also enter free text)

Set 'Stored' to True or False·

(c) Sparx Systems 2019 Page 335 of 672

User Guide - Software Models 20 January, 2020

Set the Implements information·

Set the default value, if one exists·

Notes

When you use the 'Create Property' dialog from the·

'Attribute' screen, the system generates a pair of Get and
Set functions together with the required property
definition as Tagged Values; you can manually edit these
Tagged Values if required

Public properties are displayed with a '+' symbol prefix·

and published with a '^'

When creating a property in the 'Create Property·

Implementation' dialog (accessed through the 'Attributes'
dialog), you can set the scope to 'Published' if the property
type is Delphi

Only 'Public' and 'Published' are supported·

If you change the name of a property and forward·

engineer, a new property is added, but you must manually
delete the old one from the source file

(c) Sparx Systems 2019 Page 336 of 672

User Guide - Software Models 20 January, 2020

Java Options - User

If you intend to generate Java code from your model, you
can configure the code generation options using the 'Java
Specifications' page of the 'Preferences' dialog.

Access

Ribbon Start > Desktop > Preferences >
Preferences > Source Code Engineering >
Java

Keyboard
Shortcuts

Ctrl+F9

Options

Option Action

Disable
Language

Leave this checkbox unselected to
support Java code generation.
Select this checkbox to disable Java code
support.

(c) Sparx Systems 2019 Page 337 of 672

User Guide - Software Models 20 January, 2020

Options for
the current
user

In the value fields, specify the options
that apply under your own user ID in all
models that you access; the:

Default attribute type to create (select·

from the drop-down list)
Default source code directory location·

(click on the button)
Code Editor to use (click on the ·

button)

(c) Sparx Systems 2019 Page 338 of 672

User Guide - Software Models 20 January, 2020

Java Options - Model

If you intend to generate Java code from your model, you
can configure the model-specific code generation options
using the 'Java Specifications' page of the 'Manage Project
Options' dialog to:

Specify the default file extension·

Specify a default 'Get' prefix·

Specify a default 'Set' prefix·

Set the StateMachine Engineering options·

Specify the Collection Class definitions for Association·

connectors

Define additional Collection Classes - to define custom·

Collection Classes, which can be simple substitutions
(such as CArray<#TYPE#>) or a mix of other strings and
substitutions (such as
Cmap<CString,LPCTSTR,#TYPE#*,#TYPE#*>); these
Collection Classes are defined by default:
 - HashSet<#TYPE#>;Map<String,#TYPE#>;

Access

Ribbon Configure > Model > Options > Source
Code Engineering > Java

(c) Sparx Systems 2019 Page 339 of 672

User Guide - Software Models 20 January, 2020

Options

Option Action

Options for
the current
model

In the value fields, specify the options
that affect all users of the current model;
the:

Default file extension for the code files·

The default Get and Set prefixes·

The default and additional Collection·

Classes

StateMachine
Engineering

In the value fields, use the drop-down
arrows to set the options to True or False;
these options apply to generating code
from StateMachine models in the current
model only:

'Use the new StateMachine Template' -·

set to True to use the code generation
templates from Enterprise Architect
Release 11 and later, set to False to
apply the EASL Legacy templates
'Generate Trace Code' - set to True to·

generate Trace code, False to omit it

Collection Click on this button to open the

(c) Sparx Systems 2019 Page 340 of 672

User Guide - Software Models 20 January, 2020

Classes 'Collection Classes for Association Roles'
dialog, through which you specify the
Collection Class definitions for
Association connectors.

Notes

These options affect all users of the current model;·

however, they do not apply to other models

(c) Sparx Systems 2019 Page 341 of 672

User Guide - Software Models 20 January, 2020

PHP Options - User

If you intend to generate PHP code from your model, you
can configure the code generation options using the 'PHP
Specifications' page of the 'Preferences' dialog to:

Define a semi-colon separated list of extensions to look at·

when doing a directory code import for PHP

Set a default directory for opening and saving PHP source·

code

Specify the default editor to use when editing PHP code·

Access

Ribbon Start > Desktop > Preferences >
Preferences > Source Code Engineering >
PHP

Keyboard
Shortcuts

Ctrl+F9 | Source Code Engineering | PHP

Options

Option Action

(c) Sparx Systems 2019 Page 342 of 672

User Guide - Software Models 20 January, 2020

Disable
Language

Leave this checkbox unselected to
support PHP code generation.
Select this option to disable PHP code
support.

Options for
the current
user

Specifies the options used for the current
user; these options apply to all models
that are accessed by the user.

(c) Sparx Systems 2019 Page 343 of 672

User Guide - Software Models 20 January, 2020

PHP Options - Model

If you intend to generate PHP code from your model, you
can configure the model-specific code generation options
using the 'PHP Specifications' page of the 'Manage Project
Options' dialog to:

Specify the default PHP version to generate·

Define the default file extension·

Specify a default 'Get' prefix·

Specify a default 'Set' prefix·

Access

Ribbon Configure > Model > Options > Source
Code Engineering > PHP

Options

Option Action

Options for
the current

Type in the default PHP version, the
default file extension to apply when
generating PHP source code, and the

(c) Sparx Systems 2019 Page 344 of 672

User Guide - Software Models 20 January, 2020

model default 'Get' and 'Set' prefixes.

Notes

These options affect all users of the current model;·

however, they do not apply to other models

(c) Sparx Systems 2019 Page 345 of 672

User Guide - Software Models 20 January, 2020

Python Options - User

If you intend to generate Python code from your model, you
can configure the code generation options using the 'Python
Specifications' page of the 'Preferences' dialog to:

Specify the default source directory to be used·

Specify the default editor used to write and edit Python·

code

Access

Ribbon Start > Desktop > Preferences >
Preferences > Source Code Engineering >
Python

Keyboard
Shortcuts

Ctrl+F9

Options

Option Action

Disable Leave this checkbox unselected to

(c) Sparx Systems 2019 Page 346 of 672

User Guide - Software Models 20 January, 2020

Language support Python code generation.
Select this option to disable Python code
support.

Options for
the current
user

Specifies the options used for the current
user; these options apply to all models
that are accessed by the user.

(c) Sparx Systems 2019 Page 347 of 672

User Guide - Software Models 20 January, 2020

Python Options - Model

If you intend to generate Python code from your model, you
can configure the model-specific code generation options
using the 'Python Specifications' page of the 'Manage
Project Options' dialog to:

Specify the default file extension·

Access

Ribbon Configure > Model > Options > Source
Code Engineering > Python

Options

Option Action

Options for
the current
model

Type in the default file extension to apply
when generating Python source code.

(c) Sparx Systems 2019 Page 348 of 672

User Guide - Software Models 20 January, 2020

Notes

These options affect all users of the current model;·

however, they do not apply to other models

(c) Sparx Systems 2019 Page 349 of 672

User Guide - Software Models 20 January, 2020

SystemC Options - User

If you intend to generate SystemC code from your model,
you can configure the code generation options using the
'SystemC' page of the 'Preferences' dialog to:

Specify a default source directory·

Specify an editor for changing code·

Access

Ribbon Start > Desktop > Preferences >
Preferences > Source Code Engineering >
SystemC

Keyboard
Shortcuts

Ctrl+F9

Options

Option Action

Disable
Language

Leave this checkbox unselected to
support SystemC code generation.

(c) Sparx Systems 2019 Page 350 of 672

User Guide - Software Models 20 January, 2020

Select this option to disable SystemC
code support.

Options for
the current
user

Specifies the options used for the current
user; these options apply to all models
that are accessed by the user.

(c) Sparx Systems 2019 Page 351 of 672

User Guide - Software Models 20 January, 2020

SystemC Options - Model

If you intend to generate SystemC code from your model,
you can configure the model-specific code generation
options using the 'SystemC' page of the 'Manage Project
Options' dialog to:

Specify the default file extension·

Specify the Collection Class definitions for Association·

connectors

Access

Ribbon Configure > Model > Options > Source
Code Engineering > SystemC

Options

Option Action

Options for
the current
model

Type in the default file extension to apply
when generating SystemC source code.

(c) Sparx Systems 2019 Page 352 of 672

User Guide - Software Models 20 January, 2020

Collection
Classes

Click on this button to open the
'Collection Classes for Association Roles'
dialog, through which you specify the
Collection Class definitions for
Association connectors.

Notes

These options affect all users of the current model;·

however, they do not apply to other models

(c) Sparx Systems 2019 Page 353 of 672

User Guide - Software Models 20 January, 2020

VB.NET Options - User

If you intend to generate VB.NET code from your model,
you can configure the code generation options using the
'VB.NET Specifications' page of the 'Preferences' dialog to:

Specify the default attribute type·

Indicate whether to generate namespaces·

Specify a default source directory·

Specify an editor for changing code·

Access

Ribbon Start > Desktop > Preferences >
Preferences > Source Code Engineering >
VB.Net

Keyboard
Shortcuts

Ctrl+F9

Options

Option Action

(c) Sparx Systems 2019 Page 354 of 672

User Guide - Software Models 20 January, 2020

Disable
Language

Leave this checkbox unselected to
support VB.NET code generation.
Select this option to disable VB.NET
code support.

Options for
the current
user

Specifies the options used for the current
user; these options apply to all models
that are accessed by the user.

(c) Sparx Systems 2019 Page 355 of 672

User Guide - Software Models 20 January, 2020

VB.NET Options - Model

If you intend to generate VB.NET code from your model,
you can configure the model-specific code generation
options using the 'VB.Net Specifications' page of the
'Manage Project Options' dialog to:

Specify the default file extension·

Specify the Collection Class definitions for Association·

connectors

Access

Ribbon Configure > Model > Options > Source
Code Engineering > VB.Net

Options

Option Action

Options for
the current
model

Type in the default file extension to apply
when generating VB.Net source code.

(c) Sparx Systems 2019 Page 356 of 672

User Guide - Software Models 20 January, 2020

Collection
Classes

Click on this button to open the
'Collection Classes for Association Roles'
dialog, through which you specify the
Collection Class definitions for
Association connectors.

Notes

These options affect all users of the current model;·

however, they do not apply to other models

(c) Sparx Systems 2019 Page 357 of 672

User Guide - Software Models 20 January, 2020

Verilog Options - User

If you intend to generate Verilog code from your model, you
can configure the code generation options using the 'Verilog'
page of the 'Preferences' dialog to:

Specify a default source directory·

Specify an editor for changing code·

Access

Ribbon Start > Desktop > Preferences >
Preferences > Source Code Engineering >
Verilog

Keyboard
Shortcuts

Ctrl+F9

Options

Option Action

Disable
Language

Leave this checkbox unselected to
support Verilog code generation.

(c) Sparx Systems 2019 Page 358 of 672

User Guide - Software Models 20 January, 2020

Select this option to disable Verilog code
support.

Options for
the current
user

Specifies the options used for the current
user; these options apply to all models
that are accessed by the user.

(c) Sparx Systems 2019 Page 359 of 672

User Guide - Software Models 20 January, 2020

Verilog Options - Model

If you intend to generate Verilog code from your model, you
can configure the model-specific code generation options
using the 'Verilog' page of the 'Manage Project Options'
dialog to:

Specify the default file extension·

Specify the Collection Class definitions for Association·

connectors

Access

Ribbon Configure > Model > Options > Source
Code Engineering > Verilog

Options

Option Action

Options for
the current
model

Type in the default file extension to apply
when generating Verilog source code.

(c) Sparx Systems 2019 Page 360 of 672

User Guide - Software Models 20 January, 2020

Collection
Classes

Click on this button to open the
'Collection Classes for Association Roles'
dialog, through which you specify the
Collection Class definitions for
Association connectors.

Notes

These options affect all users of the current model;·

however, they do not apply to other models

(c) Sparx Systems 2019 Page 361 of 672

User Guide - Software Models 20 January, 2020

VHDL Options - User

If you intend to generate VHDL code from your model, you
can configure the code generation options using the 'VHDL'
page of the 'Preferences' dialog to:

Specify a default source directory·

Specify an editor for changing code·

Access

Ribbon Start > Desktop > Preferences >
Preferences > Source Code Engineering >
VHDL

Keyboard
Shortcuts

Ctrl+F9

Options

Option Action

Disable
Language

Leave this checkbox unselected to
support VHDL code generation.

(c) Sparx Systems 2019 Page 362 of 672

User Guide - Software Models 20 January, 2020

Select this option to disable VHDL code
support.

Options for
the current
user

Specifies the options used for the current
user; these options apply to all models
that are accessed by the user.

(c) Sparx Systems 2019 Page 363 of 672

User Guide - Software Models 20 January, 2020

VHDL Options - Model

If you intend to generate VHDL code from your model, you
can configure the model-specific code generation options
using the 'VHDL' page of the 'Manage Project Options'
dialog to:

Specify the default file extension·

Specify the Collection Class definitions for Association·

connectors

Access

Ribbon Configure > Model > Options > Source
Code Engineering > VHDL

Options

Option Action

Options for
the current
model

Type in the default file extension to apply
when generating VHDL source code.

(c) Sparx Systems 2019 Page 364 of 672

User Guide - Software Models 20 January, 2020

Collection
Classes

Click on this button to open the
'Collection Classes for Association Roles'
dialog, through which you specify the
Collection Class definitions for
Association connectors.

Notes

These options affect all users of the current model;·

however, they do not apply to other models

(c) Sparx Systems 2019 Page 365 of 672

User Guide - Software Models 20 January, 2020

Visual Basic Options - User

If you intend to generate Visual Basic code from your
model, you can configure the code generation options using
the 'VB Specifications' page of the 'Preferences' dialog to:

Specify the default attribute type·

Define the default source directory·

Define the file extensions to search for code files to·

import

Define the default editor to use for editing source code·

Access

Ribbon Start > Desktop > Preferences >
Preferences > Source Code Engineering >
Visual Basic

Keyboard
Shortcuts

Ctrl+F9

Options

(c) Sparx Systems 2019 Page 366 of 672

User Guide - Software Models 20 January, 2020

Option Action

Disable
Language

Leave this checkbox unselected to
support Visual Basic code generation.
Select this option to disable Visual Basic
code support.

Options for
the current
user

Specifies the options used for the current
use; these options apply to all models that
are accessed by the user.

(c) Sparx Systems 2019 Page 367 of 672

User Guide - Software Models 20 January, 2020

Visual Basic Options - Model

If you intend to generate Visual Basic code from your
model, you can configure the model-specific code
generation options using the 'VB Specifications' page of the
'Manage Project Options' dialog to:

Specify the default Visual Basic version to generate·

Indicate the default file extension when reading/writing·

Indicate the MTS transaction mode for MTS objects·

Specify if a Class uses Multi use (True or False)·

Specify if a Class uses the Persistable property·

Indicate data binding and data source behaviors·

Set the global namespace·

Set the Exposed attribute·

Indicate if the Creatable attribute is True or False·

Specify the Collection Class definitions for Association·

connectors

Access

Ribbon Configure > Model > Options > Source
Code Engineering > Visual Basic

(c) Sparx Systems 2019 Page 368 of 672

User Guide - Software Models 20 January, 2020

Options

Option Action

Options for
the current
model

Type in the default file extension to apply
when generating Visual Basic source
code, and click on the drop-down arrow
in each of the other fields and select the
appropriate value.

Collection
Classes

Click on this button to open the
'Collection Classes for Association Roles'
dialog, through which you specify the
Collection Class definitions for
Association connectors.

Notes

These options affect all users of the current model;·

however, they do not apply to other models

(c) Sparx Systems 2019 Page 369 of 672

User Guide - Software Models 20 January, 2020

MDG Technology Language Options

If you have loaded an MDG Technology that specifies a
code module into your Sparx Systems > EA > MDG
Technologies folder, the language is included in the 'Source
Code Engineering' list on the 'Preferences' dialog. The
language is only listed on the 'Preferences' dialog if an
MDG Technology file actually uses it in your model.

Access

Ribbon Start > Desktop > Preferences >
Preferences > Source Code Engineering >
MDG

Keyboard
Shortcuts

Ctrl+F9

Options

Field Action

Default Default extension for generated source

(c) Sparx Systems 2019 Page 370 of 672

User Guide - Software Models 20 January, 2020

Extension files; shown if the option is in the
technology.
This is saved per project.

Import File
Extensions

Default folder to import source files
from; shown if the technology supports
namespaces.
This is saved once for all projects.

Generate
Namespaces

Indicates if namespaces are generated or
not.

Default
Source
Directory

The default directory to save generated
source files.
This is always shown.

Editor Indicates the editor that is used to edit
source files.

Att Type Indicates the default attribute type.

Notes

These options are set in the technology inside the·

<CodeOptions> tag of a code module, as shown:
 <CodeOption

(c) Sparx Systems 2019 Page 371 of 672

User Guide - Software Models 20 January, 2020

name="DefaultExtension">.rb</CodeOption>

(c) Sparx Systems 2019 Page 372 of 672

User Guide - Software Models 20 January, 2020

Reset Options

Enterprise Architect stores some of the options for a Class
when it is first created. Some are global; for example,
$LinkClass is stored when you first create the Class, so in
existing Classes the global change in the 'Preferences' dialog
will not automatically be picked up. You must modify the
options for the existing Class.

Modify options for a single Class

Ste
p

Action

1 Click on the Class to change, and select the 'Develop
> Source Code > Generate > Generate Single
Element' ribbon option.
The 'Generate Code' dialog displays.

2 Click on the Advanced button.
The 'Object Options' dialog displays.

3 Click on the 'Attributes/Operations' option.

4 Change the options, and click on the Close button to
apply the changes.

(c) Sparx Systems 2019 Page 373 of 672

User Guide - Software Models 20 January, 2020

Modify options for all Classes within a
Package

Ste
p

Action

1 Click on the Package in the Browser window, and
select the 'Develop > Preferences > Options > Reset
Source Language' ribbon option.
The 'Manage Code Generation' dialog displays.

2 In the 'Where language is:' field, click on the
drop-down arrow and select the language that you
want to change from.

3 In the 'Convert to:' field, click on the drop-down
arrow and select the language that you want to
change to.

4 Select the checkbox against each option to apply to
the changed Class elements in the Package:

Clear Filenames of the files to generate code to·

Reset Default options on each Class·

Process Child Packages under the selected·

Package

(c) Sparx Systems 2019 Page 374 of 672

User Guide - Software Models 20 January, 2020

5 Click on the OK button to apply the changes.

(c) Sparx Systems 2019 Page 375 of 672

User Guide - Software Models 20 January, 2020

Set Collection Classes

Using Enterprise Architect, you can define Collection
Classes for generating code from Association connectors
where the target role has a multiplicity setting greater than
1.

Tasks

Task Detail

Defining
Collection
Classes

On the 'Source Code Engineering' section
of the 'Manage Project Options' dialog
(select the 'Configure > Model > Options
> Source Code Engineering' ribbon
option), on each language page click on
the Collection Classes button.
The 'Collection Classes for Association
Roles' dialog displays. On this dialog,
you can define:

The default Collection Class for 1..*·

roles
The ordered Collection Class to use for·

1..* roles
The qualified Collection Class to use·

for 1..* roles

(c) Sparx Systems 2019 Page 376 of 672

User Guide - Software Models 20 January, 2020

Defining
Collection
Classes for a
specific Class

Class-specific Collection Classes can be
defined by clicking the Collection
Classes button in the Class 'Properties'
dialog of the element.

Code
Generation
Precedence

When Enterprise Architect generates
code for a connector that has a
multiplicity role >1:
1. If the Qualifier is set, use the qualified
collection:
 - for the Class if set
 - else use the code language qualified
collection
2. If the 'Order' option is set, use the
ordered collection:
 - for the Class if set
 - else use the code language ordered
collection
3. Else use the default collection:
 - for the Class if set
 - else use the code language default
collection

Using
Markers

You can include the marker #TYPE# in
the collection name; Enterprise Architect
replaces this with the name of the Class
being collected at source generation time
(for example, Vector<#TYPE#> would

(c) Sparx Systems 2019 Page 377 of 672

User Guide - Software Models 20 January, 2020

become Vector<foo>).
Conversely, when reverse engineering, an
Association connector is also created if a
matching entry (for example, foo if foo is
found in the model) is defined as a
Collection Class.

Additional
Collection
Classes

Additional Collection Classes can be
defined within the model-specific
language options pages for C#, C++ and
Java.

Member
Type

On the 'Role(s)' tab of the Association
'Properties' dialog (accessible from the
right-click context menu of any
Association) there is a 'Member Type'
field for each of the Source and Target
Roles.
If you set this, the value you enter
overrides all the listed options.

(c) Sparx Systems 2019 Page 378 of 672

User Guide - Software Models 20 January, 2020

Example Use of Collection Classes

Consider this source code:

 class Class1

 {

 public:

 Class1();

 virtual ~Class1();

 CMap<CString,LPCTSTR,Class3*,Class3*> att;

 Vector<Class2> *att1;

 TemplatedClass<class1,class2> *att2;

 CList<Class4> *att3;

 };

 class Class2

 {

 public:

 Class2();

 virtual ~Class2();

 };

 class Class3

 {

 public:

 Class3();

(c) Sparx Systems 2019 Page 379 of 672

User Guide - Software Models 20 January, 2020

 virtual ~Class3();

 };

 class Class4

 {

 public:

 Class4();

 virtual ~Class4();

 };

 template<class TParam1, class TParam2>

 class TemplatedClass

 {

 public:

 TemplatedClass() {

 }

 virtual ~TemplatedClass() {

 }

 };

If this code is imported into the system with default import
options, this diagram is generated:

(c) Sparx Systems 2019 Page 380 of 672

User Guide - Software Models 20 January, 2020

If, however, you enter the value 'CList<#Type#>' in the
'Additional Collection Classes' field in the model-specific
language options page (C#, Java, C++), an Association
connector is also created to Class 4:

(c) Sparx Systems 2019 Page 381 of 672

User Guide - Software Models 20 January, 2020

(c) Sparx Systems 2019 Page 382 of 672

User Guide - Software Models 20 January, 2020

Local Paths

When a team of developers are working on the same
Enterprise Architect model, each developer might store their
version of the source code in their local file system, but not
always at the same location as their fellow developers. To
manage this scenario in Enterprise Architect, you can define
local paths for each user, on the 'Local Paths' dialog.

You can use local paths in generating code and reverse
engineering, and in Version Control, developing XML
schemas and generating document and web reports.

Local paths might take a little time to set up, but if you want
to work collaboratively on source and model concurrently,
the effort is well worth while.

For example, if:

Developer A stores her .java files in a C:\Java\Source·

directory, while developer B stores his in D:\Source, and

Both developers want to generate and reverse engineer·

into the same Enterprise Architect model located on a
shared (or replicated) network drive

Developer A might define a local path of:

 JAVA_SOURCE = "C:\Java\Source"

All Classes generated and stored in the Enterprise Architect
project are stored as:

 %JAVA_SOURCE%\<xxx.java>

Developer B defines a local path as:

(c) Sparx Systems 2019 Page 383 of 672

User Guide - Software Models 20 January, 2020

 JAVA_SOURCE ="D:\Source"

Now, Enterprise Architect stores all java files in these
directories as:

 %JAVA_SOURCE%\<filename>

On each developer's machine, the filename is expanded to
the correct local version.

Access

Ribbon Develop > Preferences > Options >
Configure Local Paths

(c) Sparx Systems 2019 Page 384 of 672

User Guide - Software Models 20 January, 2020

Local Paths Dialog

Using the 'Local Paths' dialog, you can set up local paths for
a single user on a particular machine. For a description of
the use of local paths, see the Local Paths topic.

Access

Ribbon Develop > Preferences > Options >
Configure Local Paths

Options

Option Action

Path Type in or browser for the path of the
local directory in the file system (for
example, d:\java\source).

ID Type in the shared ID that is substituted
for the Local Path (for example,
JAVA_SRC).

(c) Sparx Systems 2019 Page 385 of 672

User Guide - Software Models 20 January, 2020

Type Click on the drop-down arrow and select
the type of path to apply to (for example,
Java).

Relative
Paths

Lists the paths currently defined for the
model, defaulting to most recent at the
top.
If you want to change the sequence of
paths in the list, click on a path and use
the buttons to move the path up or
down one position in the list.

Apply Path Click on a path in the 'Relative Paths' list
and click on this button to update any
existing full path names in the model to
the shared relative path name. For
example:
 d:\java\source\main.java might
become %JAVA_SRC%\main.java

Expand Path Click on a path in the 'Relative Paths' list
and click on this button to remove the
relative path and substitute the full path
name (the opposite effect of the Apply
Path button).

New Click on this button to clear the data
fields so that you can define another local
path.

(c) Sparx Systems 2019 Page 386 of 672

User Guide - Software Models 20 January, 2020

Save When you have defined a local path, click
on this button to save it and add it to the
'Relative Paths' list.

Delete Click on a path in the 'Relative Paths' list
and click on this button to remove the
path from the list altogether.

Close Click on this button to close the dialog,
saving any changes to the list.

Notes

You can also set up a hyperlink (for an Enterprise·

Architect command) on a diagram to access the 'Local
Paths' dialog, to switch, update or expand your current
local path

If the act of expanding or applying a path for a linked file·

will create a duplicate record, the process will skip that
record and display a message at the end of the process

(c) Sparx Systems 2019 Page 387 of 672

User Guide - Software Models 20 January, 2020

Language Macros

When reverse engineering a language such as C++, you
might find preprocessor directives scattered throughout the
code. This can make code management easier, but can
hamper parsing of the underlying C++ language.

To help remedy this, you can include any number of macro
definitions, which are ignored during the parsing phase of
the reverse engineering. It is still preferable, if you have the
facility, to preprocess the code using the appropriate
compiler first; this way, complex macro definitions and
defines are expanded out and can be readily parsed. If you
don't have this facility, then this option provides a
convenient substitute.

Access

Ribbon Configure > Reference Data > Settings >
Preprocessor Macros or
Develop > Preferences > Options >
Define Preprocessor Macros

Define a macro

(c) Sparx Systems 2019 Page 388 of 672

User Guide - Software Models 20 January, 2020

Ste
p

Action

1 Select the 'Preprocessor Macros' menu option.
The 'Language Macros' dialog displays.

2 Click on the Add New button.

3 Enter details for your macro.

4 Click on the OK button.

Macros Embedded Within Declarations

Macros are sometimes used within the declaration of
Classes and operations, as in these examples:

 class __declspec Foo

 {

 int __declspec Bar(int p);

 };

If declspec is defined as a C++ macro, as outlined, the
imported Class and operation contain a Tagged Value called
DeclMacro1 with value __declspec (subsequent macros
would be defined as DeclMacro2, DeclMacro3 and so on).

During forward engineering, these Tagged Values are used

(c) Sparx Systems 2019 Page 389 of 672

User Guide - Software Models 20 January, 2020

to regenerate the macros in code.

Define Complex Macros

It is sometimes useful to define rules for complex macros
that can span multiple lines; Enterprise Architect ignores the
entire code section defined by the rule.

Such macros can be defined in Enterprise Architect as in
these two examples; both types can be combined in one
definition.

Block Macros

 BEGIN_INTERFACE_PART ^
END_INTERFACE_PART

The ^ symbol represents the body of the macro - this enables
skipping from one macro to another; the spaces surrounding
the ^ symbol are required.

Function Macros

 RTTI_EMULATION()

Enterprise Architect skips over the token including
everything inside the parentheses.

Notes

(c) Sparx Systems 2019 Page 390 of 672

User Guide - Software Models 20 January, 2020

You can transport these language macro (or preprocessor·

macro) definitions between models, using the 'Configure
> Model > Transfer > Export Reference Data' and 'Import
Reference Data' options; the macros are exported as a
Macro List

(c) Sparx Systems 2019 Page 391 of 672

User Guide - Software Models 20 January, 2020

Developing Programming Languages

You can make use of a range of established programming
languages in Enterprise Architect, but if these are not
suitable to your needs you can develop your own. You
would then apply it to your models through an MDG
Technology that you might develop just for this purpose, or
for broader purposes. After developing the language, you
could also write MDA Transformation templates to convert
a Platform Independent Model or a model in another
language into a model for your new language, or vice-versa.

Access

Ribbon Develop > Preferences > Options > Edit
Code Templates

Keyboard
Shortcuts

Ctrl+Shift+P

Develop a Programming Language

Ste Description

(c) Sparx Systems 2019 Page 392 of 672

User Guide - Software Models 20 January, 2020

p

1 In the Code Template Editor, click on the New
Language button and, on the 'Programming
Languages Datatypes' dialog, click on the Add
Product button.
Enter your new programming language name and
define the datatypes for it. You cannot access the
new language in the Code Template Editor until at
least one datatype has been added to the language.

2 After you have defined all the datatypes you need,
click on the Close button, select the language in the
'Language' field of the Code Template Editor, and
start to edit or create the code templates for the new
language.
The code templates define how the system should
perform:

Forward code engineering of your models in the·

new language
Behavioral Code generation (if this is appropriate)·

3 If you prefer, you can also define source code
options for your new language. These are additional
settings for the language that are not provided by the
data types or code templates, and that help define
how the system handles that language when
generating and reverse-engineering code.
The code options are made available to your models

(c) Sparx Systems 2019 Page 393 of 672

User Guide - Software Models 20 January, 2020

only through an MDG Technology.

4 Defining a grammar for your language is an optional
step that provides two primary benefits:

Reverse engineering of existing code into your·

model
Synchronization during code generation so that·

changes made to the file since it was last generated
are not lost.

To access the grammar editor select the 'Develop >
Preferences > Grammars' ribbon option.

5 If you intend MDA transformations to be made to (or
from) your new programming language, you can also
edit and create transformation templates for it. The
process of creating transformation templates is very
similar to that for creating code templates.

6 Having created the datatypes, code templates, code
options, grammar and transformation templates for
your new language, you can incorporate and
distribute them in an MDG Technology.

(c) Sparx Systems 2019 Page 394 of 672

User Guide - Software Models 20 January, 2020

Code Template Framework

When you use Enterprise Architect to generate code from a
model, or transform the model, the system refers to the Code
Template Framework (CTF) for the parameters that define
how it should:

Forward engineer a UML model·

Generate Behavioral Code·

Perform a Model Driven Architecture (MDA)·

Transformation

Generate DDL in database modeling·

A range of standard templates is available for the direct
generation of code and for transformation; if you do not
want to use the standard CTF configurations, you can
customize them to meet your needs.

CTF Templates

Template
Type

Detail

Code
Templates

When you forward engineer a Class
model, the code templates define how the
skeletal code is to be generated for a
given programming language. The
templates for a language are

(c) Sparx Systems 2019 Page 395 of 672

User Guide - Software Models 20 January, 2020

automatically associated with the
language.
The templates are written as plain text
with a syntax that shares some aspects of
both mark-up languages and scripting
languages.

Model
Transformati
on Templates

Model Transformation Templates provide
a fully configurable method of defining
how Model Driven Architecture (MDA)
Transformations convert model elements
and model fragments from one domain to
another.
This process is two-tiered. It creates an
intermediary language (which can be
viewed for debugging) which is then
processed to create the objects.

Behavioral
Code
Generation
Templates

Enterprise Architect supports
user-definable code generation of the
UML Behavioral models.
This applies the standard Code Template
Framework but includes specific
Enterprise Architect Simulation Library
(EASL) code generation macros.

DDL
Templates

DDL Templates are very similar to Code
generation templates, but they have been
extended to support DDL generation with

(c) Sparx Systems 2019 Page 396 of 672

User Guide - Software Models 20 January, 2020

their own set of base templates, macros,
function macros and template options.

(c) Sparx Systems 2019 Page 397 of 672

User Guide - Software Models 20 January, 2020

Code Template Customization

Enterprise Architect helps you to generate source code from
UML models for a wide range of programming languages.
Standard templates (mappings) are provided out-of-the-box
but you can customize the way that code is generated by
using the powerful and flexible Code Template Framework
(CTF). This sophisticated framework allows you to
customize every detail of the way code is generated,
including the facility to create new templates for languages
not supported in the base product. For example, JavaScript
is not one of the supported languages but a series of
templates can be written quickly to generate JavaScript from
UML models. In these cases existing templates act as a
useful starting point and reference for new languages.

The code template framework also provides the mechanism
for generation of behavioral models and is used for the
transformation templates.

Features

Feature Detail

Default
Templates

Default Code Templates are built into
Enterprise Architect for forward
engineering supported languages.

(c) Sparx Systems 2019 Page 398 of 672

User Guide - Software Models 20 January, 2020

Code
Template
Editor

A Code Template Editor is provided for
creating and maintaining user-defined
Code Templates.

Customizing
Code
Templates

Descriptions of the template syntax and
the macros and functions you can use to
control the effects of the templates.

Synchronize
Code

A subset of the default Code Templates
to synchronize code.

(c) Sparx Systems 2019 Page 399 of 672

User Guide - Software Models 20 January, 2020

Code and Transform Templates

Code templates and transform (Model Transformation)
templates define how the system should generate or
transform code in one or other of the programming
languages that Enterprise Architect supports. Each language
has a wide range of base templates, each of which defines
how a particular code structure is generated. You can use
these base templates as they are, or you can customize and
add to the templates to better support your use of the
standard languages, or of other languages that you might
define to the system. You review, update and create
templates through the Code Template editor or
Transformation Template editor.

The order in which the base templates are listed in the two
editors relates to the hierarchical order of the objects and
their parts that are to be processed. Calls are made from
certain base templates to others, and you can add further
calls to both base templates and to your own custom
templates. By default, the File template is the starting point
of a code generation process through the templates; a File
consists of Classes that can contain Attributes and
Operations.

Access

Develop > Preferences > Options > Edit

(c) Sparx Systems 2019 Page 400 of 672

User Guide - Software Models 20 January, 2020

Ribbon Code Templates
Design > Tools > Transform > Transform
Templates

Keyboard
Shortcuts

Ctrl+Shift+P (Code Generation
Templates)
Ctrl+Alt+H (MDA Transformation
Templates)

Application of Templates

Action Detail

Calling
Templates

Within any template, you can call other
templates using %TemplateName%. The
enclosing percent (%) signs indicate a
macro.
You would use this for a single call to the
ClassBody template, %ClassBody%, as
shown:
 % list = "TemplateName"
@separator= "\n" @indent= " " %
The %list macro performs an iterative
pass on all the objects in the scope of the
current template and calls the

(c) Sparx Systems 2019 Page 401 of 672

User Guide - Software Models 20 January, 2020

TemplateName for each of them:
 % list = "ClassBody" @separator=
"\n" @indent= " " %
After generation or transformation, each
macro is substituted to produce the
generated output; for a language such as
C++, the result of processing this
template might be:
 /**
 * This is an example Class note
generated using code templates
 * @author Sparx Systems
 */
 class ClassA: public ClassB
 {
 ...
 }

Execution of
Code
Templates

Each template might act only on a
particular element type; for example, the
ClassNotes template only acts on UML
Class and Interface elements.
The element from which code is currently
being generated is said to be in scope; if
the element in scope is stereotyped, the
system searches for a template that has
been defined for that stereotype. If a
specialized template is found, it is

(c) Sparx Systems 2019 Page 402 of 672

User Guide - Software Models 20 January, 2020

executed; otherwise the default
implementation of the base template is
used.
Templates are processed sequentially,
line by line, replacing each macro with its
underlying text value from the model.

Transfer
Templates
Between
Projects

If you edit a base Code Generation or
Transformation template, or create a
customized template, you can copy them
from one project to another as Reference
Data.

(c) Sparx Systems 2019 Page 403 of 672

User Guide - Software Models 20 January, 2020

Base Templates

The Code Template Framework consists of a number of
base templates. Each base template transforms particular
aspects of the UML to corresponding parts of
object-oriented languages.

The base templates form a hierarchy, which varies slightly
across different programming languages. In a typical
template hierarchy relevant to a language such as C# or Java
(which do not have header files) the templates can be
modeled as Classes, but usually are just plain text. This
hierarchy would be slightly more complicated for languages
such as C++ and Delphi, which have separate
implementation templates.

Each of the base templates must be specialized to be of use
in code engineering; in particular, each template is
specialized for the supported languages (or 'products'). For
example, there is a ClassBody template defined for C++,
another for C#, another for Java, and so on; by specializing
the templates, you can tailor the code generated for the
corresponding UML entity.

Once the base templates are specialized for a given
language, they can be further specialized based on:

A Class's stereotype, or·

A feature's stereotype (where the feature can be an·

operation or attribute)

This type of specialization enables, for example, a C#
operation that is stereotyped as «property» to have a

(c) Sparx Systems 2019 Page 404 of 672

User Guide - Software Models 20 January, 2020

different Operation Body template from an ordinary
operation; the Operation Body template can then be
specialized further, based on the Class stereotype.

Base templates used in the CTF

Template Description

Attribute A top-level template to generate member
variables from UML attributes.

Attribute
Declaration

Used by the Attribute template to
generate a member variable declaration.

Attribute
Notes

Used by the Attribute template to
generate member variable notes.

Class A top-level template for generating
Classes from UML Classes.

Class Base Used by the Class template to generate a
base Class name in the inheritance list of
a derived Class, where the base Class
doesn't exist in the model.

Class Body Used by the Class template to generate
the body of a Class.

(c) Sparx Systems 2019 Page 405 of 672

User Guide - Software Models 20 January, 2020

Class
Declaration

Used by the Class template to generate
the declaration of a Class.

Class
Interface

Used by the Class template to generate an
interface name in the inheritance list of a
derived Class, where the interface doesn't
exist in the model.

Class Notes Used by the Class template to generate
the Class notes.

File A top-level template for generating the
source file.
For languages such as C++, this
corresponds to the header file.

Import
Section

Used in the File template to generate
external dependencies.

Linked
Attribute

A top-level template for generating
attributes derived from UML
Associations.

Linked
Attribute
Notes

Used by the Linked Attribute template to
generate the attribute notes.

Linked
Attribute

Used by the Linked Attribute template to
generate the attribute declaration.

(c) Sparx Systems 2019 Page 406 of 672

User Guide - Software Models 20 January, 2020

Declaration

Linked Class
Base

Used by the Class template to generate a
base Class name in the inheritance list of
a derived Class, for a Class element in the
model that is a parent of the current
Class.

Linked Class
Interface

Used by the Class template to generate an
Interface name in the inheritance list of a
derived Class, for an Interface element in
the model that is a parent of the current
Class.

Namespace A top-level template for generating
namespaces from UML Packages
(although not all languages have
namespaces, this template can be used to
generate an equivalent construct, such as
Packages in Java).

Namespace
Body

Used by the Namespace template to
generate the body of a namespace.

Namespace
Declaration

Used by the Namespace template to
generate the namespace declaration.

Operation A top-level template for generating
operations from a UML Class's

(c) Sparx Systems 2019 Page 407 of 672

User Guide - Software Models 20 January, 2020

operations.

Operation
Body

Used by the Operation template to
generate the body of a UML operation.

Operation
Declaration

Used by the Operation template to
generate the operation declaration.

Operation
Notes

Used by the Operation template to
generate documentation for an operation.

Parameter Used by the Operation Declaration
template to generate parameters.

Templates for generating code for languages
with separate interface and implementation
sections

Template Description

Class Impl A top-level template for generating the
implementation of a Class.

Class Body
Impl

Used by the Class Impl template to
generate the implementation of Class

(c) Sparx Systems 2019 Page 408 of 672

User Guide - Software Models 20 January, 2020

members.

File Impl A top-level template for generating the
implementation file.

File Notes
Impl

Used by the File Impl template to
generate notes in the source file.

Import
Section Impl

Used by the File Impl template to
generate external dependencies.

Operation
Impl

A top-level template for generating
operations from a UML Class's
operations.

Operation
Body Impl

Used by the Operation template to
generate the body of a UML operation.

Operation
Declaration
Impl

Used by the Operation template to
generate the operation declaration.

Operation
Notes Impl

Used by the Operation template to
generate documentation for an operation.

(c) Sparx Systems 2019 Page 409 of 672

User Guide - Software Models 20 January, 2020

Export Code Generation and
Transformation Templates

It is possible to export Code Generation and Transformation
templates from your model to a .xml file. You can then
import that file - and hence the templates - into other
models, as reference data. You can export customized
templates, which includes those that you or other users have
created and updated, and base (standard) templates that have
been tailored. You do not need to export base templates that
have not been changed, as these are available in every
installation of Enterprise Architect.

Access

Ribbon Configure > Model > Transfer > Export
Reference Data

Export a Code Generation template or
Transformation template

Ste Action

(c) Sparx Systems 2019 Page 410 of 672

User Guide - Software Models 20 January, 2020

p

1 On the 'Export Reference Data' dialog, in the 'Name'
list, select the templates to export.
The list includes any standard Code Generation or
Transformation templates that have been changed,
and any customized templates that you have created
or changed.
You can select one or more templates to be exported
to a single XML file, by pressing Ctrl or Shift as you
click on the template names.

2 Click on the Export button.

3 When prompted to do so, enter a valid file name
with a .xml extension.

4 Click on the Save button and on the OK button.
This exports the template(s) to the file; you can use
any text or XML viewer to examine the file.

(c) Sparx Systems 2019 Page 411 of 672

User Guide - Software Models 20 January, 2020

Import Code Generation and
Transformation Templates

If you have exported Code Generation and/or
Transformation templates from an Enterprise Architect
model, you can import them into other Enterprise Architect
models as reference data.

Access

Ribbon Configure > Model > Transfer > Import
Reference Data

Import Code Generation and/or
Transformation Templates

Ste
p

Action

1 On the 'Import Reference Data' dialog, click on the
Select File button and browse to the .xml file
containing the required Code Generation or

(c) Sparx Systems 2019 Page 412 of 672

User Guide - Software Models 20 January, 2020

Transformation templates.

2 Select the name of one or more template datasets and
click on the Import button.

(c) Sparx Systems 2019 Page 413 of 672

User Guide - Software Models 20 January, 2020

Synchronize Code

Enterprise Architect uses code templates during the forward
synchronization of these programming languages:

ActionScript·

C·

C++·

C#·

Delphi·

Java·

PHP·

Python·

VB·

VB.Net·

Three types of change can occur in the source when it is
synchronized with the UML model:

Existing sections are synchronized: for example, the·

return type in an operation declaration is updated

New sections are added to existing features: for example,·

Notes are added to a Class declaration where there were
previously none

New features and elements are added: for example, a new·

operation is added to a Class

Each of these changes has a different effect on the CTF and
must be handled differently by Enterprise Architect, as
described in these topics:

(c) Sparx Systems 2019 Page 414 of 672

User Guide - Software Models 20 January, 2020

Synchronize Existing Sections·

Add New Sections to Existing Features·

Add New Features and Elements·

Code sections that can be synchronized

Only a subset of the CTF base templates is used during
synchronization. This subset corresponds to the distinct
sections that Enterprise Architect recognizes in the source
code.

Code
Template

Code Section

Class Notes Comments preceding the Class
declaration.

Class
Declaration

Up to and including the Class parents.

Attribute
Notes

Comments preceding an Attribute
declaration.

Attribute
Declaration

Up to and including the terminating
character.

Operation
Notes

Comments preceding an operation
declaration.

(c) Sparx Systems 2019 Page 415 of 672

User Guide - Software Models 20 January, 2020

Operation
Notes Impl

As for Operation Notes.

Operation
Declaration

Up to and including the terminating
character.

Operation
Declaration
Impl

Up to and including the terminating
character.

Operation
Body

Everything between and including the
braces.

Operation
Body Impl

As for Operation Body.

(c) Sparx Systems 2019 Page 416 of 672

User Guide - Software Models 20 January, 2020

Synchronize Existing Sections

When an existing section in the source code differs from the
result generated by the corresponding template, that section
is replaced.

Consider, for example, this C++ Class declaration:

 (asm) class A: public B

Now assume that you add an inheritance relationship from
Class A to Class C; the entire Class declaration would be
replaced with something resembling this:

 (asm) class A: public B, public C

(c) Sparx Systems 2019 Page 417 of 672

User Guide - Software Models 20 January, 2020

Add New Sections

These sections can be added to existing features in the
source code, as new sections:

Class Notes·

Attribute Notes·

Operation Notes·

Operation Notes Impl·

Operation Body·

Operation Body Impl·

Assume that, in this example, Class A had no note when you
originally generated the code:

 (asm) class A: public B, public C

If you now specify a note in the model for Class A,
Enterprise Architect attempts to add the new note from the
model during synchronization, by executing the Class Notes
template.

To make room for the new section to be inserted, you can
specify how much white space to append to the section via
synchronization macros.

(c) Sparx Systems 2019 Page 418 of 672

User Guide - Software Models 20 January, 2020

Add New Features and Elements

These features and elements can be added to the source code
during synchronization:

Attributes·

Inner Classes·

Operations·

They are added by executing the relevant templates for each
new element or feature in the model.

Enterprise Architect attempts to preserve the appropriate
indenting of new features in the code, by finding the indents
specified in list macros of the Class; for languages that make
use of namespaces, the 'synchNamespaceBodyIndent' macro
is available.

Classes defined within a (non-global) namespace are
indented according to the value set for this macro, during
synchronization.

The value is ignored:

For Classes defined within a Package set up as a root·

namespace, or

If the 'Generate Namespaces' option is set to False in the·

appropriate language page (C#, C++ or VB.Net) on the
'Preferences' dialog ('Start > Desktop > Preferences >
Preferences > Source Code Engineering > <language>')

(c) Sparx Systems 2019 Page 419 of 672

User Guide - Software Models 20 January, 2020

The Code Template Editor

The Code Template Editor provides the facilities of the
Common Code Editor, including Intelli-sense for the various
macros. For more information on Intelli-sense and the
Common Code Editor, see the Editing Source Code topic.

Access

Ribbon Develop > Preferences > Options > Edit
Code Templates

Keyboard
Shortcuts

Ctrl+Shift+P

Options

Option Action

Language Select the programming language.

New
Language

Display the 'Programming Languages
Datatypes' dialog, which enables you to

(c) Sparx Systems 2019 Page 420 of 672

User Guide - Software Models 20 January, 2020

include programming languages other
than those supported for Enterprise
Architect, for which to create or edit code
templates.

Template Display the contents of the active
template, and open the editor for
modifying templates.

Templates List the base code templates; the active
template is highlighted.
The 'Modified' field indicates whether
you have changed the default template for
the current language.

Stereotype
Overrides

List the stereotyped templates, for the
active base template.
The 'Modified' field indicates whether
you have modified a default stereotyped
template.

Add New
Custom
Template

Invoke a dialog for creating a custom
stereotyped template.

Add New
Stereotyped
Override

Invoke a dialog for adding a stereotyped
template, for the currently selected base
template.

(c) Sparx Systems 2019 Page 421 of 672

User Guide - Software Models 20 January, 2020

Get Default
Template

Update the editor display with the default
version of the active template.

Save Overwrite the active templates with the
contents of the editor.

Delete If you have overridden the active
template, the override is deleted and
replaced by the corresponding default
code template.

Notes

User-modified and user-defined Code Templates can be·

imported and exported as reference data (see the Sharing
Reference Data topic); the templates defined for each
language are indicated in the 'Export Reference Data'
dialog by the language name with the suffix
_Code_Templates - if no templates exist for a language,
there is no entry for the language in the dialog

(c) Sparx Systems 2019 Page 422 of 672

User Guide - Software Models 20 January, 2020

Code Template Syntax

Code Templates are written using Enterprise Architect's
Code Template Editor. The Code Template Editor supports
syntax highlighting of the Code Template Framework
language.

Syntax Elements

Elements Detail

Basic
Constructs

Templates can contain:
Literal Text·

Variables·

Macros·

Calls to other templates·

Comments If you want to add comments to the
templates, use the command:
 $COMMENT="text"
where "text" is the text of the comment;
this must be enclosed in quotes.
The command is case-sensitive, and must
be typed in upper case.

(c) Sparx Systems 2019 Page 423 of 672

User Guide - Software Models 20 January, 2020

(c) Sparx Systems 2019 Page 424 of 672

User Guide - Software Models 20 January, 2020

Literal Text

All text within a given template that is not part of a macro or
a variable definition/reference, is considered literal text.
With the exception of blank lines, which are ignored, literal
text is directly substituted from the template into the
generated code.

Consider this excerpt from the Java Class Declaration
template:

 $bases = "Base"

 class % className % $bases

On the final line, the word 'class ', including the subsequent
space, would be treated as literal text and thus for a Class
named 'foo' would return the output:

 class fooBase

A blank line following the variable $bases would have no
effect on the output.

Inserting System Characters:

The %, $, " and \ characters have special meaning in the
template syntax and cannot always be used as literal text. If
these characters must be generated from within the
templates, they can be safely reproduced using these direct
substitution macros:

Macro Action

(c) Sparx Systems 2019 Page 425 of 672

User Guide - Software Models 20 January, 2020

%dl% Produce a literal $ character.

%pc% Produce a literal % character.

%qt% Produce a literal " character.

%sl% Produce a literal \ character

Notes

String conjunction operators (“+”, “+=”) are not required
but can be used

(c) Sparx Systems 2019 Page 426 of 672

User Guide - Software Models 20 January, 2020

Variables

Template variables provide a convenient way of storing and
retrieving data within a template. This section explains how
variables are defined and referenced.

Variable Definitions

Variable definitions take the basic form:

 $<name> = <value>

where <name> can be any alpha-numeric sequence and
<value> is derived from a macro or another variable.

A simple example definition would be:

 $foo = %className%

Variables can be defined using values from:

Substitution, function or list macros·

String literals, enclosed within double quotation marks·

Variable references·

Definition Rules

These rules apply to variable definitions:

Variables have global scope within the template in which·

they are defined and are not accessible to other templates

(c) Sparx Systems 2019 Page 427 of 672

User Guide - Software Models 20 January, 2020

Each variable must be defined at the start of a line,·

without any intervening white space

Variables are denoted by prefixing the name with $, as in·

$foo

Variables do not have to be declared, prior to being·

defined

Variables must be defined using either the assignment·

operator (=), or the addition-assignment operator (+=)

Multiple terms can be combined in a single definition·

using the addition operator (+)

Examples

Using a substitution macro:

 $foo = %opTag:"bar"%

Using a literal string:

 $foo = "bar"

Using another variable:

 $foo = $bar

Using a list macro:

 $ops = %list="Operation" @separator="\n\n"
@indent="\t"%

Using the addition-assignment operator (+=):

 $body += %list="Operation" @separator="\n\n"
@indent="\t"%

(c) Sparx Systems 2019 Page 428 of 672

User Guide - Software Models 20 January, 2020

That definition is equivalent to:

 $body = $body + %list="Operation" @separator="\n\n"
@indent="\t"%

Using multiple terms:

 $templateArgs = %list="ClassParameter" @separator=",
"%

 $template ="template<" + $templateArgs + ">"

Variable References

Variable values can be retrieved by using a reference of the
form:

 $<name>

where <name> can be a previously defined variable.

Variable references can be used:

As part of a macro, such as the argument to a function·

macro

As a term in a variable definition·

As a direct substitution of the variable value into the·

output

It is legal to reference a variable before it is defined. In this
case, the variable is assumed to contain an empty string
value: ""

(c) Sparx Systems 2019 Page 429 of 672

User Guide - Software Models 20 January, 2020

Variable References - Example 1

Using variables as part of a macro. This is an excerpt from
the default C++ ClassNotes template.

 $wrapLen = %genOptWrapComment%

 $style = %genOptCPPCommentStyle% (Define
variables to store the style and wrap length options)

 %if $style == "XML.NET"% (Reference to $style as
part of a condition)

 %XML_COMMENT($wrapLen)%

 %else%

 %CSTYLE_COMMENT($wrapLen)% (Reference to
$wrapLen as an argument to function macro)

 %endIf%

Variable References - Example 2

Using variable references as part of a variable definition.

 $foo = "foo" (Define our variables)

 $bar = "bar"

 $foobar = $foo + $bar ($foobar now contains the value
foobar)

Variable References - Example 3

(c) Sparx Systems 2019 Page 430 of 672

User Guide - Software Models 20 January, 2020

Substituting variable values into the output.

 $bases=%classInherits% (Store the result of the
ClassInherits template in $bases)

 Class %className%$bases (Now output the value of
$bases after the Class name)

(c) Sparx Systems 2019 Page 431 of 672

User Guide - Software Models 20 January, 2020

Macros

Macros provide access to element fields within the UML
model and are also used to structure the generated output.
All macros are enclosed within percent (%) signs, as shown:

 %<macroname>%

In general, macros (including the % delimiters) are
substituted for literal text in the output. For example,
consider this item from the Class Declaration template:

 ... class %className% ...

The field substitution macro, %className%, would result in
the current Class name being substituted in the output. So if
the Class being generated was named Foo, the output would
be:

 ... class Foo ...

The CTF contains a number of types of macro:

Template Substitution Macros·

Field Substitution Macros·

Substitution Examples·

Attribute Field Substitution Macros·

Class Field Substitution Macros·

Code Generation Option Field Substitution Macros·

Connector Field Substitution Macros·

Constraint Field Substitution Macros·

Effort Field Substitution Macros·

(c) Sparx Systems 2019 Page 432 of 672

http://www.sparxsystems.com/enterprise_architect_user_guide/15.1/model_domains/templatesubstitutionmacros.html
http://www.sparxsystems.com/enterprise_architect_user_guide/15.1/model_domains/fieldsubstitutionmacros.html
http://www.sparxsystems.com/enterprise_architect_user_guide/15.1/model_domains/substitution_examples.html
http://www.sparxsystems.com/enterprise_architect_user_guide/15.1/model_domains/attribute_field_substitution_m.html
http://www.sparxsystems.com/enterprise_architect_user_guide/15.1/model_domains/class_field_substitution_macro.html
http://www.sparxsystems.com/enterprise_architect_user_guide/15.1/model_domains/generation_option_field_substi.html
http://www.sparxsystems.com/enterprise_architect_user_guide/15.1/model_domains/connector_field_substitution_m.html
http://www.sparxsystems.com/enterprise_architect_user_guide/15.1/model_domains/constraint_field_substitution_.html
http://www.sparxsystems.com/enterprise_architect_user_guide/15.1/model_domains/effort_field_substitution_macr.html

User Guide - Software Models 20 January, 2020

File Field Substitution Macros·

File Import Field Substitution Macros·

Link Field Substitution Macros·

Linked File Field Substitution Macros·

Metric Field Substitution Macros·

Operation Field Substitution Macros·

Package Field Substitution Macros·

Parameter Field Substitution Macros·

Problem Field Substitution Macros·

Requirement Field Substitution Macros·

Resource Field Substitution Macros·

Risk Field Substitution Macros·

Scenario Field Substitution Macros·

Tagged Value Substitution Macros·

Template Parameter Substitution Macros·

Test Field Substitution Macros·

Function Macros·

Control Macros·

List Macro·

Branching Macros·

Synchronization Macros·

The Processing Instruction (PI) Macro·

EASL Code Generation Macros·

(c) Sparx Systems 2019 Page 433 of 672

http://www.sparxsystems.com/enterprise_architect_user_guide/15.1/model_domains/file_field_substitution_macros.html
http://www.sparxsystems.com/enterprise_architect_user_guide/15.1/model_domains/file_import_field_substitution.html
http://www.sparxsystems.com/enterprise_architect_user_guide/15.1/model_domains/link_field_substitution_macros.html
http://www.sparxsystems.com/enterprise_architect_user_guide/15.1/model_domains/file_link_field_substitution_m.html
http://www.sparxsystems.com/enterprise_architect_user_guide/15.1/model_domains/metric_field_substitution_macr.html
http://www.sparxsystems.com/enterprise_architect_user_guide/15.1/model_domains/operations_field_substitution_.html
http://www.sparxsystems.com/enterprise_architect_user_guide/15.1/model_domains/package_field_substitution_mac.html
http://www.sparxsystems.com/enterprise_architect_user_guide/15.1/model_domains/parameter_field_substitution_m.html
http://www.sparxsystems.com/enterprise_architect_user_guide/15.1/model_domains/problem_field_substitution_mac.html
http://www.sparxsystems.com/enterprise_architect_user_guide/15.1/model_domains/requirement_field_substitution.html
http://www.sparxsystems.com/enterprise_architect_user_guide/15.1/model_domains/resource_field_substitution_ma.html
http://www.sparxsystems.com/enterprise_architect_user_guide/15.1/model_domains/risk_field_substitution_macros.html
http://www.sparxsystems.com/enterprise_architect_user_guide/15.1/model_domains/scenario_field_substitution_ma.html
http://www.sparxsystems.com/enterprise_architect_user_guide/15.1/model_domains/taggedvaluemacros.html
http://www.sparxsystems.com/enterprise_architect_user_guide/15.1/model_domains/template_parameter_substitutio.html
http://www.sparxsystems.com/enterprise_architect_user_guide/15.1/model_domains/test_field_substitution_macros.html
http://www.sparxsystems.com/enterprise_architect_user_guide/15.1/model_domains/functionmacros.html
http://www.sparxsystems.com/enterprise_architect_user_guide/15.1/model_domains/controlmacros.html
http://www.sparxsystems.com/enterprise_architect_user_guide/15.1/model_domains/list_macro.html
http://www.sparxsystems.com/enterprise_architect_user_guide/15.1/model_domains/branching_macros.html
http://www.sparxsystems.com/enterprise_architect_user_guide/15.1/model_domains/synchronization_macros.html
http://www.sparxsystems.com/enterprise_architect_user_guide/15.1/model_domains/the_pi_macro.html
http://www.sparxsystems.com/enterprise_architect_user_guide/15.1/model_domains/easl_code_generation_macros.html

User Guide - Software Models 20 January, 2020

Template Substitution Macros

Template substitution macros correspond to Base templates,
and result in the execution of the named template. By
convention, template macros are named according to Pascal
casing.

 Structure: %<TemplateName>%

where <TemplateName> can be one of the templates listed
in this topic.

When a template is referenced from within another
template, it is generated with respect to the elements
currently in scope. The specific template is selected based
on the stereotypes of the elements in scope.

As noted previously, there is an implicit hierarchy among
the various templates. Some care should be taken in order to
preserve a sensible hierarchy of template references. For
example, it does not make sense to use the %ClassInherits%
macro within any of the Attribute or Operation templates.
Conversely, the Operation and Attribute templates are
designed for use within the ClassBody template.

Template substitution macros in the CTF

Attribute·

AttributeDeclaration·

AttributeDeclarationImpl·

AttributeNotes·

(c) Sparx Systems 2019 Page 434 of 672

User Guide - Software Models 20 January, 2020

Class·

ClassBase·

ClassBody·

ClassBodyImpl·

ClassDeclaration·

ClassDeclarationImpl·

ClassImpl·

ClassInherits·

ClassInterface·

ClassNotes·

ClassParameter·

File·

FileImpl·

ImportSection·

ImportSectionImpl·

InnerClass·

InnerClassImpl·

LinkedAttribute·

LinkedAttributeDeclaration·

LinkedAttributeNotes·

LinkedClassBase·

LinkedClassInterface·

Namespace·

NamespaceBody·

NamespaceDeclaration·

(c) Sparx Systems 2019 Page 435 of 672

User Guide - Software Models 20 January, 2020

NamespaceImpl·

Operation·

OperationBody·

OperationBodyImpl·

OperationDeclaration·

OperationDeclarationImpl·

OperationImpl·

OperationNotes·

Parameter·

(c) Sparx Systems 2019 Page 436 of 672

User Guide - Software Models 20 January, 2020

Field Substitution Macros

The field substitution macros provide access to data in your
model. In particular, they are used to access data fields
from:

Packages·

Classes·

Attributes·

Operations, and·

Parameters·

Field substitution macros are named according to Camel
casing. By convention, the macro is prefixed with an
abbreviated form of the corresponding model element. For
example, attribute-related macros begin with att, as in the
%attName% macro, to access the name of the attribute in
scope.

Macros that represent checkboxes return a value of T if the
box is selected. Otherwise the value is empty.

This table lists a small number of project field substitution
macros. Type-specific macros are listed in the subtopics of
this Field Substitution Macros section.

Project Macros

Macro Name Description

(c) Sparx Systems 2019 Page 437 of 672

User Guide - Software Models 20 January, 2020

eaDateTime The current time with format:
DD-MMM-YYYY HH:MM:SS AM/PM.

eaGUID A unique GUID for this generation.

eaVersion Program Version (located in the 'About
Enterprise Architect' dialog by selecting
'Start > Help > Help > About EA').

(c) Sparx Systems 2019 Page 438 of 672

User Guide - Software Models 20 January, 2020

Substitution Examples

Field substitution macros can be used in one of two ways:

Direct Substitution or·

Conditional Substitution·

Direct Substitution

This form directly substitutes the corresponding value of the
element in scope into the output.

Structure: %<macroName>%

Where <macroName> can be any of the macros listed in the
Field Substitution Macros tables.

Examples

%className%·

%opName%·

%attName%·

Conditional Substitution

This form of the macro enables alternative substitutions to

(c) Sparx Systems 2019 Page 439 of 672

User Guide - Software Models 20 January, 2020

be made depending on the macro's value.

Structure: %<macroName> (== "<text>") ? <subTrue> (:
<subFalse>) %

Where:

() denotes that values between the parentheses are·

optional

<text> is a string representing a possible value for the·

macro

<subTrue> and <subFalse> can be a combination of·

quoted strings and the keyword value; where the value is
used, it is replaced with the macro's value in the output

Examples

%classAbstract=="T" ? "pure" :""%·

%opStereotype=="operator" ? "operator" :""%·

%paramDefault != "" ? " = " value : ""%·

These three examples output nothing if the condition fails.
In this case the False condition can be omitted, resulting in
this usage:

%classAbstract=="T" ? "pure"%·

%opStereotype=="operator" ? "operator"%·

%paramDefault != "" ? " = "value%·

The third example of both blocks shows a comparison
checking for a non-empty value or existence. This test can

(c) Sparx Systems 2019 Page 440 of 672

User Guide - Software Models 20 January, 2020

also be omitted.

%paramDefault ? " = " value : ""%·

%paramDefault ? " = " value%·

All of these examples containing paramDefault are
equivalent. If the parameter in scope had a default value of
10, the output from each of them would normally be:

= 10

Notes

In a conditional substitution macro, any white space·

following <macroName> is ignored; if white space is
required in the output, it should be included within the
quoted substitution strings

(c) Sparx Systems 2019 Page 441 of 672

User Guide - Software Models 20 January, 2020

Attribute Field Substitution Macros

This table lists each of the attribute field substitution
macros.

Field substitution macros are named according to Camel
casing. Macros that represent checkboxes return a value of
'T' if the box is selected. Otherwise the value is empty.

Attribute Macros

Macro Name Description

attAlias 'Attributes' dialog: Alias.

attAllowDupl
icates

'Attributes Detail' dialog: 'Allow
Duplicates' checkbox.

attClassifierG
UID

The unique GUID for the classifier of the
current attribute.

attCollection 'Attributes Detail' dialog: 'Attribute is a
Collection' checkbox.

attConst 'Attributes' dialog: 'Const' checkbox.

attContainerT
ype

'Attributes Detail' dialog: Container Type.

(c) Sparx Systems 2019 Page 442 of 672

User Guide - Software Models 20 January, 2020

attContainme
nt

'Attributes' dialog: Containment.

attDerived 'Attributes' dialog: 'Derived' checkbox.

attGUID The unique GUID for the current
attribute.

attInitial 'Attributes' dialog: Initial.

attIsEnumLit
eral

'Attributes' dialog: 'Is Literal' checkbox.

attIsID 'Attributes Detail' dialog: 'isID' checkbox.

attLength 'Column' dialog: Length.

attLowerBou
nd

'Attributes Detail' dialog: Lower Bound.

attName 'Attributes' dialog: Name.

attNotes 'Attributes' dialog: Notes.

attOrderedM
ultiplicity

'Attributes Detail' dialog: 'Ordered
Multiplicity' checkbox.

(c) Sparx Systems 2019 Page 443 of 672

User Guide - Software Models 20 January, 2020

attProperty 'Attributes' dialog: 'Property' checkbox.

attQualType The attribute type qualified by the
namespace path (if generating
namespaces) and the classifier path (dot
delimited). If the attribute classifier has
not been set, is equivalent to the attType
macro.

attScope 'Attributes' dialog: Scope.

attStatic 'Attributes' dialog: 'Static' checkbox.

attStereotype 'Attributes' dialog: Stereotype.

attType 'Attributes' dialog: Type.

attUpperBou
nd

'Attributes Detail' dialog: Upper Bound.

attVolatile 'Attributes Detail' dialog: 'Transient'
checkbox.

(c) Sparx Systems 2019 Page 444 of 672

User Guide - Software Models 20 January, 2020

Class Field Substitution Macros

This table provides a list of methods for accessing each
available Class property in the Code Generation and
Transformation templates.

Field substitution macros are named according to Camel
casing. Macros that represent checkboxes return a value of
'T' if the box is selected. Otherwise the value is empty.

Class Macros

Macro Name Description

elemType The element type: Interface or Class.

classAbstract Class 'Properties' dialog: 'Abstract'
checkbox ('Details' tab).

classAlias Class 'Properties' dialog: 'Alias' field.

classArgume
nts

Class 'Detail' dialog: C++ Templates:
Arguments.

classAuthor Class 'Properties' dialog: 'Author' field.

classBaseNa
me

'Type Hierarchy' dialog: Class Name (for
use where no connector exists between

(c) Sparx Systems 2019 Page 445 of 672

User Guide - Software Models 20 January, 2020

child and base Classes).

classBaseSco
pe

The scope of the inheritance as reverse
engineered. (For use where no connector
exists between child and base Classes.)

classBaseVirt
ual

The virtual property of the inheritance as
reverse engineered. (For use where no
connector exists between child and base
Classes.)

classComple
xity

Class 'Properties' dialog: 'Complexity'
field.

classCreated The date and time the Class was created.

classGUID The unique GUID for the current Class.

classHasCons
tructor

Looks at the list of methods in the current
object and, depending on the conventions
of the current language, returns T if one is
a default constructor. Typically used with
the genOptGenConstructor macro.

classHasCop
yConstructor

Looks at the list of methods in the current
object and, depending on the conventions
of the current language, returns T if one is
a copy constructor. Typically used with
the genOptGenCopyConstructor macro.

(c) Sparx Systems 2019 Page 446 of 672

User Guide - Software Models 20 January, 2020

classHasDest
ructor

Looks at the list of methods in the current
object and, depending on the conventions
of the current language, returns T if one is
a destructor. Typically used with the
genOptGenDestructor macro.

classHasPare
nt

True, if the Class in scope has one or
more base Classes.

classHasStere
otype

True, if the Class in scope has a
stereotype that matches a stereotype
name (which you can optionally specify
as fully qualified). It therefore checks all
stereotypes that a Class has and returns
'T' if any of them is the specified
stereotype or a specialization of it. For
example:

%classHasStereotype:"block"% will·

return 'T' for any block-stereotyped
Class from any SysML version,
including associationBlock
%classHasStereotype:"SysML1.4::bloc·

k"% will specifically match the SysML
1.4 versions

Compare this with classStereotype, later.

classImports 'Code Gen' dialog: Imports.

(c) Sparx Systems 2019 Page 447 of 672

User Guide - Software Models 20 January, 2020

classIsActive Class 'Advanced' dialog: 'Is Active'
checkbox.

classIsAssoci
ationClass

True, if the Association is an
AssociationClass connector.

classIsInstant
iated

True, if the Class is an instantiated
template Class.

classIsLeaf Class 'Advanced' dialog: 'Is Leaf'
checkbox.

classIsRoot Class 'Advanced' dialog: 'Is Root'
checkbox.

classIsSpecifi
cation

Class 'Advanced' dialog: 'Is Specification'
checkbox.

classKeywor
ds

Class 'Properties' dialog: 'Keywords'
field.

classLanguag
e

Class 'Properties' dialog: 'Language' field.

classMacros A space separated list of macros defined
for the Class.

classModifie
d

The date and time the Class was last
modified.

(c) Sparx Systems 2019 Page 448 of 672

User Guide - Software Models 20 January, 2020

classMultipli
city

Class 'Advanced' dialog: Multiplicity.

className Class 'Properties' dialog: 'Name' field.

classNotes Class 'Properties' dialog: 'Note' field.

classParamD
efault

Class 'Detail' dialog.

classParamN
ame

Class 'Detail' dialog.

classParamT
ype

Class 'Detail' dialog.

classPersisten
ce

Class 'Properties' dialog: 'Persistence'
field ('Details' tab)

classPhase Class 'Properties' dialog: 'Phase' field.

classQualNa
me

The Class name prefixed by its outer
Classes. Class names are separated by
double colons (::).

classScope Class 'Properties' dialog: 'Scope' field.

classStereoty Class 'Properties' dialog: 'Stereotype'

(c) Sparx Systems 2019 Page 449 of 672

User Guide - Software Models 20 January, 2020

pe field. Retrieves the name of the first
stereotype applied to the Class. When
used in a comparison, it checks whether
that first stereotype exactly matches a
string.
For example:
%classStereotype=="enumeration" ?
"enum" : "class"%
Compare this with classHasStereotype,
earlier.

classStatus Class 'Properties' dialog: 'Status' field.

classVersion Class 'Properties' dialog: 'Version' field.

(c) Sparx Systems 2019 Page 450 of 672

User Guide - Software Models 20 January, 2020

Code Generation Option Field
Substitution Macros

Code generation option field substitution macros operate on
the source code generation options defined in the 'Source
Code Engineering' pages of either the:

'Preferences' dialog ('Start > Desktop > Preferences >·

Preferences > Source Code Engineering') for user-specific
options, or

'Manage Project Options' dialog ('Configure > Model >·

Options') for model-specific options

For more information on the division of the options, see the
Source Code Engineering Options topic.

Field substitution macros are named according to Camel
casing. Macros that represent checkboxes return a value of
'T' if the box is selected. Otherwise the value is empty. This
table lists each of the code generation option field
substitution macros.

Code Generation Option Macros

Macro Name Description

genOptActio
nScriptVersio
n

ActionScript Specifications page: Default
Version.

(c) Sparx Systems 2019 Page 451 of 672

User Guide - Software Models 20 January, 2020

genOptCDefa
ultAttributeT
ype

C Specifications page: Default Attribute
Type.

genOptCGen
MethodNotes
InBody

C Specifications page: Method Notes In
Implementation.

genOptCGen
MethodNotes
InHeader

C Specifications page: Method Notes In
Header.

genOptCSyn
chNotes

C Specifications page: Synchronize Notes
in Generation.

genOptCSyn
chCFile

C Specifications page: Synchronise
Implementation file in Generation.

genOptCDefa
ultSourceDir
ectory

C Specifications page: Default Source
Directory.

genOptCNam
espaceDelimi
ter

C Specifications page: Namespace
Delimiter.

genOptCOpe
rationRefPara

C Specifications page: Reference as
Operation Parameter.

(c) Sparx Systems 2019 Page 452 of 672

User Guide - Software Models 20 January, 2020

m

genOptCOpe
rationRefPara
mStyle

C Specifications page: Reference
Parameter Style.

genOptCOpe
rationRefPara
mName

C Specifications page: Reference
Parameter Name.

genOptCCon
structorName

C Specifications page: Default
Constructor Name.

genOptCDest
ructorName

C Specifications page: Default Destructor
Name.

genOptCPPC
ommentStyle

C++ Specifications page: Comment
Style.

genOptCPPD
efaultAttribut
eType

C++ Specifications page: Default
Attribute Type.

genOptCPPD
efaultReferen
ceType

C++ Specifications page: Default
Reference Type.

genOptCPPD
efaultSource

C++ Specifications page: Default Source
Directory.

(c) Sparx Systems 2019 Page 453 of 672

User Guide - Software Models 20 January, 2020

Directory

genOptCPPG
enMethodNot
esInHeader

C++ Specifications page: 'Method Notes
In Header' checkbox.

genOptCPPG
enMethodNot
esInBody

C++ Specifications page: Method Notes
In Body checkbox.

genOptCPPG
etPrefix

C++ Specifications page: Get Prefix.

genOptCPPH
eaderExtensi
on

C++ Specifications page: Header
Extension.

genOptCPPS
etPrefix

C++ Specifications page: Set Prefix.

genOptCPPS
ourceExtensi
on

C++ Specifications page: Source
Extension.

genOptCPPS
ynchNotes

C++ Specifications page: Synchronize
Notes.

genOptCPPS
ynchCPPFile

C++ Specifications page: Synchronize
CPP File.

(c) Sparx Systems 2019 Page 454 of 672

User Guide - Software Models 20 January, 2020

genOptCSDe
faultAttribute
Type

C# Specifications page: Default Attribute
Type.

genOptCSSo
urceExtensio
n

C# Specifications page: Default file
extension.

genOptCSGe
nDispose

C# Specifications page: Generate
Dispose.

genOptCSGe
nFinalizer

C# Specifications page: Generate
Finalizer.

genOptCSGe
nNamespace

C# Specifications page: Generate
Namespace.

genOptCSDe
faultSourceD
irectory

C# Specifications page: Default Source
Directory.

genOptDefau
ltAssocAttNa
me

Source Code Engineering page: Default
name for associated attribute.

genOptDefau
ltConstructor
Scope

Object Lifetimes page: Default
Constructor Visibility.

(c) Sparx Systems 2019 Page 455 of 672

User Guide - Software Models 20 January, 2020

genOptDefau
ltCopyConstr
uctorScope

Object Lifetimes page: Default Copy
Constructor Visibility.

genOptDefau
ltDatabase

Code Editors page: Default Database.

genOptDefau
ltDestructorS
cope

Object Lifetimes page: Default
Destructor Constructor Visibility.

genOptGenC
apitalisedPro
perties

'Source Code Engineering' page:
'Capitalize Attribute Names for
Properties' checkbox.

genOptGenC
omments

'Source Code Engineering' page:
'Comments - Generate' checkbox.

genOptGenC
onstructor

Object Lifetimes page: 'Generate
Constructor' checkbox.

genOptGenC
onstructorInli
ne

Object Lifetimes page: 'Constructor
Inline' checkbox.

genOptGenC
opyConstruct
or

Object Lifetimes page: 'Generate Copy
Constructor' checkbox.

(c) Sparx Systems 2019 Page 456 of 672

User Guide - Software Models 20 January, 2020

genOptGenC
opyConstruct
orInline

Object Lifetimes page: 'Copy Constructor
Inline' checkbox.

genOptGenD
estructor

Object Lifetimes page: 'Generate
Destructor' checkbox.

genOptGenD
estructorInlin
e

Object Lifetimes page: 'Destructor Inline'
checkbox.

genOptGenD
estructorVirt
ual

Object Lifetimes page: 'Virtual
Destructor' checkbox.

genOptGenI
mplementedI
nterfaceOps

'Code Generation' page: 'Generate
methods for implemented interfaces'
checkbox.

genOptGenPr
efixBoolProp
erties

'Source Code Engineering' page: 'Use 'Is'
for Boolean property Get()' checkbox.

genOptGenR
oleNames

'Source Code Engineering' page:
'Autogenerate role names when creating
code' checkbox.

genOptGenU 'Source Code Engineering' page: 'Do not

(c) Sparx Systems 2019 Page 457 of 672

User Guide - Software Models 20 January, 2020

nspecAssocD
ir

generate members where Association
direction is unspecified' checkbox.

genOptJavaD
efaultAttribut
eType

Java Specifications page: Default
attribute type.

genOptJavaG
etPrefix

Java Specifications page: Get Prefix.

genOptJavaD
efaultSource
Directory

Java Specifications page: Default Source
Directory.

genOptJavaS
etPrefix

Java Specifications page: Set Prefix.

genOptJavaS
ourceExtensi
on

Java Specifications page: Source code
extension.

genOptPHPD
efaultSource
Directory

PHP Specifications page: Default Source
Directory.

genOptPHPG
etPrefix

PHP Specifications page: Get Prefix.

genOptPHPS PHP Specifications page: Set Prefix.

(c) Sparx Systems 2019 Page 458 of 672

User Guide - Software Models 20 January, 2020

etPrefix

genOptPHPS
ourceExtensi
on

PHP Specifications page: Default file
extension.

genOptPHPV
ersion

PHP Specifications page: PHP Version.

genOptPrope
rtyPrefix

'Source Code Engineering' page: Remove
prefixes when generating Get/Set
properties.

genOptVBM
ultiUse

VB Specifications page: 'Multiuse'
checkbox.

genOptVBPe
rsistable

VB Specifications page: 'Persistable'
checkbox.

genOptVBDa
taBindingBeh
avior

VB Specifications page: 'Data binding
behavior' checkbox.

genOptVBDa
taSourceBeha
vior

VB Specifications page: 'Data source
behavior' checkbox.

genOptVBGl
obal

VB Specifications page: 'Global
namespace' checkbox.

(c) Sparx Systems 2019 Page 459 of 672

User Guide - Software Models 20 January, 2020

genOptVBCr
eatable

VB Specifications page: 'Creatable'
checkbox.

genOptVBEx
posed

VB Specifications page: 'Exposed'
checkbox.

genOptVBM
TS

VB Specifications page: MTS
Transaction Mode.

genOptVBNe
tGenNamesp
ace

VB.Net Specifications page: Generate
Namespace.

genOptVBVe
rsion

VB Specifications page: Default Version.

genOptWrap
Comment

'Source Code Engineering' page: Wrap
length for comment lines.

(c) Sparx Systems 2019 Page 460 of 672

User Guide - Software Models 20 January, 2020

Connector Field Substitution Macros

This table lists each of the connector field substitution
macros.

Field substitution macros are named according to Camel
casing. Macros that represent checkboxes return a value of
'T' if the box is selected. Otherwise the value is empty.

Connector Macros

Macro Name Description

connectorAli
as

Connector 'Properties' dialog: 'Alias'
field.

connectorAss
ociationClass
ElemGUID

The GUID of the connector's Association
Class element.

connectorAss
ociationClass
ElemName

The name of the connector's Association
Class element.

connectorDes
tAccess

Connector 'Properties' dialog, 'Target
Role' tab: Access.

connectorDes Connector 'Properties' dialog, 'Target

(c) Sparx Systems 2019 Page 461 of 672

User Guide - Software Models 20 January, 2020

tAggregation Role' tab: Aggregation.

connectorDes
tAlias

Connector 'Properties' dialog, 'Target
Role' tab: Alias.

connectorDes
tAllowDuplic
ates

Connector 'Properties' dialog, 'Target
Role' tab: 'Allow Duplicates' checkbox.

connectorDes
tChangeable

Connector 'Properties' dialog, 'Target
Role' tab: Changeable.

connectorDes
tConstraint

Connector 'Properties' dialog, 'Target
Role' tab: Constraint(s).

connectorDes
tContainment

Connector 'Properties' dialog, 'Target
Role' tab: Containment.

connectorDes
tDerived

Connector 'Properties' dialog, 'Target
Role' tab: 'Derived' checkbox.

connectorDes
tDerivedUnio
n

Connector 'Properties' dialog, 'Target
Role' tab: 'DerivedUnion' checkbox.

connectorDes
tElem*

A set of macros that access a property of
the element at the target end of a
connector. The * (asterisk) is a wildcard
that corresponds to any Class substitution

(c) Sparx Systems 2019 Page 462 of 672

User Guide - Software Models 20 January, 2020

macro in the Class macro list. For
example:

connectorDestElemAlias (classAlias)·

connectorDestElemAuthor·

(classAuthor)

connectorDes
tElemType

The element type of the connector
destination element. (Separate from the
connectorDestElem* macros because
there is no classType substitution macro.)

connectorDes
tFeature*

A set of macros that access a property of
the feature at the target end of a
connector. The * (asterisk) is a wildcard
that corresponds to any attribute or
operation substitution macro in the
Attribute macro or Operation macro list,
depending on the
connectorDestFeatureType.
For example:

connectorDestFeatureReturnClassifier·

GUID - an operation's return classifier
GUID
connectorDestFeatureContainment - an·

attribute's containment

connectorDes
tFeatureType

The type of the connector destination
feature.

(c) Sparx Systems 2019 Page 463 of 672

User Guide - Software Models 20 January, 2020

connectorDestFeatureType="Attribute"·

or "Operation"

connectorDes
tMemberTyp
e

Connector 'Properties' dialog, 'Target
Role' tab: Member Type.

connectorDes
tMultiplicity

Connector 'Properties' dialog, 'Target
Role' tab: Multiplicity.

connectorDes
tNavigability

Connector 'Properties' dialog, 'Target
Role' tab: Navigability.

connectorDes
tNotes

Connector 'Properties' dialog, 'Target
Role' tab: Role Notes.

connectorDes
tOrdered

Connector 'Properties' dialog, 'Target
Role' tab: 'Ordered' checkbox.

connectorDes
tOwned

Connector 'Properties' dialog, 'Target
Role' tab: 'Owned' checkbox.

connectorDes
tQualifier

Connector 'Properties' dialog, 'Target
Role' tab: Qualifier(s).

connectorDes
tRole

Connector 'Properties' dialog, 'Target
Role' tab: Role.

connectorDes Connector 'Properties' dialog, 'Target

(c) Sparx Systems 2019 Page 464 of 672

User Guide - Software Models 20 January, 2020

tScope Role' tab: Target Scope.

connectorDes
tStereotype

Connector 'Properties' dialog, 'Target
Role' tab: Stereotype.

connectorDir
ection

Connector Properties: Direction.

connectorEff
ect

'Transition Constraints' dialog: 'Effect'
field.

connectorGu
ard

'Object Flow' and 'Transition Constraints'
dialogs: 'Guard' field.

connectorGU
ID

The unique GUID for the current
connector.

connectorIsA
ssociationCla
ss

True, if the connector is an
AssociationClass connector.

connectorNa
me

Connector Properties: Name.

connectorNot
es

Connector Properties: Notes.

connectorSou
rceAccess

Connector 'Properties' dialog, 'Source
Role' tab: Access.

(c) Sparx Systems 2019 Page 465 of 672

User Guide - Software Models 20 January, 2020

connectorSou
rceAggregati
on

Connector 'Properties' dialog, 'Source
Role' tab: Aggregation.

connectorSou
rceAlias

Connector 'Properties' dialog, 'Source
Role' tab: Alias.

connectorSou
rceAllowDup
licates

Connector 'Properties' dialog, 'Source
Role' tab: Allow Duplicates checkbox.

connectorSou
rceChangeabl
e

Connector 'Properties' dialog, 'Source
Role' tab: Changeable.

connectorSou
rceConstraint

Connector 'Properties' dialog, 'Source
Role' tab: Constraint(s).

connectorSou
rceContainm
ent

Connector 'Properties' dialog, 'Source
Role' tab: Containment.

connectorSou
rceDerived

Connector 'Properties' dialog, 'Source
Role' tab: 'Derived' checkbox.

connectorSou
rceDerivedU
nion

Connector 'Properties' dialog, 'Source
Role' tab: 'DerivedUnion' checkbox.

(c) Sparx Systems 2019 Page 466 of 672

User Guide - Software Models 20 January, 2020

connectorSou
rceElem*

A set of macros that access a property of
the element at the source end of a
connector. The * (asterisk) is a wildcard
that corresponds to any Class substitution
macro in the Class macro list. For
example:

connectorSourceElemAlias (classAlias)·

connectorSourceElemAuthor·

(classAuthor)

connectorSou
rceElemType

The element type of the connector source
element. (Separate from the
connectorSourceElem* macros because
there is no classType substitution macro.)

connectorSou
rceFeature*

A set of macros that access a property of
the feature at the source end of a
connector. The * (asterisk) is a wildcard
that corresponds to any attribute or
operation substitution macro in the
Attribute macro or Operation macro list,
depending on the
connectorSourceFeatureType. For
example:

connectorSourceFeatureCode -·

Operation's Code
connectorSourceFeatureInitial -·

Attribute's Initial

(c) Sparx Systems 2019 Page 467 of 672

User Guide - Software Models 20 January, 2020

connectorSou
rceFeatureTy
pe

The type of the connector source feature.
connectorSourceFeatureType="Attribut·

e" or "Operation"

connectorSou
rceMemberT
ype

Connector 'Properties' dialog, 'Source
Role' tab: Member Type.

connectorSou
rceMultiplicit
y

Connector 'Properties' dialog, 'Source
Role' tab: Multiplicity.

connectorSou
rceNavigabili
ty

Connector 'Properties' dialog, 'Source
Role' tab: Navigability.

connectorSou
rceNotes

Connector 'Properties' dialog, 'Source
Role' tab: Role Notes.

connectorSou
rceOrdered

Connector 'Properties' dialog, 'Source
Role' tab: 'Ordered' checkbox.

connectorSou
rceOwned

Connector 'Properties' dialog, 'Source
Role' tab: 'Owned' checkbox.

connectorSou
rceQualifier

Connector 'Properties' dialog, 'Source
Role' tab: Qualifier(s).

(c) Sparx Systems 2019 Page 468 of 672

User Guide - Software Models 20 January, 2020

connectorSou
rceRole

Connector 'Properties' dialog, 'Source
Role' tab: Role.

connectorSou
rceScope

Connector 'Properties' dialog, 'Source
Role' tab: Target Scope.

connectorSou
rceStereotype

Connector 'Properties' dialog, 'Source
Role' tab: Stereotype.

connectorSter
eotype

Connector 'Properties' dialog: 'Stereotype'
field.

connectorTri
gger

'Transition Constraints' dialog: 'Trigger'
field.

connectorTyp
e

The connector type; f or example,
Association or Generalization.

connectorWe
ight

'Object Flow Constraints' dialog: 'Weight'
field.

(c) Sparx Systems 2019 Page 469 of 672

User Guide - Software Models 20 January, 2020

Constraint Field Substitution Macros

This table lists each of the 'Constraint' field substitution
macros.

Field substitution macros are named according to Camel
casing. Macros that represent checkboxes return a value of
'T' if the box is selected. Otherwise the value is empty.

Constraint Macros

Macro Name Description

constraintNa
me

'Class' dialog, 'Constraints' tab: Name.

constraintNot
es

'Class' dialog, 'Constraints' tab: Notes.

constraintStat
us

'Class' dialog, 'Constraints' tab: Status.

constraintTyp
e

'Class' dialog, 'Constraints' tab: Type.

constraintWe
ight

'Class' dialog, 'Constraints' tab: ordering
(hand up/down) keys.

(c) Sparx Systems 2019 Page 470 of 672

User Guide - Software Models 20 January, 2020

(c) Sparx Systems 2019 Page 471 of 672

User Guide - Software Models 20 January, 2020

Effort Field Substitution Macros

This table lists each of the 'Effort' field substitution macros.

Field substitution macros are named according to Camel
casing. Macros that represent checkboxes return a value of
'T' if the box is selected. Otherwise the value is empty.

Effort Macros

Macro Name Description

effortName Effort window: Effort.

effortNotes Effort window: Notes (unlabelled).

effortTime Effort window: Time.

effortType Effort window: Type.

(c) Sparx Systems 2019 Page 472 of 672

User Guide - Software Models 20 January, 2020

File Field Substitution Macros

This table lists each of the file field substitution macros.

Field substitution macros are named according to Camel
casing. Macros that represent checkboxes return a value of
'T' if the box is selected. Otherwise the value is empty.

File Macros

Macro Name Description

fileExtension The file type extension of the file being
generated.

fileName The name of the file being generated.

fileNameImp
l

The filename of the implementation file
for this generation, if applicable.

fileHeaders 'Code Gen' dialog: Headers.

fileImports 'Code Gen' dialog: Imports. For supported
languages this also includes dependencies
derived from these types of relationship:

Aggregation·

Association·

(c) Sparx Systems 2019 Page 473 of 672

User Guide - Software Models 20 January, 2020

Attribute classifier·

Method return type·

Method parameter classifier·

Generalization·

Realization (to interface)·

Template Binding (C++)·

Dependency·

filePath The full path of the file being generated.

filePathImpl The full path of the implementation file
for this generation, if applicable.

(c) Sparx Systems 2019 Page 474 of 672

User Guide - Software Models 20 January, 2020

File Import Field Substitution Macros

This table lists each of the file import field substitution
macros.

Field substitution macros are named according to Camel
casing. Macros that represent checkboxes return a value of T
if the box is selected. Otherwise the value is empty.

File Import Macros

Macro Name Description

importClassN
ame

The name of the Class being imported.

importFileNa
me

The filename of the Class being
imported.

importFilePat
h

The full path of the Class being imported.

importFromA
ggregation

T if the Class has an Aggregation
connector to a Class in this file, F
otherwise.

importFromA
ssociation

T if the Class has an Association
connector to a Class in this file, F

(c) Sparx Systems 2019 Page 475 of 672

User Guide - Software Models 20 January, 2020

otherwise.

importFromA
tt

T if an attribute of a Class in the current
file is of the type of this Class, F
otherwise.

importFromD
ependency

T if the Class has a Dependency
connector to a Class in this file, F
otherwise.

importFromG
eneralization

T if the Class has a Generalization
connector to a Class in this file, F
otherwise.

importFrom
Meth

T if a method return type of a Class in the
current file is the type of this Class, F
otherwise.

importFromP
aram

T if a method parameter of a Class in the
current file is of the type of this Class;
otherwise F.

importFromP
ropertyType

T if the Class has a property (Part/Port)
typing to another Class, F otherwise.

importFromR
ealization

T if the Class has a Realization connector
to a Class in this file, F otherwise.

importFromT T if the Class has a TemplateBinding

(c) Sparx Systems 2019 Page 476 of 672

User Guide - Software Models 20 January, 2020

emplateBindi
ng

connector to a Class in this file, F
otherwise.

importInFile T if the Class is in the current file, F
otherwise.

importPackag
ePath

The Package path with a '.' separator of
the Class being imported.

ImportRelati
veFilePath

The relative file path of the Class being
imported from the file path of the file
being generated.

(c) Sparx Systems 2019 Page 477 of 672

User Guide - Software Models 20 January, 2020

Link Field Substitution Macros

If you want to provide access to data concerning connectors
in the model, particularly Associations and Generalizations,
you can use the 'Link field substitution' macros. The macro
names are in Camel casing. Macros that represent
checkboxes return a value of 'T' if the box is selected;
otherwise the value is empty.

Link Macros

Macro Name Description/Result

linkAttAcces
s

Association 'Properties' dialog, Target
Role: 'Access' field.

linkAttAggre
gation

Association 'Properties' dialog, Source or
Target Role: Aggregation.

linkAttCollec
tionClass

The collection appropriate for the linked
attribute in scope.

linkAttContai
nment

Association 'Properties' dialog, Target
Role: Containment.

linkAttName 'Association Properties' dialog: Target.

(c) Sparx Systems 2019 Page 478 of 672

User Guide - Software Models 20 January, 2020

linkAttNotes Association 'Properties' dialog, Target
Role: Role Notes.

linkAttOwne
dByAssociati
on

True, if the 'Owned' checkbox on the
'Role(s)' page of the Association
'Properties' dialog is not selected.

linkAttOwne
dByClass

True, if the 'Owned' checkbox on the
'Role(s)' page of the Association
'Properties' dialog is selected.

linkAttQualN
ame

The Association target qualified by the
namespace path (if generating
namespaces) and the classifier path (dot
delimited).

linkAttRole Association 'Properties' dialog, Target
Role: Role.

linkAttRoleA
lias

'Association Properties Target Role'
dialog: Alias

linkAttStereo
type

Association 'Properties' dialog, Target
Role: Stereotype.

linkAttTarget
Scope

Association 'Properties' dialog, Target
Role: Target Scope.

linkCard Link 'Properties' dialog, Target Role:

(c) Sparx Systems 2019 Page 479 of 672

User Guide - Software Models 20 January, 2020

Multiplicity.

linkGUID The unique GUID for the current
connector.

linkIsAssocia
tionClass

True, if the Association is an
AssociationClass connector.

linkIsBound Returns T if any TemplateBindings are
specified on the connector.

linkParamSu
bs

Returns a comma-separated list of the
arguments specified.

linkParentNa
me

Generalization 'Properties' dialog: 'Target'
field.

linkParentQu
alName

The Generalization target qualified by the
namespace path (if generating
namespaces) and the classifier path (dot
delimited).

linkStereotyp
e

The stereotype of the current connector.

linkVirtualIn
heritance

Generalization 'Properties' dialog: 'Virtual
Inheritance' field.

(c) Sparx Systems 2019 Page 480 of 672

User Guide - Software Models 20 January, 2020

(c) Sparx Systems 2019 Page 481 of 672

User Guide - Software Models 20 January, 2020

Linked File Field Substitution Macros

This table lists each of the 'Linked File' field substitution
macros.

Field substitution macros are named according to Camel
casing. Macros that represent checkboxes return a value of
'T' if the box is selected. Otherwise the value is empty.

Linked File Macros

Macro Name Description

linkedFileLas
tWrite

Class 'Properties' dialog: 'Files' tab, 'Last
Write' field.

linkedFileNot
es

Class 'Properties' dialog: 'Files' tab,
'Notes' field.

linkedFilePat
h

Class 'Properties' dialog: 'Files' tab, 'File
Path' field.

linkedFileSiz
e

Class 'Properties' dialog: 'Files' tab, 'Size'
field.

linkedFileTy
pe

Class 'Properties' dialog: 'Files' tab, 'Type'
field.

(c) Sparx Systems 2019 Page 482 of 672

User Guide - Software Models 20 January, 2020

(c) Sparx Systems 2019 Page 483 of 672

User Guide - Software Models 20 January, 2020

Metric Field Substitution Macros

This table lists each of the Metric field substitution macros.

Field substitution macros are named according to Camel
casing. Macros that represent checkboxes return a value of
'T' if the box is selected. Otherwise the value is empty.

Metric Macros

Macro Name Description

metricName Metrics screen: 'Metric' field.

metricNotes Metrics screen: (Notes) field.

metricType Metrics screen: 'Type' field.

metricWeight Metrics screen: 'Weight' field.

(c) Sparx Systems 2019 Page 484 of 672

User Guide - Software Models 20 January, 2020

Operation Field Substitution Macros

The 'Operation field substitution' macros provide access to
data concerning operations in the model. The macro names
are in Camel casing. Macros that represent checkboxes
return a value of 'T' if the box is selected; otherwise the
value is empty.

Operation field substitution macros

Macro Name Description/Result

opAbstract 'Operation' dialog: 'Virtual' checkbox.

opAlias 'Operation' dialog: Alias.

opBehavior 'Operation Behavior' dialog: Behavior.

opCode 'Operation Behavior' dialog: Behavior
Code.

opConcurren
cy

'Operation' dialog: Concurrency.

opConst 'Operation' dialog: 'Const' checkbox.

opGUID The unique GUID for the current

(c) Sparx Systems 2019 Page 485 of 672

User Guide - Software Models 20 January, 2020

operation.

opHasSelfRe
fParam

Scans the list of parameters in the current
Operation, returning 'T' if one type is the
Class reference (this could be ClassA* or
ClassA&, depending on the value of the
genOptCOperationRefParamStyle code
generation option field substitution
macro).

opImplMacro
s

A space-separated list of macros defined
in the implementation of this operation.

opIsQuery 'Operation' dialog: 'IsQuery' checkbox.

opMacros A space-separated list of macros defined
in the declaration for this operation.

opName 'Operation' dialog: Name.

opNotes 'Operation' dialog: Notes.

opPure 'Operation' dialog: 'Pure' checkbox.

opReturnArra
y

'Operation' dialog: 'Return Array'
checkbox.

opReturnClas
sifierGUID

The unique GUID for the classifier of the
current operation.

(c) Sparx Systems 2019 Page 486 of 672

User Guide - Software Models 20 January, 2020

opReturnQua
lType

The operation return type qualified by the
namespace path (if generating
namespaces) and the classifier path (dot
delimited). If the return type classifier has
not been set, it is equivalent to the
opReturnType macro.

opReturnTyp
e

'Operation' dialog: Return Type.

opScope 'Operation' dialog: Scope.

opStatic 'Operation' dialog: 'Static' checkbox.

opStereotype 'Operation' dialog: Stereotype.

opSynchroniz
ed

'Operation' dialog: 'Synchronized'
checkbox.

(c) Sparx Systems 2019 Page 487 of 672

User Guide - Software Models 20 January, 2020

Package Field Substitution Macros

This table lists the Package Field Substitution macros.

Field Substitution macros are named according to Camel
casing. Macros that represent checkboxes return a value of
'T' if the box is selected. Otherwise the value is empty.

Package Macros

Macro Name Description

packageAbstr
act

Package dialog: Abstract.

packageAlias Package dialog: Alias.

packageAuth
or

Package dialog: Author.

packageCom
plexity

Package dialog: Complexity.

packageGUI
D

The unique GUID for the current
Package.

packageKey
words

Package dialog: Keywords.

(c) Sparx Systems 2019 Page 488 of 672

User Guide - Software Models 20 January, 2020

packageLang
uage

Package dialog: Language.

packageNam
e

Package dialog: Name.

packagePath The string representing the hierarchy of
Packages, for the Class in scope. Each
Package name is separated by a dot (.).

packagePhas
e

Package dialog: Phase.

packageScop
e

Package dialog: Scope.

packageStatu
s

Package dialog: Status.

packageStere
otype

Package dialog: Stereotype.

packageVersi
on

Package dialog: Version.

(c) Sparx Systems 2019 Page 489 of 672

User Guide - Software Models 20 January, 2020

Parameter Field Substitution Macros

This table lists each of the Parameter field substitution
macros.

Field substitution macros are named according to Camel
casing. Macros that represent checkboxes return a value of
'T' if the box is selected. Otherwise the value is empty.

Parameter Macros

Macro Name Description

paramClassifi
erGUID

The unique GUID for the classifier of the
current parameter.

paramDefault Operation 'Parameters' dialog: 'Default'
field.

paramFixed Operation 'Parameters' dialog: 'Fixed'
checkbox.

paramGUID The unique GUID for the current
parameter.

paramIsEnu
m

True, if the parameter uses the enum
keyword (C++).

(c) Sparx Systems 2019 Page 490 of 672

User Guide - Software Models 20 January, 2020

paramKind Operation 'Parameters' dialog: 'Kind'
field.

paramName Operation 'Parameters' dialog: 'Name'
field.

paramNotes Operation 'Parameters' dialog: 'Notes'
field.

paramQualTy
pe

The parameter type qualified by the
namespace path (if generating
namespaces) and the classifier path (dot
delimited). If the parameter classifier has
not been set, is equivalent to the
paramType macro.

paramType Operation 'Parameters' dialog: 'Type'
field.

(c) Sparx Systems 2019 Page 491 of 672

User Guide - Software Models 20 January, 2020

Problem Field Substitution Macros

This table lists each of the Problem field substitution
macros.

Field substitution macros are named according to Camel
casing. Macros that represent checkboxes return a value of
'T' if the box is selected. Otherwise the value is empty.

Problem Macros

Macro Name Description

problemCom
pletedBy

'Maintenance' dialog, 'Element Issues'
tab: Completed by.

problemCom
pletedDate

'Maintenance' dialog, 'Element Issues'
tab: Completed.

problemHisto
ry

'Maintenance' dialog, 'Element Issues'
tab: History.

problemNam
e

'Maintenance' dialog, 'Element Issues'
tab: Name.

problemNote
s

'Maintenance' dialog, 'Element Issues'
tab: Description.

(c) Sparx Systems 2019 Page 492 of 672

User Guide - Software Models 20 January, 2020

problemPrior
ity

'Maintenance' dialog, 'Element Issues'
tab: Priority.

problemRaise
dBy

'Maintenance' dialog, 'Element Issues'
tab: Raised by.

problemRaise
dDate

'Maintenance' dialog, 'Element Issues'
tab: Raised.

problemStatu
s

'Maintenance' dialog, 'Element Issues'
tab: Status.

problemVersi
on

'Maintenance' dialog, 'Element Issues'
tab: Version.

(c) Sparx Systems 2019 Page 493 of 672

User Guide - Software Models 20 January, 2020

Requirement Field Substitution
Macros

This table lists each of the Requirement field substitution
macros with a description of the result.

Field substitution macros are named according to Camel
casing. Macros that represent checkboxes return a value of
'T' if the box is selected. Otherwise the value is empty.

Requirement Macros

Macro Name Description

requirementD
ifficulty

'Properties' dialog: 'Require' tab:
Difficulty.

requirementL
astUpdated

'Properties' dialog: 'Require' tab: Last
Update.

requirementN
ame

'Properties' dialog: 'Require' tab: Short
Description.

requirementN
otes

'Properties' dialog: 'Require' tab: Notes.

requirementP 'Properties' dialog: 'Require' tab: Priority.

(c) Sparx Systems 2019 Page 494 of 672

User Guide - Software Models 20 January, 2020

riority

requirementS
tatus

'Properties' dialog: 'Require' tab: Status.

requirementT
ype

'Properties' dialog: 'Require' tab: Type.

(c) Sparx Systems 2019 Page 495 of 672

User Guide - Software Models 20 January, 2020

Resource Field Substitution Macros

This table lists each of the Resource field substitution
macros.

Field substitution macros are named according to Camel
casing. Macros that represent checkboxes return a value of
'T' if the box is selected. Otherwise the value is empty.

Resource Macros

Macro Name Description

resourceAllo
catedTime

Resource Allocation window: Allocated
Time.

resourceEnd
Date

Resource Allocation window: End Date.

resourceExpe
ctedTime

Resource Allocation window: Expected
Time.

resourceExpe
ndedTime

Resource Allocation window: Time
Expended.

resourceHisto
ry

Resource Allocation window: History.

(c) Sparx Systems 2019 Page 496 of 672

User Guide - Software Models 20 January, 2020

resourceNam
e

Resource Allocation window: Resource.

resourceNote
s

Resource Allocation window:
Description.

resourcePerc
entComplete
d

Resource Allocation window:
Completed(%).

resourceRole Resource Allocation window: Role.

resourceStart
Date

Resource Allocation window: Start Date.

(c) Sparx Systems 2019 Page 497 of 672

User Guide - Software Models 20 January, 2020

Risk Field Substitution Macros

This table lists each of the Risk field substitution macros.

Field substitution macros are named according to Camel
casing. Macros that represent checkboxes return a value of
'T' if the box is selected. Otherwise the value is empty.

Risk Macros

Macro Name Description

riskName Risks window: Risk.

riskNotes Risks window: (Notes).

riskType Risks window: Type.

riskWeight Risks window: Weight.

(c) Sparx Systems 2019 Page 498 of 672

User Guide - Software Models 20 January, 2020

Scenario Field Substitution Macros

This table lists each of the Scenario field substitution
macros with a description of the result.

Field substitution macros are named according to Camel
casing. Macros that represent checkboxes return a value of
'T' if the box is selected. Otherwise the value is empty.

Scenario Macros

Macro Name Description

scenarioGUI
D

The unique ID for a scenario. Identifies
the scenario unambiguously within a
model.

scenarioNam
e

'Properties' dialog, 'Scenario' tab:
Scenario.

scenarioNote
s

'Properties' dialog, 'Scenario' tab: (Notes).

scenarioType 'Properties' dialog, 'Scenario' tab: Type.

(c) Sparx Systems 2019 Page 499 of 672

User Guide - Software Models 20 January, 2020

Tagged Value Substitution Macros

Tagged Value macros are a special form of field substitution
macros, which provide access to element tags and the
corresponding Tagged Values. They can be used in one of
two ways:

Direct Substitution·

Conditional Substitution·

Direct Substitution

This form of the macro directly substitutes the value of the
named tag into the output.

Structure: %<macroName>:"<tagName>"%

<macroName> can be one of:

attTag·

classTag·

connectorDestElemTag·

connectorDestTag·

connectorSourceElemTag·

connectorSourceTag·

connectorTag·

linkAttTag·

linkTag·

opTag·

(c) Sparx Systems 2019 Page 500 of 672

User Guide - Software Models 20 January, 2020

packageTag·

paramTag·

This corresponds to the tags for attributes, Classes,
operations, Packages, parameters, connectors with both
ends, elements at both ends of connectors and connectors
including the attribute end.

<tagName> is a string representing the specific tag name.

Example

%opTag:"attribute"%

Conditional Substitution

This form of the macro mimics the conditional substitution
defined for field substitution macros.

Structure: %<macroName>:"<tagName>" (== "<test>") ?
<subTrue> (: <subFalse>) %

Note:

<macroName> and <tagName> are as defined here·

(<text>) denotes that <text> is optional·

<test> is a string representing a possible value for the·

macro

<subTrue> and <subFalse> can be a combination of·

(c) Sparx Systems 2019 Page 501 of 672

User Guide - Software Models 20 January, 2020

quoted strings and the keyword value; where the value is
used, it gets replaced with the macro's value in the output

Examples

%opTag:"opInline" ? "inline" : ""%

%opTag:"opInline" ? "inline"%

%classTag:"unsafe" == "true" ? "unsafe" : ""%

%classTag:"unsafe" == "true" ? "unsafe"%

Tagged Value macros use the same naming convention as
field substitution macros.

(c) Sparx Systems 2019 Page 502 of 672

User Guide - Software Models 20 January, 2020

Template Parameter Substitution
Macros

If you want to provide access in a transformation template to
data concerning the transformation of a Template Binding
connector's binding parameter substitution in the model, you
can use the Template Parameter substitution macros. The
macro names are in Camel casing. Macros that represent
checkboxes return a value of 'T' if the box is selected;
otherwise the value is empty.

Template Parameter substitution macros

Macro Name Description

parameterSub
stitutionForm
al

'Template Binding Properties' dialog,
'Binding Parameter' tab, 'Parameter
Substitution(s)' panel: Formal Template
Parameter name.

parameterSub
stitutionActu
al

'Template Binding Properties' dialog,
'Binding Parameter' tab, 'Parameter
Substitution(s)' panel: Actual parameter
name/expression.

parameterSub
stitutionActu

'Template Binding Properties' dialog,
'Binding Parameter' tab, 'Parameter

(c) Sparx Systems 2019 Page 503 of 672

User Guide - Software Models 20 January, 2020

alClassifier Substitution(s)' panel: Actual parameter
classifier.

(c) Sparx Systems 2019 Page 504 of 672

User Guide - Software Models 20 January, 2020

Test Field Substitution Macros

This table lists each of the Test field substitution macros
with a description of the result.

Field substitution macros are named according to Camel
casing. Macros that represent checkboxes return a value of
'T' if the box is selected. Otherwise the value is empty.

Test Macros

Macro Name Description

testAcceptan
ceCriteria

Testing window: Acceptance Criteria.

testCheckedB
y

Testing window: Checked By.

testDateRun Testing window: Last Run.

testClass Testing window: Test Class (the type of
test defined: Unit, Integration, System,
Acceptance, Inspection, Scenario)

testInput Testing window: Input.

testName Testing window: Test.

(c) Sparx Systems 2019 Page 505 of 672

User Guide - Software Models 20 January, 2020

testNotes Testing window: Description.

testResults Testing window: Results.

testRunBy Testing window: Run By. (Values are
derived from the Project Author
definitions in the 'People' dialog -
'Configure > Reference Data > Model
Types > People > Project Authors'.)

testStatus Testing window: Status.

testType Testing window: Type.

(c) Sparx Systems 2019 Page 506 of 672

User Guide - Software Models 20 January, 2020

Function Macros

Function macros are a convenient way of manipulating and
formatting various element data items. Each function macro
returns a result string. There are two primary ways to use the
results of function macros:

Direct substitution of the returned string into the output,·

such as: %TO_LOWER(attName)%

Storing the returned string as part of a variable definition·

such as: $name = %TO_LOWER(attName)%

Function macros can take parameters, which can be passed
to the macros as:

String literals, enclosed within double quotation marks·

Direct substitution macros without the enclosing percent·

signs

Variable references·

Numeric literals·

Multiple parameters are passed using a comma-separated
list.

Function macros are named according to the All-Caps style,
as in:

 %CONVERT_SCOPE(opScope)%

The available function macros are described here.
Parameters are denoted by square brackets, as in:

 FUNCTION_NAME([param]).

(c) Sparx Systems 2019 Page 507 of 672

User Guide - Software Models 20 January, 2020

CONVERT_SCOPE([umlScope])

For use with supported languages, to convert [umlScope] to
the appropriate scope keyword for the language being
generated. This table shows the conversion of [umlScope]
with respect to the given language.

Language Conversions

C++ Package ==> public
Public ==> public
Private ==> private
Protected ==> protected

C# Package ==> internal
Public ==> public
Private ==> private
Protected ==> protected

Delphi Package ==> protected
Public ==> public
Private ==> private
Protected ==> protected

Java Package ==> {blank}
Public ==> public
Private ==> private

(c) Sparx Systems 2019 Page 508 of 672

User Guide - Software Models 20 January, 2020

Protected ==> protected

PHP Package ==> public
Public ==> public
Private ==> private
Protected ==> protected

VB Package ==> Protected
Public ==> Public
Private ==> Private
Protected ==> Protected

VB .Net Package ==> Friend
Public ==> Public
Private ==> Private
Protected ==> Protected

COLLECTION_CLASS([language])

Gives the appropriate collection Class for the language
specified for the current linked attribute.

CSTYLE_COMMENT([wrap_length])

(c) Sparx Systems 2019 Page 509 of 672

User Guide - Software Models 20 January, 2020

Converts the notes for the element currently in scope to
plain C-style comments, using /* and */.

DELPHI_PROPERTIES([scope], [separator],
[indent])

Generates a Delphi property.

DELPHI_COMMENT([wrap_length])

Converts the notes for the element currently in scope to
Delphi comments.

EXEC_ADD_IN(, [function_name],, ...,)

Invokes an Enterprise Architect Add-In function, which can
return a result string.

[addin_name] and [function_name] specify the names of the
Add-In and function to be invoked.

Parameters to the Add-In function can be specified via
parameters [prm_1] to [prm_n].

 $result = %EXEC_ADD_IN("MyAddin",

(c) Sparx Systems 2019 Page 510 of 672

User Guide - Software Models 20 January, 2020

"ProcessOperation", classGUID, opGUID)%

Any function that is to be called by the EXEC_ADD_IN
macro must have two parameters: an EA.Repository object,
and a Variant array that contains any additional parameters
from the EXEC_ADD_IN call. Return type should be
Variant.

 Public Function ProcessOperation(Repository As
EA.Repository, args As Variant) As Variant

FIND([src], [subString])

Position of the first instance of [subString] in [src]; -1 if
none.

GET_ALIGNMENT()

Returns a string where all of the text on the current line of
output is converted into spaces and tabs.

JAVADOC_COMMENT([wrap_length])

Converts the notes for the element currently in scope to
javadoc -style comments.

(c) Sparx Systems 2019 Page 511 of 672

User Guide - Software Models 20 January, 2020

LEFT([src], [count])

The first [count] characters of [src].

LENGTH([src])

Length of [src]. Returns a string.

MATH_ADD(x,y) MATH_MULT(x,y) and
MATH_SUB(x,y)

In a code template or DDL template, these three macros
perform, respectively, the mathematical functions of:

Addition (x+y)·

Multiplication (x*y) and·

Subtraction (x-y)·

The arguments x and y can be integers or variables, or a
combination of the two. Consider these examples, as used in
a 'Class' template for C++ code generation:

$a = %MATH_ADD(3,4)%·

$b = %MATH_SUB(10,3)%·

$c = %MATH_MULT(2,3)%·

$d = %MATH_ADD($a,$b)%·

(c) Sparx Systems 2019 Page 512 of 672

User Guide - Software Models 20 January, 2020

$e = %MATH_SUB($b,$c)%·

$f = %MATH_MULT($a,$b)%·

$g = %MATH_MULT($a,10)%·

$h = %MATH_MULT(10,$b)%·

These compute, in the same sequence, to:

a = 3 + 4 = $a·

b = 10 - 3 = $b·

c = 2 * 3 = $c·

d = a + b = $d·

e = b - c = $e·

f = a * b = $f·

g = a * 10 = $g·

h = 10 * b = $h·

When the code is generated, the .h file (for C++) contains
these corresponding strings:

a = 3 + 4 = 7·

b = 10 - 3 = 7·

c = 2 * 3 = 6·

d = a + b = 14·

e = b - c = 1·

f = a * b = 49·

g = a * 10 = 70·

h = 10 * b = 70·

(c) Sparx Systems 2019 Page 513 of 672

User Guide - Software Models 20 January, 2020

MID([src], [start]) MID([src], [start], [count])

Substring of [src] starting at [start] and including [count]
characters. Where [count] is omitted the rest of the string is
included.

PI([option], [value], {[option], [value]})

Sets the PI for the current template to [value]. Valid values
for [value] are:

"\n"·

"\t "·

“ “·

“”·

<option> controls when the new PI takes effect. Valid
values for <option> are:

I, Immediate: the new PI is generated before the next·

non-empty template line

N, Next: the new PI is generated after the next non-empty·

template line

Multiple pairs of options are allowed in one call. An
example of the situation where this would used is where one
keyword is always on a new line, as illustrated here:

%PI=" "%

%classAbstract ? "abstract"%

(c) Sparx Systems 2019 Page 514 of 672

User Guide - Software Models 20 January, 2020

%if classTag:"macro" != ""%

%PI("I", "\n", "N", " ")%

%classTag:"macro"%

%endIf%

class

%className%

For more details, see The Processing Instruction (PI)
Macro.

PROCESS_END_OBJECT([template_name])

Enables the Classes that are one Class further away from the
base Class, to be transformed into objects (such as
attributes, operations, Packages, parameters and columns) of
the base Class. [template_name] refers to the working
template that temporarily stores the data.

REMOVE_DUPLICATES([source], [separator])

Where [source] is a [separator] separated list; this removes
any duplicate or empty strings.

REPLACE([string], [old], [new])

(c) Sparx Systems 2019 Page 515 of 672

User Guide - Software Models 20 January, 2020

Replaces all occurrences of [old] with [new] in the given
string <string>.

RESOLVE_OP_NAME()

Resolves clashes in interface names where two method-from
interfaces have the same name.

RESOLVE_QUALIFIED_TYPE()
RESOLVE_QUALIFIED_TYPE([separator])
RESOLVE_QUALIFIED_TYPE([separator],
[default])

Generates a qualified type for the current attribute, linked
attribute, linked parent, operation, or parameter. Enables the
specification of a separator other than. and a default value
for when some value is required.

RIGHT([src], [count])

The last [count] characters of [src].

(c) Sparx Systems 2019 Page 516 of 672

User Guide - Software Models 20 January, 2020

TO_LOWER([string])

Converts [string] to lower case.

TO_UPPER([string])

Converts [string] to upper case.

TRIM([string]) TRIM([string], [trimChars])

Removes trailing and leading white spaces from [string]. If
[trimChars] is specified, all leading and trailing characters in
the set of <trimChars> are removed.

TRIM_LEFT([string]) TRIM_LEFT([string],
[trimChars])

Removes the specified leading characters from <string>.

TRIM_RIGHT([string]) TRIM_RIGHT([string],

(c) Sparx Systems 2019 Page 517 of 672

User Guide - Software Models 20 January, 2020

[trimChars])

Removes the specified trailing characters from <string>.

VB_COMMENT([wrap_length])

Converts the notes for the element currently in scope to
Visual Basic style comments.

WRAP_COMMENT([comment],
[wrap_length], [indent], [start_string])

Wraps the text [comment] at width [wrap_length] putting
[indent] and [start_string] at the beginning of each line.

 $behavior = %WRAP_COMMENT(opBehavior, "40", "
", "//")%

<wrap_length> must still be passed as a string, even though
WRAP_COMMENT treats this parameter as an integer.

WRAP_LINES([text], [wrap_length],
[start_string] {, [end_string] })

Wraps [text] as designated to be [wrap_length], adding

(c) Sparx Systems 2019 Page 518 of 672

User Guide - Software Models 20 January, 2020

[start_string] to the beginning of every line and [end_string]
to the end of the line if it is specified.

XML_COMMENT([wrap_length])

Converts the notes for the element currently in scope to
XML-style comments.

(c) Sparx Systems 2019 Page 519 of 672

User Guide - Software Models 20 January, 2020

Control Macros

Control macros are used to control the processing and
formatting of the templates. The basic types of control
macro include:

The list macro, for generating multiple element features,·

such as attributes and operations

The branching macros, which form if-then-else constructs·

to conditionally execute parts of a template

The PI macro for formatting new lines in the output,·

which takes effect from the next non-empty line

A PI function macro that enables setting PI to a variable·

and adds the ability to set the PI that is generated before
the next line

The synchronization macros·

In general, control macros are named according to Camel
casing.

(c) Sparx Systems 2019 Page 520 of 672

User Guide - Software Models 20 January, 2020

List Macro

If you need to loop or iterate through a set of Objects that
are contained within or are under the current object, you can
do so using the %list macro. This macro performs an
iterative pass on all the objects in the scope of the current
template, and calls another template to process each one.

The basic structure is:

 %list=<TemplateName> @separator=<string>
@indent=<string> (<conditions>) %

where <string> is a double-quoted literal string and
<TemplateName> can be one of these template names:

Attribute·

AttributeImpl·

Class·

ClassBase·

ClassImpl·

ClassInitializer·

ClassInterface·

Constraint·

Custom Template (custom templates enable you to define·

your own templates)

Effort·

InnerClass·

InnerClassImpl·

(c) Sparx Systems 2019 Page 521 of 672

User Guide - Software Models 20 January, 2020

LinkedFile·

Metric·

Namespace·

Operation·

OperationImpl·

Parameter·

Problem·

Requirement·

Resource·

Risk·

Scenario·

Test·

<conditions> is optional and looks the same as the
conditions for 'if' and 'elseIf' statements.

Example

In a Class transform, the Class might contain multiple
attributes; this example calls the Attribute transform and
outputs the result of processing the transform for each
attribute of the Class in scope. The resultant list separates its
items with a single new line and indents them two spaces
respectively. If the Class in scope had any stereotyped
attributes, they would be generated using the appropriately
specialized template.

%list="Attribute" @separator="\n" @indent=" "%

(c) Sparx Systems 2019 Page 522 of 672

User Guide - Software Models 20 January, 2020

The separator attribute, denoted by @separator, specifies the
space that should be used between the list items, excluding
the last item in the list.

The indent attribute, denoted by @indent, specifies the
space by which each line in the generated output should be
indented.

Special Cases

There are some special cases to consider when using the
%list macro:

If the Attribute template is used as an argument to the·

%list macro, this also generates attributes derived from
Associations by executing the appropriate
LinkedAttribute template

If the ClassBase template is used as an argument to the·

%list macro, this also generates Class bases derived from
links in the model by executing the appropriate
LinkedClassBase template

If the ClassInterface template is used as an argument to·

the %list macro, this also generates Class bases derived
from links in the model by executing the appropriate
LinkedClassInterface template

If InnerClass or InnerClassImpl is used as an argument to·

the %list macro, these Classes are generated using the
Class and ClassImpl templates respectively; these
arguments direct that the templates should be processed

(c) Sparx Systems 2019 Page 523 of 672

User Guide - Software Models 20 January, 2020

based on the inner Classes of the Class in scope

(c) Sparx Systems 2019 Page 524 of 672

User Guide - Software Models 20 January, 2020

Branching Macros

Branching macros provide if-then-else constructs. The CTF
supports a limited form of branching through these macros:

if·

elseIf·

else·

endIf·

endTemplate (which exits the current template)·

The basic structure of the if and elseIf macros is:

 %if <test> <operator> <test>%

where <operator> can be one of:

==·

!=·

< (mathematics comparison, less than)·

> (mathematics comparison, greater than)·

<= (mathematics comparison, less than or equal to)·

>= (mathematics comparison, greater than or equal to)·

and <test> can be one of:

a string literal, enclosed within double quotation marks·

a direct substitution macro, without the enclosing percent·

signs

a variable reference·

Note that if you are using one of the mathematics
comparison operators, <test> must be a decimal number in

(c) Sparx Systems 2019 Page 525 of 672

User Guide - Software Models 20 January, 2020

string format.

Branches can be nested, and multiple conditions can be
specified using one of:

and, or·

or·

When specifying multiple conditions, 'and' and 'or' have the
same order of precedence, and conditions are processed left
to right.

If conditional statements on strings are case sensitive, 'a
String' does not equal 'A STRING'. Hence in some
situations it is better to set the variable
$str=TO_LOWER(variable) or TO_UPPER(variable) and
then compare to a specific case.

Macros are not supported in the conditional statements. It is
best to assign the results of a macro (string) to a variable,
and then use the variable in the comparison.

 $fldType = % TO_LOWER ($parameter1)%

 $COMMENT = "Use the first 4 characters for Date and
Time field types"

 $fldType4 = % LEFT ($fldType, 4)%

 %if $fldType4 == "date"%

 Datetime

 %endif%

This takes a parameter of value “Datetime”, “DATETIME”
or “Date”, and returns “Datetime”.

The endif or endTemplate macros must be used to signify
the end of a branch. In addition, the endTemplate macro

(c) Sparx Systems 2019 Page 526 of 672

User Guide - Software Models 20 January, 2020

causes the template to return immediately, if the
corresponding branch is being executed.

Example 1

%if elemType == "Interface"%

;

%else%

%OperationBody%

%endIf%

In this case:

If the elemType is "Interface" a semi-colon is returned·

If the elemType is not "Interface", a template called·

Operation Body is called

Example 2

$bases="ClassBase"

$interfaces=""%

%if $bases !="" and $interfaces !=""%

: $bases, $interfaces

%elseIf $bases !=""%

: $bases

%elseIf $interfaces !=""%

(c) Sparx Systems 2019 Page 527 of 672

User Guide - Software Models 20 January, 2020

: $interfaces

%endIf%

In this case the text returned is ':ClassBase'.

Conditions using Boolean Value

When setting up branching using conditions that involve a
system checkbox (boolean fields), such as Attribute.Static
(attStatic) the conditional statement would be written as:

 %if attStatic == "T"%

For example:

 % if attCollection == "T" or attOrderedMultiplicity ==
"T" %

 % endTemplate %

(c) Sparx Systems 2019 Page 528 of 672

User Guide - Software Models 20 January, 2020

Synchronization Macros

The synchronization macros are used to provide formatting
hints to Enterprise Architect when inserting new sections
into the source code, during forward synchronization. The
values for synchronization macros must be set in the File
templates.

The structure for setting synchronization macros is:

%<name>=<value>%

where <name> can be one of the macros listed here and
<value> is a literal string enclosed by double quotes.

Synchronization Macros

Macro Name Description

synchNewCl
assNotesSpac
e

Space to append to a new Class note.
Default value: \n.

synchNewAtt
ributeNotesS
pace

Space to append to a new attribute note.
Default value: \n.

synchNewOp
erationNotes
Space

Space to append to a new operation note.
Default value: \n.

(c) Sparx Systems 2019 Page 529 of 672

User Guide - Software Models 20 January, 2020

synchNewOp
erationBodyS
pace

Space to append to a new operation body.
Default value: \n.

synchNames
paceBodyInd
ent

Indent applied to Classes within
non-global namespaces. Default value: \t.

(c) Sparx Systems 2019 Page 530 of 672

User Guide - Software Models 20 January, 2020

The Processing Instruction (PI) Macro

The PI (Processing Instruction) macro provides a means of
defining the separator text to be inserted between the code
pieces (which represent entities) that are generated using a
template.

The structure for setting the Processing Instruction is:

 %PI=<value>%

In this structure, <value> is a literal string enclosed by
double quotes, with these options:

"\n" - New line (the default)·

" " - Space·

"\t" - Tab·

"" - Null·

By default, the PI is set to generate a new line (\n) for each
non-empty substitution, which behavior can be changed by
resetting the PI macro. For instance, a Class’s Attribute
declaration in simple VB code would be generated to a
single line statement (with no new lines). These properties
are derived from the Class-Attribute properties in the model
to generate, for example:

 Private Const PrintFormat As String = "Portrait"

The template for generating this starts with the PI being set
to a space rather than a new line:

 % PI = " " %

 % CONVERT_SCOPE (attScope)%

(c) Sparx Systems 2019 Page 531 of 672

User Guide - Software Models 20 January, 2020

 % endIf %

 % if attConst == "T" %

 Const

 % endIf %

On transforming this, attscope returns the VB keyword
'Private' and attConst returns 'Const' on the same line spaced
by a single space (fitting the earlier VB Class.Attribute
definition example).

Alternatively, when generating a Class you might want the
Class declaration, the notes and Class body all separated by
double lines. In this case the %PI is set to '/n/n' to return
double line spacing:

 % PI = "\n\n" %

 % ClassDeclaration %

 % ClassNotes %

 % ClassBody %

PI Characteristics

Blank lines have no effect on the output·

Any line that has a macro that produces an empty result·

does not result in a PI separator (space/new line)

The last entry does not return a PI; for example,·

%Classbody% does not have a double line added after the
body

(c) Sparx Systems 2019 Page 532 of 672

User Guide - Software Models 20 January, 2020

(c) Sparx Systems 2019 Page 533 of 672

User Guide - Software Models 20 January, 2020

Code Generation Macros for
Executable StateMachines

The templates listed here are available through the Code
Template Editor (the Develop > Preferences > Options >
Edit Code Templates' ribbon option); select
'STM_C++_Structured' in the 'Language' field.

The templates are structured as shown here:

StmContextStateMachineEnum

 StmStateMachineEnum

StmContextStateEnum

 StmAllStateEnum

StmContextTransitionEnum

 StmTransitionEnum

StmContextEntryEnum

 StmAllEntryEnum

StmContextStateMachineStringToEnum

 StmStateMachineStringToEnum

(c) Sparx Systems 2019 Page 534 of 672

User Guide - Software Models 20 January, 2020

StmContextStateEnumToString

 StmStateEnumToString

StmContextTransitionEnumToString

 StmTransitionEnumToString

StmContextStateNameToGuid

 StmStateNameToGuid

StmContextTransitionNameToGuid

 StmTransitionNameToGuid

StmContextDefinition

 StmStateMachineEnum

 StmAllStateEnum

 StmTransitionEnum

 StmAllEntryEnum

 StmAllRegionVariableInitialize

 StmStateWithDeferredEvent

 StmDeferredEvent

 StmTransitionProcMapping

 StmTransitionProc

 StmTransitionExit

 StmTransitionEntry

 StmTargetOutgoingTransition

(c) Sparx Systems 2019 Page 535 of 672

User Guide - Software Models 20 January, 2020

 StmTargetParentSubmachineState

 StmStateProcMapping

 StmStateProc

 StmStateEntry

 StmOutgoingTransition

 StmConnectionPointReferenceEntry

 StmParameterizedInitial

 StmSubMachineInitial

 StmRegionInitial

 StmRegionDeactive

 StmStateExitProc

 StmStateTransition

 StmStateEvent

 StmStateTriggeredTransition

 StmStateCompletionTransition

 StmStateIncomingTransition

 StmStateOutgoingTransition

 StmSubmachineStateExitEvent

 StmVertexOutgoingTransition

 StmConnectionPointReferenceExitEvent

 StmStateExitEvent

 StmVertexOutgoingTransition

 StmAllRegionVariable

 StmStateMachineStringToEnum

 StmStateMachineRun

(c) Sparx Systems 2019 Page 536 of 672

User Guide - Software Models 20 January, 2020

 StmStateInitialData

 StmStateMachineEntry

 StmOutgoingTransition

 StmStateMachineRunInitial

 StmStateMachineInitial

 StmStateMachineRuns

StmContextManager

StmSimulationManager

 StmContextInstanceDeclaration

 StmContextInstance

 StmContextVariableRunstate

 StmContextInstanceAssociation

 StmContextInstanceClear

StmEventProxy

 StmSignalEnum

 StmContextJoinEventEnum

 StmJoinEventEnum

 StmEventEnum

 StmSignalDefinition

 StmSignalAttributeAssignment

 StmSignalAttribute

 StmSignalInitialize

(c) Sparx Systems 2019 Page 537 of 672

User Guide - Software Models 20 January, 2020

 StmEventStringToEnum

 StmEventEnumToString

 StmEventNameToGuid

StmConsoleManager

 StmContextInstanceDeclaration

 StmContextInstance

 StmContextVariableRunstate

 StmContextInstanceAssociation

 StmContextInstanceClear

StmStateMachineStrongToEnum

StmInitialForTransition

StmVertextOutgoingTransition

StmSendEvent

StmBroadcastEvent

StmContextRef

Signal & Event

(c) Sparx Systems 2019 Page 538 of 672

User Guide - Software Models 20 January, 2020

Macro name Description

stmEventEnu
m

The name of the Event with the prefix
'ENUM_', all upper case.

StmEventGui
d

The GUID of the Event.

stmEventNa
me

The name of the Event with spaces and
asterisks removed.

stmEventVari
able

The name of the Event with the prefix
'm_' in lower case.

stmIsSignalE
vent

Is 'T' if the element is a SignalEvent.

stmSignalEn
um

The name of the Signal with the prefix
'ENUM_', all upper case.

stmSignalFirs
tEvent

The name of the Event with the prefix
'ENUM_', all upper case.

stmSignalGui
d

The GUID of the Signal.

stmSignalNa The name of the Signal with spaces and

(c) Sparx Systems 2019 Page 539 of 672

User Guide - Software Models 20 January, 2020

me asterisks removed.

stmSignalVar
iable

The name of the Signal with the prefix
'm_' in lower case.

stmTriggerN
ame

Transition Properties: The name of the
Trigger.

stmTriggerSp
ecification

Transition Properties: The specification
of the Trigger.

stmTriggerTy
pe

Transition Properties: The type of the
Trigger.

Context

Macro name Description

stmContextN
ame

The name of the Class with spaces and
asterisks removed.

stmContextQ
ualName

The qualified name of the Class for
which code is being generated.

stmContextV

(c) Sparx Systems 2019 Page 540 of 672

User Guide - Software Models 20 January, 2020

ariableName

stmContextFi
leName

The output file name for the Class for
which code is being generated.

Writing Object Runstate to StateMachine
Initialization

Macro name Description

stmContextV
ariableRunsta
teName

stmContextV
ariableRunsta
teValue

stmContextH
asStatemachi
ne

Is 'T' if the current context has one or
more StateMachines.

stmHasHistor
yPattern

Is 'T' if the StateMachine has a History
Pattern.

(c) Sparx Systems 2019 Page 541 of 672

User Guide - Software Models 20 January, 2020

stmHasTermi
natePattern

Is 'T' if the StateMachine has a Terminate
Pattern.

stmHasDefer
redEventPatt
ern

Is 'T' if the StateMachine has a Deferred
Event Pattern.

stmHasSubm
achinePattern

Is 'T' if the StateMachine has a
Submachine Pattern.

stmHasOrtho
gonalPattern

Is 'T' if the StateMachine has an
Orthogonal Pattern.

StateMachine

Macro name Description

stmStatemac
hineName

The name of the StateMachine with
asterisks and spaces removed.

stmStatemac
hineEnum

The name of the StateMachine plus
'ENUM_' plus the name of the
StateMachine in upper case.

stmStatemac
hineGuid

The GUID of the StateMachine element.

(c) Sparx Systems 2019 Page 542 of 672

User Guide - Software Models 20 January, 2020

stmStateCou
nt

The number of State elements in the
StateMachine.

stmSubmachi
neInitialCoun
t

The number of Initial elements in the Sub
Machine State element.

stmStatemac
hineHasSub
machineState

Is 'T' if the StateMachine has at least one
SubMachine State.

stmStatemac
hineInitialCo
unt

The number of Initial elements in the
StateMachine.

Region

Macro name Description

stmRegionEn
um

The name of the State Region plus
'ENUM_' plus the name of the State
Region in upper case.

stmRegionF
QName

The fully qualified name of the State
Region.

(c) Sparx Systems 2019 Page 543 of 672

User Guide - Software Models 20 January, 2020

stmRegionNa
me

The name of the State Region with spaces
and asterisks removed.

stmRegionVa
riable

The name of the State Region with the
prefix 'm_' in lower case.

stmRegionF
QVariable

The fully qualified name of the State
Region with the prefix 'm_' in lower case.

stmRegionGu
id

The GUID of the Region.

stmRegionIni
tial

stmRegionIs
OwnedBySta
teMachine

Is 'T' if the Region is owned by a
StateMachine.

Transition

Macro name Description

stmTransition
Enum

The name of the Transition with the
prefix 'ENUM_', plus the name of the

(c) Sparx Systems 2019 Page 544 of 672

User Guide - Software Models 20 January, 2020

Transition in upper case.

stmTransition
Guid

The GUID of the Transition.

stmTransition
Name

The name of the Transition with spaces
and asterisks removed.

stmTransition
SourceGuid

The GUID of the Source element in the
Transition.

stmTransition
TargetGuid

The GUID of the Target element in the
Transition.

stmTransition
Variable

The name of the Transition with the
prefix 'm_' in lower case.

stmTransition
SourceVariab
le

stmTransition
TargetVariab
le

stmTransition
FQVariable

stmSourceVe The name of the Transition's source

(c) Sparx Systems 2019 Page 545 of 672

User Guide - Software Models 20 January, 2020

rtexEnum vertex plus '_ENUM' plus the name of the
Transition's source vertex in upper case.

stmTargetVer
texEnum

The name of the Transition's target vertex
plus '_ENUM' plus the name of the
Transition's target vertex in upper case.

stmSourceIsI
nitial

Is 'T' if the Transition's source is an
Initial.

stmSourceIsS
tate

Is 'T' if the Transition's source is a State.

stmSourceIsE
ntryPoint

Is 'T' if the Transition's source is an Entry
Point.

stmSourceIsE
xitPoint

Is 'T' if the Transition's source is an Exit
Point.

stmSourceIsF
ork

Is 'T' if the Transition's source is a Fork.

stmSourceIsJ
oin

Is 'T' if the Transition's source is a Join
element.

stmTargetIsF
inalState

Is 'T' if the Transition's target is a Final
State element.

stmTargetIsE Is 'T' if the Transition's target is an Exit

(c) Sparx Systems 2019 Page 546 of 672

User Guide - Software Models 20 January, 2020

xitPoint Point element.

stmTargetIsS
tate

Is 'T' if the Transition's target is a State
element.

stmTargetIsC
hoice

Is 'T' if the Transition's target is a Choice
element.

stmTargetIsJ
unction

Is 'T' if the Transition's target is a
Junction element.

stmTargetIsE
ntryPoint

Is 'T' if the Transition's target is an Entry
Point element.

stmTargetIsC
onnectionPoi
ntReference

Is 'T' if the Transition's target is a
Connection Point Reference element.

stmTargetIsF
ork

Is 'T' if the Transition's target is a Fork
element.

stmTargetIsJ
oin

Is 'T' if the Transition's target is a Join
element.

stmTransition
Effect

The Effect of the Transition.

stmTransition
Guard

The Guard of the Transition.

(c) Sparx Systems 2019 Page 547 of 672

User Guide - Software Models 20 January, 2020

stmTransition
Kind

The type or kind of the Transition.

stmTargetInit
ialTransition

stmTargetIsS
ubmachineSt
ate

Is 'T' if the Transition's target is a
Submachine State.

stmSourceSta
teEnum

The name of the Transition's source state
with the prefix '_ENUM' in upper case.

stmTargetSta
teEnum

The name of the Transition's target state,
with the prefix '_ENUM' in upper case.

stmTargetVer
texFQName

The fully qualified name of the
Transition's target vertex.

stmTargetIsD
eepHistory

Is 'T' if the Transition's target is a Deep
History State.

stmTargetIsS
hallowHistor
y

Is 'T' if the Transition's target is a
Shallow History State.

stmTargetIsT
erminate

Is 'T' if the Transition's target is a
Terminate element.

(c) Sparx Systems 2019 Page 548 of 672

User Guide - Software Models 20 January, 2020

stmParentIsSt
ateMachine

Is 'T' if the vertex is an Entry Point or
Exit Point, or if the container is a
StateMachine.

stmSourcePar
entStateEnu
m

stmTargetPar
entStateEnu
m

stmTargetSu
bmachineEnu
m

stmTargetRe
gionIndex

stmIsSelfTra
nsition

Is 'T' if the Transition's source is the same
as its target.

stmHistoryO
wningRegion
InitialTransiti
on

stmDefaultHi

(c) Sparx Systems 2019 Page 549 of 672

User Guide - Software Models 20 January, 2020

storyTransiti
on

Vertex and State

Macro name Description

stmVertexNa
me

The name of the Vertex.

stmStateNam
e

The name of the State.

stmVertexGu
id

The GUID of the Vertex.

stmVertexFQ
Name

The fully qualified name of the Vertex.

stmStateFQN
ame

The fully qualified name of the State.

stmVertexTy
pe

The type of the vertex; one of 'State',
'FinalState', 'Pseudostate',
'ConnectionPointReference' or ' ' (empty).

(c) Sparx Systems 2019 Page 550 of 672

User Guide - Software Models 20 January, 2020

stmPseudosta
teKind

The kind of the Pseudostate; one of
'initial', 'deepHistory', 'shallowHistory',
'join', 'fork', 'junction', 'choice',
'entryPoint', 'exitPoint' or 'terminate'.

stmPseudosta
teName

The name of the Pseudostate.

stmPseudosta
teVariable

The name of the Pseudostate with the
prefix 'm_' in lower case.

stmPseudosta
teStateMachi
neName

The name of the Pseudostate
StateMachine.

stmPseudosta
teStateMachi
neVariable

The name of the Pseudostate
StateMachine with the prefix 'm_' in
lower case.

stmVertexVa
riable

The name of the Vertex with the prefix
'm_' in lower case.

stmVertexEn
um

The name of the Vertex plus '_ENUM'
plus the name of the Vertex in upper
case.

stmStateEnu
m

The name of the State plus '_ENUM' plus
the name of the State in upper case.

(c) Sparx Systems 2019 Page 551 of 672

User Guide - Software Models 20 January, 2020

stmConnectio
nPointRefere
nceStateNam
e

 The name of the Connection Point
Reference.

stmConnectio
nPointRefere
nceStateVari
able

The name of the Connection Point
Reference with the prefix 'm_' in lower
case.

stmConnectio
nPointRefere
nceEntryCou
nt

stmParameter
izedInitialCo
unt

stmInitialCou
ntForTransiti
on

stmStateVari
able

The name of the State with the prefix 'm_'
in lower case.

stmStateEntr
yBehavior

The behavior defined for an 'entry' Action
operation for a State (the text on the
'Behavior' tab for the 'entry' Action

(c) Sparx Systems 2019 Page 552 of 672

User Guide - Software Models 20 January, 2020

operation on the Features window for the
element).

stmStateEntr
yCode

The initial code defined for an 'entry'
Action operation for a State (the text for
the 'entry' Action operation on the
Behavior's 'Code' tab).

stmStateDoB
ehavior

The behavior defined for a 'do' Action
operation for a State (the text on the
'Behavior' tab for the 'do' Action
operation on the Features window for the
element).

stmStateDoC
ode

The initial code defined for a 'do' Action
operation for a State (the text for the 'do'
Action operation on the Behavior's 'Code'
tab).

stmStateExit
Behavior

The behavior defined for an 'exit' Action
operation for a State (the text on the
'Behavior' tab for the 'exit' Action
operation on the Features window for the
element).

stmStateExit
Code

The initial code defined for an 'exit'
Action operation for a State (the text for
the 'exit' Action operation on the
Behavior's 'Code' tab).

(c) Sparx Systems 2019 Page 553 of 672

User Guide - Software Models 20 January, 2020

stmStateSub
machineNam
e

The name of the Submachine.

stmStateSub
machineVari
able

The name of the Submachine with the
prefix 'm_' in lower case.

stmStateIsFin
al

Is 'T' if the State is a FinalState.

stmStateIsSu
bmachineStat
e

Is 'T' if the State is a Submachine State
('Properties' page | Advanced |
'isSubmachineState' property).

stmSubMachi
neEnum

The name of the Submachine followed by
'_ENUM' plus the name of Submachine
in upper case.

stmStateHas
ChildrenToJo
in

stmStateIsTra
nsitionTarget

stmThisIsSou
rce

(c) Sparx Systems 2019 Page 554 of 672

User Guide - Software Models 20 January, 2020

stmThisIsSou
rceState

stmStatePare
ntIsSubmachi
ne

Is 'T' if the State's container is a
StateMachine.

stmStateCont
ainerMatchTr
ansitionConta
iner

stmVertexRe
gionIndex

stmStateRegi
onCount

The number of regions in the State.

stmStateInitia
lCount

The number of Initial elements in the
StateMachine.

stmVertexCo
ntainerVariab
le

stmVertexPar
entEnum

(c) Sparx Systems 2019 Page 555 of 672

User Guide - Software Models 20 January, 2020

stmStateHas
UnGuardedC
ompletionTra
nsition

stmStateEven
tHasUnGuard
edTransition

stmInitialTra
nsition

Instance Association

Macro name Description

stmSourceIns
tanceName

stmTargetInst
anceName

stmSourceRo
leName

stmTargetRol

(c) Sparx Systems 2019 Page 556 of 672

User Guide - Software Models 20 January, 2020

eName

(c) Sparx Systems 2019 Page 557 of 672

User Guide - Software Models 20 January, 2020

EASL Code Generation Macros

Enterprise Architect provides a number of Enterprise
Architect Simulation Library (EASL) code generation
macros to generate code from behavioral models. These are:

EASL_INIT·

EASL_GET·

EASLList and·

EASL_END·

EASL_INIT

The EASL_INIT macro is used to initialize an EASL
behavior model. The behavior model code generation is
dependent on this model.

Aspect Description

Syntax %EASL_INIT(<<GUID>>)%
where:

<<GUID>> is the GUID of the Object·

(usually a Class element) that is the
owner of the behavior model

EASL_GET

(c) Sparx Systems 2019 Page 558 of 672

User Guide - Software Models 20 January, 2020

The EASL_GET macro is used to retrieve a property or a
collection of an EASL object. The EASL objects and the
properties and collections for each object are identified in
the EASL Collections and EASL Properties topics.

Aspect Description

Syntax $result = %EASL_GET(<<Property>>,
<<Owner ID>>, <<Name>>)%
where:

<<Property>> is one of "Property",·

"Collection", "At", "Count", or
"IndexOf"
<<OwnerID>> is the ID of the owner·

object for which the property/collection
is to be retrieved
<<Name>> is the name of the property·

or Collection being accessed
$result is the returned value; this is “”·

if not a valid property
If <<Property>> is:

"At", then <<OwnerID>> is the ID of a·

collection and <<Name>> is the index
into the collection for which the item is
to be retrieved
"Count", then <<Owner ID>> is the ID·

of a collection and <<Name>> is not
used; it will retrieve the item number in

(c) Sparx Systems 2019 Page 559 of 672

User Guide - Software Models 20 January, 2020

the collection
"IndexOf", then <<Owner ID>> is the·

ID of a collection and <<Name>> is
the ID of the item in the collection; it
will retrieve the index (string format)
of the item within the collection

Example $sPropName = %EASL_GET("Property",
$context, "Name")%

EASLList

The EASLList macro is used to render each object in an
EASL collection using the appropriate template.

Aspect Description

Syntax $result =
%EASLList=<<TemplateName>>
@separator=<<Separator>>
 @indent=<<indent>>
@owner=<<OwnedID>>

@collection=<<CollectionName>>
@option1=<<OPTION1>>

@option2=<<OPTION2>>.........

(c) Sparx Systems 2019 Page 560 of 672

User Guide - Software Models 20 January, 2020

@optionN=<<OPTIONN>>%
where:

<<TemplateName>> is the name of·

any behavioral model template or
custom template
<<Separator>> is a list separator (such·

as “\n”)
<<indent>> is any indentation to be·

applied to the result
<<OwnedID>> is the ID of the object·

that contains the required collection
<<CollectionName>> is the name of·

the required collection
<<OPTION1>...<<OPTION99>> are·

miscellaneous options that might be
passed on the template; each option is
given as an additional input parameter
to the template
$result is the resultant value; this is “”·

if not a valid collection

Example $sStates = %EASLList="State"
@separator="\n" @indent="\t"
@owner=$StateMachineGUID
@collection="States"
@option=$sOption%

(c) Sparx Systems 2019 Page 561 of 672

User Guide - Software Models 20 January, 2020

EASL_END

The EASL_END macro is used to release the EASL
behavior model.

Aspect Description

Syntax %EASL_END%

Behavioral Model Templates

Action·

Action Assignment·

Action Break·

Action Call·

Action Create·

Action Destroy·

Action If·

Action Loop·

Action Opaque·

Action Parallel·

Action RaiseEvent·

Action RaiseException·

(c) Sparx Systems 2019 Page 562 of 672

User Guide - Software Models 20 January, 2020

Action Switch·

Behavior·

Behavior Body·

Behavior Declaration·

Behavior Parameter·

Call Argument·

Decision Action·

Decision Condition·

Decision Logic·

Decision Table·

Guard·

Property Declaration·

Property Notes·

Property Object·

State·

State CallBack·

State Enumerate·

State EnumeratedName·

StateMachine·

StateMachine HistoryVar·

Transition·

Transition Effect·

Trigger·

(c) Sparx Systems 2019 Page 563 of 672

User Guide - Software Models 20 January, 2020

EASL Collections

This topic lists the EASL collections for each of the EASL
objects, as retrieved by the EASL Code Generation Macros
code generation macro.

Action

Collection
Name

Description

Arguments The Action's arguments.

SubActions The sub-actions of the Action.

Behavior

Collection
Name

Description

Actions The Behavior's Actions.

Nodes The Behavior's nodes.

(c) Sparx Systems 2019 Page 564 of 672

http://www.sparxsystems.com/enterprise_architect_user_guide/15.1/model_domains/easl_code_generation_macros.html

User Guide - Software Models 20 January, 2020

Parameters The Behavior's parameters.

Variables The Behavior's variables.

Classifier

Collection
Name

Description

AllStateMach
ines

All StateMachines for the Classifier.

AsynchPrope
rties

The asynchronous properties of the
Classifier.

AsynchTrigg
ers

The asynchronous triggers of the
Classifier.

Behaviors The behaviors of the Classifier.

Properties The properties of the Classifier.

TimedPropert
ies

The timed properties of the Classifier.

TimedTrigge

(c) Sparx Systems 2019 Page 565 of 672

User Guide - Software Models 20 January, 2020

rs The timed triggers of the Classifier.

Triggers All triggers of the Classifier.

Construct

Collection
Name

Description

AllChildren The Construct's children.

ClientDepend
encies

The client dependencies on the Construct.

StereoTypes The stereotypes of the Construct.

SupplierDepe
ndencies

The supplier dependencies on the
Construct.

Node

Collection Description

(c) Sparx Systems 2019 Page 566 of 672

User Guide - Software Models 20 January, 2020

Name

IncomingEdg
es

The Node's incoming edges.

OutgoingEdg
es

The Node's outgoing edges.

SubNodes The sub-nodes of the Node.

State

Collection
Name

Description

DoBehaviors The State's Do behaviors.

EntryBehavio
rs

The State's Entry behaviors.

ExitBehavior
s

The State's Exit behaviors.

(c) Sparx Systems 2019 Page 567 of 672

User Guide - Software Models 20 January, 2020

StateMachine

Collection
Name

Description

AllFinalState
s

The StateMachine's final States.

AllStates All States within the StateMachine,
including those within Submachine
States.

DerivedTrans
itions

The StateMachine's derived Transitions
with the associated valid effect.

States The States within the StateMachine.

Transitions The transitions within the StateMachine.

Vertices The StateMachine's vertices.

Transition

Collection
Name

Description

(c) Sparx Systems 2019 Page 568 of 672

User Guide - Software Models 20 January, 2020

Effects The Transition's effects.

Guards The Transition's guards.

Triggers The Transition's triggers.

Trigger

Collection
Name

Description

TriggeredTra
nsitions

The triggered transitions associated with
the Trigger.

Vertex

Collection
Name

Description

DerivedOutg
oingTransitio
ns

The Vertex's derived outgoing transitions
after traversing the pseudo-nodes.

(c) Sparx Systems 2019 Page 569 of 672

User Guide - Software Models 20 January, 2020

IncomingTra
nsitions

The Vertex's incoming transitions.

OutgoingTra
nsitions

The Vertex's outgoing transitions.

(c) Sparx Systems 2019 Page 570 of 672

User Guide - Software Models 20 January, 2020

EASL Properties

This topic lists the EASL properties for each of the EASL
objects, as retrieved by the EASL Code Generation Macros
code generation macro.

Action

Property
Name

Description

Behavior The Action's associated behavior (Call
Behavior Action or Call Operation
Action).

Body The Action's body.

Context The Action's context.

Guard The Action's guard.

IsFinal A check on whether the action is a final
Action.

IsGuarded A check on whether the action is a
guarded Action.

(c) Sparx Systems 2019 Page 571 of 672

http://www.sparxsystems.com/enterprise_architect_user_guide/15.1/model_domains/easl_code_generation_macros.html

User Guide - Software Models 20 January, 2020

IsInitial A check on whether the action is an
initial Action.

Kind The Action's kind.

Next The Action's next action.

Node The Action's associated node in the
graph.

Argument

Property
Name

Description

Parameter The ID of the Argument's associated
parameter.

Value The default value of the argument.

Behavior

Property

(c) Sparx Systems 2019 Page 572 of 672

User Guide - Software Models 20 January, 2020

Name Description

InitialAction The Behavior's initial action.

isReadOnly The isReadOnly of the Behavior.

isSingleExec
ution

The isSingleExecution of the Behavior.

Kind The kind of Behavior.

ReturnType The return type of the Behavior.

Specification The specification of the Behavior.

CallEvent

Property
Name

Description

Operation The operation of the CallEvent.

ChangeEvent

(c) Sparx Systems 2019 Page 573 of 672

User Guide - Software Models 20 January, 2020

Property
Name

Description

ChangeExpre
ssion

The change expression of the
ChangeEvent.

Classifier

Property
Name

Description

HasBehavior
s

A check on whether the Classifier has
behavioral models (Activity and
Interaction).

Language The Classifier's language.

StateMachine The StateMachine of the Classifier.

Condition

(c) Sparx Systems 2019 Page 574 of 672

User Guide - Software Models 20 January, 2020

Property
Name

Description

Expression The Condition's expression.

Lower The Condition's lower value.

Upper The Condition's upper value.

Construct

Property
Name

Description

GetTaggedV
alue

The Property's Tagged Value.

IsStereotype
Applied

A check on whether a particular
stereotype is applied to the Property.

Notes Notes on the Property.

UMLType The UML type of the Property.

Visibility The visibility of the Property.

(c) Sparx Systems 2019 Page 575 of 672

User Guide - Software Models 20 January, 2020

Edge

Property
Name

Description

From The ID of the node from which the Edge
arises.

To The ID of the node at which the Edge is
targeted.

EventObject

Property
Name

Description

EventKind The event kind of the Event Object.

Instance

(c) Sparx Systems 2019 Page 576 of 672

User Guide - Software Models 20 January, 2020

Property
Name

Description

Classifier The classifier of the Instance.

Value The value of the Instance.

Parameter

Property
Name

Description

Direction The direction of the Parameter.

Type The type of the Parameter.

Value The value of the parameter.

Primitive

Property Description

(c) Sparx Systems 2019 Page 577 of 672

User Guide - Software Models 20 January, 2020

Name

FQName The FQ name of the Primitive.

ID The ID of the Primitive.

Name The name of the Primitive.

ObjectType The object type of the Primitive.

Parent The IDParent of the Primitive.

PropertyObject

Property
Name

Description

BoundSize The bound size of the PropertyObject (if
it is a collection).

ClassifierSter
eoType

The stereotype of the PropertyObject's
classifier.

IsAsynchPro
p

A check on whether the PropertyObject is
an asynchronous property.

(c) Sparx Systems 2019 Page 578 of 672

User Guide - Software Models 20 January, 2020

IsCollection A check on whether the PropertyObject is
a collection.

IsOrdered A check on whether the PropertyObject is
ordered (if it is a collection).

IsTimedProp A check on whether the PropertyObject is
a timed property.

Kind The PropertyObject's kind.

LowerValue The PropertyObject's lower value (if it is
a collection).

Type The PropertyObject's type.

UpperValue The PropertyObject's upper value (if it is
a collection).

Value The PropertyObject's value.

SignalEvent

Property
Name

Description

(c) Sparx Systems 2019 Page 579 of 672

User Guide - Software Models 20 January, 2020

Signal The signal of the SignalEvent.

State

Property
Name

Description

HasSubMach
ine

A check on whether the State is a
Submachine state.

IsFinalState A check on whether the State is a final
state.

SubMachine Get the ID of the Submachine contained
by the State (if applicable).

StateMachine

Property
Name

Description

HasSubMach A check on whether the StateMachine has

(c) Sparx Systems 2019 Page 580 of 672

User Guide - Software Models 20 January, 2020

ineState a Submachine state.

InitialState The StateMachine's initial state.

SubMachine
State

The StateMachine's Submachine State.

TimeEvent

Property
Name

Description

When The 'when' property of the TimeEvent.

Transition

Property
Name

Description

HasEffect A check on whether the transition has a
valid effect.

A check on whether the transition is a

(c) Sparx Systems 2019 Page 581 of 672

User Guide - Software Models 20 January, 2020

IsDerived derived transition.

IsTranscend A check on whether the transition
transcends from one StateMachine
(Submachine State) to another.

IsTriggered A check on whether the transition is
triggered.

Source The Transition's source.

Target The Transition's target.

Trigger

Property
Name

Description

AsynchDesti
nationState

The asynchronous destination state of the
Trigger (if it is an asynchronous trigger).

DependentPr
operty

The ID of the property associated with
the Trigger.

Event The Trigger's event.

(c) Sparx Systems 2019 Page 582 of 672

User Guide - Software Models 20 January, 2020

Name The Trigger's name.

Type The Trigger's type.

Vertex

Property
Name

Description

IsHistory A check on whether the vertex is a
history state.

IsPseudoStat
e

A check on whether the vertex is a
pseudo state.

PseudoState
Kind

The Vertex's pseudo-state kind.

(c) Sparx Systems 2019 Page 583 of 672

User Guide - Software Models 20 January, 2020

Call Templates From Templates

Using function calls with parameters, you can call templates
from other templates, whether standard templates or
user-defined templates created within your project. Also,
called templates can return a value, and can be called
recursively.

Examples

A call statement returning a parameter to a variable:

 $sSource = %StateEnumeratedName($Source)%

A call statement to a template that has parameters:

 %RuleTask($GUID, $index)%

Using the $parameter statement in the called template:

 $GUID = $parameter1

 $index = $parameter2

Templates support recursive calls, such as this recursive call
on the template RuleTask:

 $GUID = $parameter1

 $index = $parameter2

 % PI = "" %

 $nul = "Initialize condition and action object"

 $count = %BR_GET("RuletCount")%

 % if $count == "" or $count == $index %

(c) Sparx Systems 2019 Page 584 of 672

User Guide - Software Models 20 January, 2020

 %ComputeRulet($GUID)%

 \n

 % endTemplate %

 %Rulet($index)%

 \n

 $index = %MATH_ADD($index, "1")%

 %RuleTask($GUID, $index)%

(c) Sparx Systems 2019 Page 585 of 672

User Guide - Software Models 20 January, 2020

The Code Template Editor in MDG
Development

These topics describe how you use the Code Template
Editor window to create custom templates:

Create Custom Templates·

Customize Base Templates·

Add New Stereotyped Templates·

The Code Template Editor provides the facilities of the
Common Code Editor, including Intelli-sense for the code
generation template macros. For more information on
Intelli-sense and the Common Code Editor, see the Editing
Source Code topic.

(c) Sparx Systems 2019 Page 586 of 672

http://www.sparxsystems.com/enterprise_architect_user_guide/15.1/model_domains/customtemplates.html
http://www.sparxsystems.com/enterprise_architect_user_guide/15.1/model_domains/creatingtemplatesforcustom.html
http://www.sparxsystems.com/enterprise_architect_user_guide/15.1/model_domains/addingnewstereotypedtemplat.html

User Guide - Software Models 20 January, 2020

Create Custom Templates

Enterprise Architect provides a wide range of templates that
define how code elements are generated. If these are not
sufficient for your purposes - for example, if you want to
generate code in a language not currently supported by
Enterprise Architect - you can create completely new
custom templates. You can also add stereotype overrides to
your custom templates; for example, you might list all of
your parameters and their notes in your method notes.

Access

Ribbon Develop > Preferences > Options > Edit
Code Templates
Design > Tools > Transform > Transform
Templates

Keyboard
Shortcuts

Ctrl+Shift+P (code generation
templates)
Ctrl+Alt+H (MDA transformation
templates)

Create custom templates using the Code

(c) Sparx Systems 2019 Page 587 of 672

User Guide - Software Models 20 January, 2020

Templates Editor

Ste
p

Description

1 In the 'Language' field, click on the drop-down arrow
and select the appropriate programming language.

2 Click on the Add New Custom Template button.
The 'Create New Custom Template' dialog displays.

3 In the 'Template Type' field, click on the drop-down
arrow and select the appropriate modeling object.
The '<None>' option requires special treatment; it
enables the definition of a function macro that
doesn't actually apply to any of the types, but must
be called as a function to define variables
$parameter1, $parameter2 and so on for each value
passed in.

4 In the 'Template Name' field, type an appropriate
name.
Click on the OK button.

5 On the 'Code Templates Editor' tab, the new
template is included in the 'Templates' list, with the
value 'Yes' in the 'Modified' field.
The template is called <Template

(c) Sparx Systems 2019 Page 588 of 672

User Guide - Software Models 20 January, 2020

Type>__<Template Name>.
Note the double underscore character between the
template type and template name.

6 Select the template from the Templates list and edit
the contents in the Template field to meet your
requirements.

7 Click on the Save button.
This stores the new template, which is now available
from the list of templates for use. You can also add a
stereotype override to the template, if necessary.

Notes

For a custom language, you must define the File template·

so that it can call the Import Section, Namespace and
Class templates, and any other templates that you decide
are applicable

(c) Sparx Systems 2019 Page 589 of 672

User Guide - Software Models 20 January, 2020

Customize Base Templates

Enterprise Architect provides a wide range of templates that
define how code elements are generated. If you want to
change the way a code element is generated, you can
customize the appropriate templates. Your changes might be
to the effect of the template itself, or to its calls to other
templates. You can also add stereotype overrides to your
customized templates; for example, you might list all of
your parameters and their notes in your method notes.

When you customize a system-provided (base) template,
you effectively create a copy of the template that is used in
preference to the original. All subsequent changes are to that
copy, and the original base template is hidden. If you
subsequently delete the copy it can no longer override the
original, which is then brought into use again.

Access

Ribbon Develop > Preferences > Options > Edit
Code Templates

Keyboard
Shortcuts

Ctrl+Shift+P

(c) Sparx Systems 2019 Page 590 of 672

User Guide - Software Models 20 January, 2020

Customize a base template

Ste
p

Description

1 On the Code Template Editor, in the 'Language'
field, click on the drop-down arrow and select the
programming language for which you want to
customize the base templates.

2 In the Templates list, click on the base template to
edit.

3 Update the template.

4 Click on the Save button to store your changes.

5 Repeat steps 2 to 4 for each of the relevant base
templates you want to customize.

6 If you prefer, add one or more stereotype overrides
to any of the templates.

(c) Sparx Systems 2019 Page 591 of 672

User Guide - Software Models 20 January, 2020

Add New Stereotyped Templates

Sometimes it is useful to define a specific code generation
template for use with elements of a given stereotype. This
enables different code to be generated for elements,
depending on their stereotype. Enterprise Architect provides
some default templates, which have been specialized for
commonly used stereotypes in supported languages. For
example, the 'Operation Body' template for C# has been
specialized for the property stereotype, so that it
automatically generates its constituent 'get' and 'set'
methods. You can override the default stereotyped templates
as described in the Override Default Templates topic.
Additionally, you can define templates for your own
stereotypes, as described here.

Access

Ribbon Develop > Preferences > Options > Edit
Code Templates

Keyboard
Shortcuts

Ctrl+Shift+P

(c) Sparx Systems 2019 Page 592 of 672

User Guide - Software Models 20 January, 2020

Add a new stereotyped template using the
Code Template Editor

Ste
p

Description

1 Select the appropriate language, from the Language
list.

2 Select one of the base templates, from the Templates
list.

3 Click on the 'Add New Stereotyped Override' button.
The 'New Template Override' dialog displays.

4 Select the required Feature and/or Class stereotype.
Click on the OK button.

5 The new stereotyped template override displays in
Stereotype Overrides list, marked as modified.

6 Make the required modifications in the Code
Templates Editor.

7 Click on the Save button to store the new
stereotyped template in the project file.
Enterprise Architect can now use the stereotyped

(c) Sparx Systems 2019 Page 593 of 672

User Guide - Software Models 20 January, 2020

template, when generating code for elements of that
stereotype.

Notes

Class and feature stereotypes can be combined to provide·

a further level of specialization for features; for example,
if properties should be generated differently when the
Class has a stereotype MyStereotype, then both property
and MyStereotype should be specified in the New
Template Override dialog

(c) Sparx Systems 2019 Page 594 of 672

User Guide - Software Models 20 January, 2020

Override Default Templates

Enterprise Architect has a set of built-in or default code
generation templates. The Code Templates Editor enables
you to modify these default templates, hence customizing
the way in which Enterprise Architect generates code. You
can choose to modify any or all of the base templates to
achieve your required coding style.

Any templates that you have overridden are stored in the
project file. When generating code, Enterprise Architect first
checks whether a template has been modified and if so, uses
that template. Otherwise the appropriate default template is
used.

Access

Ribbon Develop > Preferences > Options > Edit
Code Templates

Keyboard
Shortcuts

Ctrl+Shift+P

Reference

(c) Sparx Systems 2019 Page 595 of 672

User Guide - Software Models 20 January, 2020

Override a default code generation template using the Code
Templates Editor.

When generating code, Enterprise Architect now uses the
overriding template instead of the default template.

Field/Button Description

Language Select the appropriate language from the
list.

Templates Select one of the base templates from the
list.

Stereotype
Overrides

If the base template has stereotyped
overrides, you can select one of these
from the list.

<Other
fields>

Make any other modifications required.

Save Click on this button to store the modified
version of the template to the project file.
The template is marked as modified.

(c) Sparx Systems 2019 Page 596 of 672

User Guide - Software Models 20 January, 2020

Grammar Framework

Enterprise Architect provides reverse engineering support
for a number of popular programming languages. However,
if the language you are using is not supported, you can write
your own grammar for it, using the in-built Grammar Editor.
You can then incorporate the grammar into an MDG
Technology to provide both reverse engineering and code
synchronization support for your target language.

The framework for writing a grammar and importing it into
Enterprise Architect is the direct complement to the Code
Template Framework. While code templates are for
converting a model to a textual form, grammars are required
to convert text to a model. Both are required to synchronize
changes into your source files.

An example language source file and an example Grammar
for that language are provided in the Code Samples
directory, which you can access from your installation
directory (the default location is C:\Program Files\Sparx
Systems\EA). Two other grammar files are also provided,
illustrating specific aspects of developing Grammars.

Components

Component Description

Grammar Grammars define how a text is to be

(c) Sparx Systems 2019 Page 597 of 672

User Guide - Software Models 20 January, 2020

Syntax broken up into a structure, which is
necessary when you are converting code
into a UML representation. At the
simplest level, a grammar is instructions
for breaking up an input to form a
structure.
Enterprise Architect uses a variation of
Backus–Naur Form (nBNF) to include
processing instructions, the execution of
which returns structured information
from the parsed results in the form of an
Abstract Syntax Tree (AST), which is
used to generate a UML representation.

Grammar
Editor

The Grammar Editor is an in-built editor
that you can use to open, edit, validate
and save grammar files.

Grammar
Debugging

You can debug the grammar files you
create using two facilities:

The Parser, which generates the AST·

for the Grammar
The Profiler, which also parses the·

Grammar and generates the AST but
which exposes the Profiling pathway to
show exactly what happened at each
step of the process

(c) Sparx Systems 2019 Page 598 of 672

User Guide - Software Models 20 January, 2020

(c) Sparx Systems 2019 Page 599 of 672

User Guide - Software Models 20 January, 2020

Grammar Syntax

Grammars define how a text is to be broken up into a
structure, which is exactly what is needed when you are
converting code into a UML representation. At the simplest
level, a grammar is just instructions for breaking up an input
to form a structure. Enterprise Architect uses a variation of
Backus–Naur Form (BNF) to express a grammar in a way
that allows it to convert the text to a UML representation.
What the grammar from Enterprise Architect offers over a
pure BNF is the addition of processing instructions, which
allow structured information to be returned from the parsed
results in the form of an Abstract Syntax Tree (AST). At the
completion of the AST, Enterprise Architect will process it
to produce a UML model.

Syntax

Syntax Detail

Comments Comments have the same form as in
many programming languages.

// You can comment to the end of a line
by adding two /s.
/* You can comment multiple lines by
adding a / followed by a *.

(c) Sparx Systems 2019 Page 600 of 672

User Guide - Software Models 20 January, 2020

The comment is ended when you add a *
followed by a /. */

Instructions Instructions specify the key details of
how the grammar works. They are
generally included at the top of the
grammar, and resemble function calls in
most programming languages.

Rules Rules make up the body of a grammar. A
rule can have one or more definitions
separated by pipe delimiters (|).
For a rule to pass, any single complete
definition must pass. Rules are terminated
with the semi-colon character (;).

Definitions A definition is one of the paths a rule can
take. Each definition is made up of one or
more terms.

Definition
Lists

A definition list corresponds to one or
more sets of terms. These will be
evaluated in order until one succeeds. If
none succeed then the containing rule
fails. Each pair of definitions is separated
by a | character.
This is a simple rule with three
definitions:
<greeting> ::= "hello" | "hi" | ["good"]

(c) Sparx Systems 2019 Page 601 of 672

User Guide - Software Models 20 January, 2020

"morning";

Terms A term can be a reference to a rule, a
specific value, a range of values, a
sub-rule or a command.

Commands Like instructions, commands resemble
function calls. They serve two main
purposes:

To process tokens in a specific way or·

To provide a result to the caller·

(c) Sparx Systems 2019 Page 602 of 672

User Guide - Software Models 20 January, 2020

Grammar Instructions

Instructions specify the key details of how the grammar
works. They are generally included at the top of the
grammar, and resemble function calls in most programming
languages.

Instructions

Instruction Description

caseSensitive
()

One of these two instructions is expected
to specify if token matching needs to be
case sensitive or not. For example,
languages in the BASIC family are case
insensitive while languages in the C
family are case sensitive.

caseInsensiti
ve()

delimiters(De
limiterRule:
Expression)

The delimiters instruction tells the lexical
analyzer which rule to use for delimiter
discovery. Delimiters are used during
keyword analysis, and can be defined as
the characters that can be used
immediately before or after language

(c) Sparx Systems 2019 Page 603 of 672

User Guide - Software Models 20 January, 2020

keywords.

lex(TokenRul
e:
Expression)

The lex instruction tells the lexical
analyzer the name of the root rule to use
for its analysis.

parse(RootRu
le:
Expression)
parse(RootRu
le:
Expression,
SkipRule:
Expression)

The parse instruction tells the parser the
name of the root rule to use for its
processing. The optional second
argument specifies a skip (or escape)
rule, which is generally used to handle
comments.

(c) Sparx Systems 2019 Page 604 of 672

User Guide - Software Models 20 January, 2020

Grammar Rules

Rules are run to break up text into structure. A rule is made
up of one or more definitions, each of which is made up of
one or more terms.

Types of Rule

Rule Description

Named rules A name, followed by a definition list. For
example:
 <rule> ::= <term1> <term2> | "-"
<term1>;

Inline Rules Inside a definition, a rule defined within
parentheses. These act in exactly the
same way as if they were a named rule
being called by a term. For example:
 <rule> ::= (<inline>);

Optional
Rules

Inside a definition, a rule defined within
square brackets. This rule succeeds even
if the contents fail. For example:
 <rule> ::= [<inline>];

Repeating Inside a definition, a term followed by a

(c) Sparx Systems 2019 Page 605 of 672

User Guide - Software Models 20 January, 2020

Rules plus sign. This rule matches the inner rule
once or more than once. For example:
 <rule> ::= <inline>+;
 rule ::= (<term1> <term2>)+;

Optional
Repeating
Rules

Inside a definition, a rule followed by a
star. This rule matches the inner rule zero
or more times, meaning it succeeds even
if the inner rule never succeeds. For
example:
 <rule> ::= <inline>*;
 rule ::= (<term1> <term2>)*;

(c) Sparx Systems 2019 Page 606 of 672

User Guide - Software Models 20 January, 2020

Grammar Terms

Terms identify where tokens are consumed.

Types of Term

Type Description

Concrete
terms

Quoted strings.
For example, "class"

Unicode
characters

A lexer-only term, having the prefix of
U+0x followed by a hexadecimal
number.
For example: U+0x1234

Ranges A lexer-only term, matching any
character between the two characters
specified.
For example, "a".."z" or
U+0x1234..U+2345

References The name of another rule, in angled
brackets. The token will match if that rule
succeeds.
For example, <anotherRule>

(c) Sparx Systems 2019 Page 607 of 672

User Guide - Software Models 20 January, 2020

Commands A call to a specific command.

(c) Sparx Systems 2019 Page 608 of 672

User Guide - Software Models 20 January, 2020

Grammar Commands

Commands, like Instructions, resemble function calls. They
serve two main purposes:

To process tokens in a specific way or·

To provide a result to the caller·

Commands

Command Description

attribute(Na
me: String,
Value:
Expression)

Creates an attribute on the current AST
node. The attribute will be created with
the Name specified in the grammar
source, and will be given the value of all
tokens consumed as a part of executing
the Value expression.
This command produces the AST node
attributes that Enterprise Architect
operates on in code engineering.

attributeEx(N
ame: String)
attributeEx(N
ame: String,
Value:
String)

Creates an attribute on the current AST
node without consuming any tokens. The
attribute will be created with the same
name as is specified in the grammar
source, and with either an empty value or
the value specified by the optional Value

(c) Sparx Systems 2019 Page 609 of 672

User Guide - Software Models 20 January, 2020

argument.
This command produces the AST node
attributes that Enterprise Architect
operates on in code engineering.

node(Name:
String,
Target:
Expression)

Creates an AST node under the current
AST node (the nodes that Enterprise
Architect operates on in code
engineering). The node will be created
with the Name specified in the grammar
source.

token(Target:
Expression)

Creates a token during lexical analysis for
processing during parsing. The value of
the token will be the value of all
characters consumed as a result of
executing the Target expression.

keywords() Matches any literal string used as a
grammar term; that is, if you enter an
explicit string that you are searching for,
it becomes a key word.

skip(Target:
Expression)
skip(Target:
Expression,
Escape:
Expression)

Consumes input data (characters when
lexing, and tokens when parsing) until the
'Target' expression is matched. The
optional 'Escape' expression can be used
to handle instances such as escaped
quotes within strings.

(c) Sparx Systems 2019 Page 610 of 672

User Guide - Software Models 20 January, 2020

skipBalanced
(Origin:
Expression,
Target:
Expression)
skipBalanced
(Origin:
Expression,
Target:
Expression,
Escape:
Expression)

Consumes input data (characters or
tokens) until the 'Target' expression is
matched and the nesting level reaches
zero. If the 'Origin' expression is matched
during this process, the nesting level is
increased. If the 'Target' expression is
matched, the nesting level is decreased.
When the nesting level reaches zero, the
command exits with success. An optional
'Escape' expression can be provided.

skipEOF() Consumes all remaining data (characters
or tokens) until the end of the file.

fail() Causes the parser to fail the current rule,
including any remaining definitions.

warning() Inserts a warning into the resulting AST.

except(Target
: Expression,
Exception:
Expression)

Consumes input data that matches the
Target expression, but fail on data that
matches the Exception expression. This
operates somewhat similar to, but exactly
the opposite of, the skip command.

preProcess(T Evaluates an expression and uses that

(c) Sparx Systems 2019 Page 611 of 672

User Guide - Software Models 20 January, 2020

arget:
Expression)

pre-processed data in multiple
definitions. This is most useful within
expression parsing, where the same left
hand side expression will be evaluated
against a number of operators. This
command reduces the work the parser
must do to make this happen.

(c) Sparx Systems 2019 Page 612 of 672

User Guide - Software Models 20 January, 2020

AST Nodes

In defining a grammar, you would use AST nodes and AST
node attributes that can be recognized in code engineering in
Enterprise Architect, in the AST results that are returned by
the attribute, attributeEx and node commands. The nodes
and attributes are identified in these tables. Any others will
be ignored in code engineering.

FILE Node

The FILE node represents a file. It isn't mapped to anything,
but contains all the required information.

Multiplicity /
Nodes

Description

0..* /
PACKAGE

See PACKAGE Node.

0..* /
CLASS

See CLASS Node.

0..* /
IMPORT

0..* /
COMMENT

Field labels as part of a skip rule will be
at the root level; the code generator looks

(c) Sparx Systems 2019 Page 613 of 672

User Guide - Software Models 20 January, 2020

for comments of this sort by position
relative to the node.

0..1 /
INSERT_PO
SITION

This gives the position where new
Classes, Packages and method
implementations can be inserted into the
file. If it is not found, the code generator
will automatically insert new items
immediately after the last one is found in
code.

PACKAGE node

The PACKAGE node corresponds to a namespace or
equivalent in the file. When importing with 'package per
namespace', Enterprise Architect will create a Package
directly under the import for this and place all Classes
within it. When not importing namespaces, Enterprise
Architect will look for Classes under this point, but it will
do nothing with this node.

Additionally, if you are generating with namespaces enabled
(see the Code Options topics for generic languages) a
generated Class will not match a Class in code unless they
are under the same Package structure.

Contained in nodes: FILE

Multiplicity / Description

(c) Sparx Systems 2019 Page 614 of 672

User Guide - Software Models 20 January, 2020

Nodes

1 / NAME See NAME Node.

0..* /
CLASS

See CLASS Node.

0..* /
PACKAGE

0..1 /
OPEN_POSI
TION

Gives the position where the Package
body opens. This can also be used as an
insert position.

0..1 /
INSERT_PO
SITION

Gives the position where new Classes and
Packages can be inserted into the file. If it
is not found, the code generator will
automatically insert new items
immediately after the last one is found in
code.

0..1 /
SUPPRESS

Prevents indenting when inserting into
this Package.

CLASS/INTERFACE Node

(c) Sparx Systems 2019 Page 615 of 672

User Guide - Software Models 20 January, 2020

The CLASS (or INTERFACE) node is the most important in
code generation. It is brought in as Class (or Interface)
Objects.

See Class DECLARATION and Class BODY.

Contained in Nodes: FILE, PACKAGE, Class BODY

CLASS Declaration

Contained in Nodes: CLASS/INTERFACE

Multiplicity /
Nodes

Description

1 / NAME See NAME Node.

0..* /
PARENT

See PARENT Node.

0..* / TAG See TAG Node.

0..1 /
DESCRIPTI
ON

See DESCRIPTION Node.

1 / NAME The name of the Class. If there is a node
NAME, that will overwrite this attribute.

0..1 / The UML Scope of the Class - Public,

(c) Sparx Systems 2019 Page 616 of 672

User Guide - Software Models 20 January, 2020

SCOPE Private, Protected or Package.

0..1 /
ABSTRACT

If present, indicates that this is an abstract
Class.

0..1 /
VERSION

The version of the Class.

0..1 /
STEREOTY
PE

The stereotype that Enterprise Architect
should assign to the Class. This does not
support multiple stereotypes.

0..1 /
ISLEAF

0..1 /
MULTIPLIC
ITY

0..1 /
LANGUAGE

Generally, you do not need to set this.

0..1 / NOTE Generally not used as it is addressed by
the comments above the Class.

0..1 /
ALIAS

0..* / Adds a numbered Tagged Value that

(c) Sparx Systems 2019 Page 617 of 672

User Guide - Software Models 20 January, 2020

MACRO Enterprise Architect can use to round trip
macros.

Class BODY Node

Contained in Nodes: CLASS/INTERFACE

Multiplicity /
Nodes

Description

0..* /
METHOD

See METHOD Node.

0..* /
ATTRIBUTE

See ATTRIBUTE Node.

0..* /
FIELD

See FIELD Node.

0..* /
CLASS

See CLASS Node.

0..* /
SCOPE

See SCOPE Node.

0..* /
PROPERTY

(c) Sparx Systems 2019 Page 618 of 672

User Guide - Software Models 20 January, 2020

0..* / TAG See TAG Node.

0..* /
PARENT

See PARENT Node.

0..1 /
OPEN_POSI
TION

Gives the position where the Class body
opens. This can also be used as an insert
position.

0..1 /
INSERT_PO
SITION

Gives the position where new Class
members can be inserted into the file. If it
is not found, the code generator will
automatically insert new items
immediately after the last one is found in
code.

SCOPE Node

This is an optional feature for languages resembling C++
that have Blocks that specify the scope of elements. The
language needs to have a name specified that is used for the
scope of all elements in the Block. In all other respects it
behaves identically to the Class BODY node.

Contained in Nodes: Class BODY

Multiplicity / Description

(c) Sparx Systems 2019 Page 619 of 672

User Guide - Software Models 20 January, 2020

Nodes

1 / NAME Used as the scope for all methods and
attributes contained within the scope.

METHOD Node

Contained in Nodes: Class BODY, SCOPE

Multiplicity /
Nodes

Description

1 / Method
DECLARAT
ION

See Method DECLARATION Node.

Method DECLARATION Node

Contained in Nodes: METHOD

Multiplicity /
Nodes

Description

0..1 / TYPE See TYPE Node.

(c) Sparx Systems 2019 Page 620 of 672

User Guide - Software Models 20 January, 2020

0..* /
PARAMETE
R

See PARAMETER Node.

0..* / TAG See TAG NODE.

0..1 /
DESCRIPTI
ON

See DESCRIPTION Node.

0..1 /
MULTI
PARAMETE
R

Supports Delphi's parameter list style of
declaration. This is the equivalent of
FIELD.

1 / NAME

0..1 / TYPE

0..1 /
SCOPE

0..1 /
ABSTRACT

0..1 /
STEREOTY
PE

(c) Sparx Systems 2019 Page 621 of 672

User Guide - Software Models 20 January, 2020

0..1 /
STATIC

0..1 / CONST
or
CONSTANT

0..1 / PURE

0..1 /
ISQUERY

0..1 /
ARRAY

0..1 /
SYNCHRON
IZED

0..* /
MACRO

0..1 /
CSHARPIM
PLEMENTS

Specifies special behavior for C#.

0..1 /
BEHAVIOR

Provides support for Aspect J, using
behavior.

(c) Sparx Systems 2019 Page 622 of 672

User Guide - Software Models 20 January, 2020

0..1 /
SHOWBEH
AVIOR

Provides support for Aspect J, using
behavior, and shows the
reverse-engineered behavior on the
diagram.

ATTRIBUTE Node

Contained in Nodes: Class BODY, SCOPE

Multiplicity /
Nodes

Description

1 / TYPE See TYPE Node.

0..* / TAG See TAG Node.

0..1 /
DESCRIPTI
ON

See DESCRIPTION Node.

1 / NAME

0..1 / TYPE

0..1 /
SCOPE

(c) Sparx Systems 2019 Page 623 of 672

User Guide - Software Models 20 January, 2020

0..1 /
DEFAULT

0..1 /
CONTAINE
R or ARRAY

0..1 /
CONTAINM
ENT

Reference or value.

0..1 /
STEREOTY
PE

0..1 /
STATIC

0..1 /
CONST or
CONSTANT

0..1 /
ORDERED

0..1 /
LOWBOUN
D

(c) Sparx Systems 2019 Page 624 of 672

User Guide - Software Models 20 January, 2020

0..1 /
HIGHBOUN
D

0..1 /
TRANSIENT
or
VOLATILE

FIELD Node

A field corresponds to multiple attribute declarations in one.
Anything not defined in the Declarators but defined in the
field itself will be set for each declarator. Everything
supported in an attribute is supported in the field. If no
declarators are found then this works in the same way as an
attribute.

Contained in Nodes: Class BODY, SCOPE

Multiplicity /
Nodes

Description

0..* /
DECLARAT
OR

See ATTRIBUTE Node.

(c) Sparx Systems 2019 Page 625 of 672

User Guide - Software Models 20 January, 2020

PARAMETER Node

Contained in Nodes: Method DECLARATION,
TEMPLATE

Multiplicity /
Nodes

Description

1 / TYPE See TYPE Node.

0..* / TAG See TAG Node.

0..1 /
DESCRIPTI
ON

See DESCRIPTION Node.

0..1 /
NAME

0..1 / TYPE

0..1 / KIND Expected to be in, inout, out or return.

0..1 /
DEFAULT

0..1 /
FIXED

(c) Sparx Systems 2019 Page 626 of 672

User Guide - Software Models 20 January, 2020

0..1 /
ARRAY

NAME Node

Contained in Nodes: PACKAGE, Class DECLARATION

Multiplicity /
Nodes

Description

1 / NAME

0..* /
QUALIFIER

0..* /
NAMEPART

An alternative to using NAME and
QUALIFIER. A string of values, all
except the last one taken as qualifiers.
The last one is taken as the Name.

TYPE Node

Contained in Nodes: Method DECLARATION,

(c) Sparx Systems 2019 Page 627 of 672

User Guide - Software Models 20 January, 2020

ATTRIBUTE, PARAMETER

Multiplicity /
Nodes

Description

0..1 /
TEMPLATE

The entire text of the template is the
name of the type.
Only used if NAME is undefined.
See TEMPLATE Node.

1 / NAME

0..* /
QUALIFIER

0..* /
NAMEPART

An alternative to using NAME and
QUALIFIER. A string of values, all
except the last one taken as qualifiers.
The last one is taken as the Name.

TEMPLATE Node

Contained in Nodes: TYPE

Multiplicity /
Nodes

Description

(c) Sparx Systems 2019 Page 628 of 672

User Guide - Software Models 20 January, 2020

0..* /
PARAMETE
R

See PARAMETER Node.

1 / NAME

PARENT Node

Contained in Nodes: Class DECLARATION

Multiplicity /
Nodes

Description

0..1 / TYPE Has the value Parent, Implements or
VirtualP.

1 / NAME

0..* /
QUALIFIER

0..* /
NAMEPART

An alternative to using NAME and
QUALIFIER. A string of values, all
except the last one taken as qualifiers.
The last one is taken as the Name.

0..1 /

(c) Sparx Systems 2019 Page 629 of 672

User Guide - Software Models 20 January, 2020

INSTANTIA
TION

TAG Node

Contained in Nodes: Class DECLARATION, Method
DECLARATION, ATTRIBUTE, PARAMETER

Multiplicity /
Nodes

Description

1 / NAME

0..* /
VALUE

0..1 /
MEMO

0..1 /
NOMEMO

0..1 /
GROUP

(c) Sparx Systems 2019 Page 630 of 672

User Guide - Software Models 20 January, 2020

DESCRIPTION Node

Contained in Nodes: Class DECLARATION, Method
DECLARATION, ATTRIBUTE, PARAMETER

Multiplicity /
Nodes

Description

0..* /
VALUE

(c) Sparx Systems 2019 Page 631 of 672

User Guide - Software Models 20 January, 2020

Editing Grammars

If you need to write and edit a grammar for code imported in
a new programming language, you can do so using the
built-in Grammar Editor.

Access

Ribbon Develop > Preferences > Grammars

Create and Edit Grammar

Field/Button Action

Open
Grammar

Display a browser through which you can
locate and open the file containing the
grammar you want to edit.

Recent Recently used grammars can be quickly
accessed using this combo box.

Save Save the current file.

(c) Sparx Systems 2019 Page 632 of 672

User Guide - Software Models 20 January, 2020

Save As Saves a copy of the current file

Validate
Grammar

The grammar validation will run a series
of tests on the current grammar to ensure
its validity. Errors and warnings will be
displayed informing you of both errors
that will make the grammar unusable, and
conditions where you might get
unexpected results.

Help Display this Help topic.

Context Menu Options

Field/Button Action

Open File Display a browser through which you can
locate and open the file containing the
grammar you want to edit.

Validate The grammar validation will run a series
of tests on the current grammar to ensure
its validity. Errors and warnings will be
displayed informing you of both errors
that will make the grammar unusable, and
conditions where you might get

(c) Sparx Systems 2019 Page 633 of 672

User Guide - Software Models 20 January, 2020

unexpected results.

Language The Grammar Editor defaults to normal
Backus–Naur Form (nBNF). The mBNF
option is also available.

Line
Numbers

Turn line numbers on or off in the
grammar editor.

(c) Sparx Systems 2019 Page 634 of 672

User Guide - Software Models 20 January, 2020

Parsing AST Results

The Abstract Syntax Tree (AST) is the code that Enterprise
Architect sees as it processes a grammar.

You parse the text in the bottom half of the Grammar Editor
window and review what is displayed as a result. You can
either open a file or paste text in. If you have pasted text that
corresponds to something that cannot appear at the file level
(such as Operation Parameters) you can select an alternative
rule to use as a starting point. The parse will then commence
from that rule.

Access

Ribbon Develop > Preferences > Grammars >
Grammar Debugger > AST Results

Toolbar Options

Option Action

Open File Open a sample input file to test against.

(c) Sparx Systems 2019 Page 635 of 672

User Guide - Software Models 20 January, 2020

Recent Recently opened source files can be
selected from this combo box.

Parse Perform the parse operation. If the parse
is successful, the 'AST Results' tab will
contain the resulting AST.

Select Rule This drop down allows you to select an
alternative root rule for processing your
sample source.

Help Display this Help topic.

(c) Sparx Systems 2019 Page 636 of 672

User Guide - Software Models 20 January, 2020

Profiling Grammar Parsing

When you parse a grammar that you have created, it might
show errors that you cannot immediately diagnose. To help
you resolve such errors, you can review the process that the
parser followed to generate the AST you can see, using the
Grammar Profiler.

You again parse the text in the bottom half of the Grammar
Editor window, but this time the tree shows each rule that
the parser attempted, where it got to and if it passed or not.
Rules for opening a file, pasting a file and setting the
starting rule remain the same.

Access

Ribbon Develop > Preferences > Grammars >
Grammar Debugger > Profiler Results

Toolbar Options

Option Action

Open File Display a browser through which you can

(c) Sparx Systems 2019 Page 637 of 672

User Guide - Software Models 20 January, 2020

locate and open the file containing the
grammar you want to edit.

Parse Perform the parse operation. If the parse
is successful, the 'AST Results' tab will
contain the resulting AST, and the
'Profile Results' tab will contain debug
information regarding the path that the
parser took through your grammar. The
profile data is extremely useful when
debugging a new grammar.

Select Rule If you want to use a different root rule for
processing your sample source, click on
the drop-down arrow and select the
alternative rule.

Help Display this Help topic.

Notes

Because profiling can take a very long time for large files,·

the 'Profile Results' tab is not filled if you are not
displaying that tab when you begin parsing

(c) Sparx Systems 2019 Page 638 of 672

User Guide - Software Models 20 January, 2020

Macro Editor

The macro editor allow a user to supplement the grammar
with a list of keywords and rules to exclude macros during
grammar parse operations. The macro definition list is
particularly useful when developing grammars for languages
that support macros such as C++. It avoids the necessity of
describing these rules in the grammar itself, and can be used
with multiple grammars.

This feature is available from Enterprise Architect Release
14.1.

Access

Ribbon Develop > Preferences > Grammars >
Macro Editor

Editing Macros

Open File Open an existing macro definition list

(c) Sparx Systems 2019 Page 639 of 672

User Guide - Software Models 20 January, 2020

Recent Recently opened macro definition lists
can be selected from this combo box

Save Saves changes to the opened macro
definition list

Save As Saves a copy of the existing macro
definition list

Validate Validates the grammar of the macro
definition list

(c) Sparx Systems 2019 Page 640 of 672

User Guide - Software Models 20 January, 2020

Example Grammars

The Code Samples directory set up by the Enterprise
Architect installer contains an example Grammar that you
can load into the Grammar editor to review, and into the
Grammar Debugger to parse and profile.

The Grammar example consists of two files:

test.ssl - a simple sample language source file, in the style·

of C, and

ssl.nbnf - a grammar for the simple sample language·

The example illustrates:

Tokenization (using the Lexer)·

Creation of a Package·

Creation of a Class or Interface·

Creation of an attribute·

Creation of an operation (with parameters)·

Importing comments·

The Code Samples directory also contains two other
Grammar files that you can examine:

Expressions Sample.nBNF - this illustrates how·

expression parsing is set up and processed, with detailed
comment text providing explanations

CSV Sample.nBNF - an example grammar for processing·

CSV files

(c) Sparx Systems 2019 Page 641 of 672

User Guide - Software Models 20 January, 2020

Code Miner Framework

The Code Miner system provides fast and comprehensive
access to the information in existing source code. By
parsing all source code and storing the resulting Abstract
Syntax Tree in a read-optimized database, the system
provides complete access to all aspects of the original
source code, in a machine understandable format.

The core goal behind the system is to provide access to the
data hidden within source code in a timely and effective
manner. Great pains have been taken to ensure maximum
performance, while providing the simplest interfaces
possible. As a result the system can be used to analyze
program structure, calculate metrics, trace relationships and
even perform refactoring.

Information from Code Miner databases is retrieved using
queries written in mFQL, Code Miner's own language. The
language itself is reasonably simple, providing a small
number of commands. Simple as the language is, it supports
queries of arbitrary size and complexity. The design
provides extreme performance for all queries, great and
small.

This feature is available from Enterprise Architect Release
14.1.

(c) Sparx Systems 2019 Page 642 of 672

User Guide - Software Models 20 January, 2020

The Intelli-sense features of Enterprise Architect's code
editors and it's search tools can make use of the information
mined from these databases.

The currently active Analyzer Script, and also the query
parameters, are indicated across the bottom of the 'Code
Miner' page of the search tool.

(c) Sparx Systems 2019 Page 643 of 672

User Guide - Software Models 20 January, 2020

Code Miner Libraries

Code Miner libraries are managed in Enterprise Architect
using the Analyzer Script Editor. These Libraries are a
collection of Code Miner databases, one of which would
normally exist for each framework or project. The Editor
allows new databases to be created, and existing databases
to be added, updated or removed. Together, these databases
form the Code Miner Library used by the Intelli-sense
features of Enterprise Architect. The library can be used
locally, or it can be deployed to a server location where it
can service multiple clients. You select the scenario to use
on the 'Code Miner Service' page of the Analyzer Script.

This feature is available from Enterprise Architect Release
14.1.

(c) Sparx Systems 2019 Page 644 of 672

User Guide - Software Models 20 January, 2020

Access

On the Execution Analyzer window, locate and double-click
on the required script - the script editor dialog will display.
On that dialog, select the 'Code Miner > Libraries' page.

Ribbon Execute > Tools > Analyzer, or
Develop > Preferences > Analyzer > Edit
Analyzer Scripts

Creating a new Database

Use the 'New' button to create a new database. In the new
dialog, enter the parent folder of the project source code,
select the programming language and enter the destination
path for the Code Miner database. When you click the
Create button details of the build are displayed in the log
window.

(c) Sparx Systems 2019 Page 645 of 672

User Guide - Software Models 20 January, 2020

When the process is complete press the 'Add' button to add
the newly created database to the library.

Adding an existing Database

Select an existing Code Miner database using the "..."
selection button in the database path field.

(Code Miner databases have the .CDB file extension), then
click on the Add button. Details about the database are listed
in the library. The information presented displays the

(c) Sparx Systems 2019 Page 646 of 672

User Guide - Software Models 20 January, 2020

programming language grammar used to build the database.
Also shown is the code base path parsed during the build
and whether the parsing process was applied recursively
through any sub directories.

Updating a Database

To update a single Code Miner database, select it from the
list and choose 'Update Selected' from its context menu.
Code Miner will recreate the database from the updated
code base.

Removing a Database

To remove a single Code Miner database, select it from the
list and choose 'Remove Selected' from its context menu.

Configuring Enterprise Architect to use a
Code Miner Library

In an Enterprise Architect Analyzer Script, choose the 'Code
Miner Service' page and select 'Use Library'. Enterprise
Architect then source its Intelli-sense information from the
databases listed in the 'Libraries' section of the currently

(c) Sparx Systems 2019 Page 647 of 672

User Guide - Software Models 20 January, 2020

active Analyzer Script.

(c) Sparx Systems 2019 Page 648 of 672

User Guide - Software Models 20 January, 2020

Code Miner Queries

Code Miner queries are best considered as functions written
in Code Miner's mFQL language. As such, they have
unique names, can be grouped by namespace and can take
one or more parameters. Queries are bundled together into
one source file. This source file is identified to Enterprise
Architect by naming it in your Analyzer Script.

When specified, the queries it contains are available in the
Code Miner control. Parameters to these queries can be
taken from selected text in a code editor, the model context
or typed directly into the search field of the control.

This feature is available from Enterprise Architect Release
14.1.

This image illustrates an mfQL query from the Sparx
Queries file distributed with Enterprise Architect
installations. The syntax for composing an mFQL query and
the mFQL language itself is described here.

(c) Sparx Systems 2019 Page 649 of 672

User Guide - Software Models 20 January, 2020

Query Syntax

The syntax for composing mFQL queries is:

namespace

{

 query:name([$param1 [, $param2]])

 {

 mfql-expression

 }

}

where:

namespace names the collection of queries·

name is the 'function' name of the query·

$param1 and 2 are placeholders for argument·

substitutions at runtime

mfql-expression is an mFQL expression·

(c) Sparx Systems 2019 Page 650 of 672

User Guide - Software Models 20 January, 2020

Code Miner Query Language (mFQL)

The Code Miner system provides fast and comprehensive
access to the information in existing source code. By
parsing all source code and storing the resulting Abstract
Syntax Tree (AST) in a read-optimized database, the
system provides complete access to all aspects of the
original source code, in a machine understandable format.

The core goal behind the system is to provide access to the
data hidden within source code in a timely and effective
manner. Great pains have been taken to ensure maximal
performance, while providing the simplest interfaces
possible. As a result the system can be used to analyze
program structure, calculate metrics, trace relationships and
even perform refactoring.

mFQL

mFQL is the query language of the Code Miner. The
language itself is reasonably simple, providing a small
number of commands. Simple as the language is, it supports
queries of arbitrary size and complexity. The design
provides extreme performance for all queries, great and
small.

The language is set-based; it operates primarily on sets of
abstract data obtained through discrete vertical indices. For

(c) Sparx Systems 2019 Page 651 of 672

User Guide - Software Models 20 January, 2020

our purposes, a set is an ordered array of numbers, each of
which is a pointer to a node in the AST Store. A discrete
vertical index provides a mechanism to retrieve sets by
discrete value.

The language includes the three basic set-joining operations.
These are 'intersect', 'union', and 'except'. The 'except' join
is, more precisely, a 'symmetric difference' join. A
'complement' join can be achieved by using a short
sub-query; this is detailed in the 'except' join documentation.
The 'offsetIntersect' join is also discussed in detail there.

The Code Miner database provides three discrete vertical
indices in its AST Store. These indices are 'node name',
'attribute name', and 'attribute value'. Each vertical index
can be queried for a discrete value, which will return a set of
all nodes where that value is present. The three vertical
indices are queried using the functions 'getByNode',
'getByName' and 'getByValue', respectively.

Set 'traversal routines' provide mechanisms to filter sets
based on patterns in the AST. The traversal routines are
either destructive (move) or non-destructive (filter).
Destructive traversals modify the set member values to point
to the target node; non-destructive traversals ensure the
target node exists. In both cases, nodes that cannot
complete the traversal are removed.

Please note that all traversals in mFQL are upwards.
Downwards traversals are technically complex, as a node
could have any number of child nodes. Conversely, upward
traversals are much simpler, with every node having zero or
one parent node. For these reasons, downward traversals

(c) Sparx Systems 2019 Page 652 of 672

User Guide - Software Models 20 January, 2020

are not supported in the query language.

Although there are only a small number of operations in
mFQL, the language is capable of expressing very finely
grained and complex queries. The language is functional in
design, and supports arbitrary nesting calls.

mFQL queries execute at lightning speed. The backend
database was designed from the ground up for read
performance. The query parser was hand optimized.
Knowing that it always has pure ordered sets, the low-level
code takes several shortcuts to perform joins with minimal
work effort.

In order to use nBNF effectively one must possess a
working knowledge of the target language, and an intimate
knowledge of the grammar used to parse it.

(c) Sparx Systems 2019 Page 653 of 672

User Guide - Software Models 20 January, 2020

Set Extraction

These procedures extract sets from discrete vertical indices.
There are three indices available, each with a specific
extraction function. String literal parameters to these
functions could be case sensitive. Case sensitivity is defined
by the language of the source code used to populate the
database. If the source language is case sensitive (as C++
is) all string literal parameters are case sensitive. If the
source language is case insensitive (as SQL is) all string
literal parameters are case insensitive.

GetByNode

getByNode(value: string)

Extract a set based upon node name. The exact name for a
node is defined by the grammar used to parse the original
source. In this example, all nodes with the name
"OPERATION" are returned.

getByNode("OPERATION")

GetByName

getByName(value: string)

Extract a set based upon attribute name. All nodes with one
or more attributes of the specified name are returned. If a

(c) Sparx Systems 2019 Page 654 of 672

User Guide - Software Models 20 January, 2020

single node has two attributes of the same name, one
instance of that node is returned. This example returns all
nodes with one or more attributes named "NAMEPART".

 getByName("NAMEPART")

GetByValue

 getByValue([+] value: string [+ value: string] [+])

Extract a set based upon an attribute value. When extracting
nodes by attribute value, the value of all attributes for the
node are considered. Wildcards allow for specifying a
subset of attribute values for a node.

When a single value is provided, all nodes that have a single
attribute with the value specified are returned. If a node has
any other attributes, it is excluded. In this example, all nodes
with exactly one attribute with the value of 'i' are returned.

 getByValue("i")

More than one value can be specified by using a
concatenation symbol. When more than one value is
specified, the resulting set will contain all nodes that have
attributes with exactly the values specified, in the order
specified. Any node with extra leading or trailing attributes
is excluded. This example retrieves a set of all nodes with a
set of three attributes with the values “com”, “.” and “sun”,
in that order.

 getByValue("com" + "." + "sun")

Wildcards can be used at either the beginning or end of a

(c) Sparx Systems 2019 Page 655 of 672

User Guide - Software Models 20 January, 2020

value specification. A leading concatenation symbol allows
for any number of attributes preceding the first matched
attribute. A trailing concatenation symbol allows for
arbitrary trailing attributes. In both cases, if the node would
match without wildcards, it will match with them – the
wildcard specifies any number of leading/trailing attributes,
including none.

In this example, we retrieve a set of nodes that have their
last two attributes being “.” and “sun”. The leading
concatenation symbol specifies that any number of attributes
(including none), with any value, can exist before the
matched attributes, but none can follow.

 getByValue(+ “.” + “sun”)

The next example has a trailing wildcard. Any node with
attributes “com”, “.” and “sun” as the first three attributes
will be returned. Any number of trailing attributes can exist.

 getByValue(“com” + “.” + “sun” +)

Both wildcards can be used together. In this example, nodes
with attributes named as the three values specified, in order,
regardless of leading or trailing attributes, will be returned.

 getByValue(+ “com” + “.” + “sun” +)

(c) Sparx Systems 2019 Page 656 of 672

User Guide - Software Models 20 January, 2020

Set Traversal

Move

move(count: number, source: set)

move(value: string, source: set)

move(count: number, value: string, source: set)

The move function traverses each node in a set up a number
of parent nodes, excluding any nodes that fail the traversal.
The number of nodes to traverse, the name of the target
node for the traversal, or both can be provided as
parameters.

When the number of nodes is provided, but the target·

node name is not, any nodes with the specified number of
parents will pass the traversal; any node that runs out of
parents will be dropped from the set

When the name of the target is specified, but the number·

of nodes to traverse is not, nodes with a parent with a
matching name at any point in the hierarchy will pass the
traversal; any node with no matching parent is excluded

When both the number of nodes and the target name are·

provided, only nodes that have a parent node with the
specified name at the specified offset pass the traversal;
all other nodes are removed from the set

It is possible - even likely - that these calls will generate sets
having duplicate values. This is by design, as the concrete

(c) Sparx Systems 2019 Page 657 of 672

User Guide - Software Models 20 January, 2020

rules for sets do not define them as being discrete. If (as in
most cases) you want your set to be discrete, use the
'distinct' function described in the Helper Functions Help
topic.

This sample extracts a set of all nodes named
'OPERATION', then traverses each node up one level to its
immediate parent. Any 'OPERATION' node with no parent
is excluded.

move(1, getByNode("OPERATION"))

This sample extracts a set of all nodes named
'OPERATION', then traverses each node up to the first
'CLASS' parent node. Any 'OPERATION' node with no
'CLASS' parent is excluded.

move("CLASS", getByNode("OPERATION"))

This sample extracts a set of all nodes named
'OPERATION', then traverses each node up one level to its
immediate parent. If the parent node is not a 'CLASS' node,
or the node fails to traverse though a lack of parent nodes, it
is excluded.

move(1, "CLASS", getByNode("OPERATION"))

Filter

filter(count: number, source: set)

(c) Sparx Systems 2019 Page 658 of 672

User Guide - Software Models 20 January, 2020

filter(value: string, source: set)

filter(count: number, value: string, source: set)

The 'filter' function is the same as the 'move' function,
except that it does not modify nodes – it is non-destructive.
If a node is unable to pass the specified traversal, it is
removed from the set. Nodes that pass the traversal are left
in place, unmodified.

It is often desirable to filter a set by the current node name.
This can be used to ensure that the nodes returned from a
'getByName' or 'getByValue' call are of a particular node
type. This example returns all nodes with an attribute with
the value of “CFoo”, where the resulting node is a “TYPE”
node.

filter(0, “TYPE”, getByValue(“CFoo”))

For more details on the use of the 'filter' function, see the
'move' function.

(c) Sparx Systems 2019 Page 659 of 672

User Guide - Software Models 20 January, 2020

Set Joining

Intersect

intersect(left: set, right: set)

An 'intersect' join will return a set containing all nodes that
exist in both the left and right set. This join is comparable to
a bitwise AND operation. In set theory, this type of join is
called an 'intersection'.

 {1, 2, 3} intersected with {2, 3, 4} results in {2, 3}

This example returns a set that contains all nodes that have a
single attribute with the name of “TYPE” and the value of
“int”.

 intersect(

 getByValue("int"),

 getByName("TYPE")

)

Union

union(left: set, right: set [, right: set])

'Union' joins return a set that includes all nodes found in

(c) Sparx Systems 2019 Page 660 of 672

User Guide - Software Models 20 January, 2020

either the left or the right set. This join is used to combine
the results of two or more sub-queries into a single set. A
'union' join is similar to a logical OR operation. In set
theory, the 'union' join is known as a union.

The 'union' join is able to operate on more than two sets.
The result is a set that contains all nodes from all supplied
sets. The 'union' join is the only join able to operate on more
than two sets.

The result of a 'union' join is always a discrete set, unless
one of the source sets contained duplicates. This means that
duplicates in source sets will be preserved, but the 'union'
join itself will not generate duplicates.

 {1, 2, 3} unioned with {2, 3, 4} results in {1, 2, 3, 4}

This sample creates a set containing all nodes with an
attribute named “TYPE” or a single attribute with the value
of “int”.

 union(

 getByValue("int"),

 getByName("TYPE")

)

Except

except(left: set, right: set)

'Except' joins return sets that contain any nodes from either
set that do not appear in both sets. This join is similar to a

(c) Sparx Systems 2019 Page 661 of 672

User Guide - Software Models 20 January, 2020

bitwise XOR operation. In set theory, this type of join is
referred to as a 'symmetric difference' join.

 {1, 2, 3} excepted with {2, 3, 4} results in {1, 4}

For more information on the 'symmetric difference' join in
set theory, see
http://en.wikipedia.org/wiki/Symmetric_difference.

This sample returns a set of all nodes with an attribute
named “TYPE” but no single attribute with the value of
“int”, plus all nodes with an attribute with the value of “int”
that are not named “TYPE”.

 except(

 getByValue("int"),

 getByName("TYPE")

)

Exclude

exclude(left: set, right: set)

'Exclude' joins return a set that contains all nodes from the
left set that do not appear in the right set. In set theory, this
type of join is referred to as a relative complement join.

 {1, 2, 3} complemented with {2, 3, 4} results in {1}

This sample returns a set of all nodes with a value of “int”
that are not “TYPE” nodes:

 Exclude(

(c) Sparx Systems 2019 Page 662 of 672

User Guide - Software Models 20 January, 2020

 getByValue(“int”),

 getByName(“TYPE”)

)

OffsetIntersect

offsetIntersect(count: number, left: set, right: set)

offsetIntersect(value: string, left: set, right: set)

offsetIntersect(count: number, value: string, left: set, right:
set)

The offsetIntersect function performs both a non-destructive
tree traversal and an intersect join in one operation. Each
node in the left set is traversed according to parameters
provided, then the result of the traversal is intersected with
the right set. If the intersect passes, the original node is
added to the result set. If the intersect fails, the node is
excluded from the result set.

The traversal parameters for offsetIntersect are the same as
for 'move' and 'filter'. For more information about the
traversal parameters, see the 'move' function described in the
Set Traversal Help topic.

This sample takes all “NAME” nodes, traverses them up one
parent, and intersects them with a set of all “CLASS” nodes.
If a “NAME” node passes both the traversal and intersect
join, it is added to the result set. The result is a set of all

(c) Sparx Systems 2019 Page 663 of 672

User Guide - Software Models 20 January, 2020

“NAME” nodes whose immediate parent is a “CLASS”
node.

offsetIntesect(1,

getByNode(“NAME”),

getByNode(“CLASS”)

)

(c) Sparx Systems 2019 Page 664 of 672

User Guide - Software Models 20 January, 2020

Helper Functions

These functions are helpful in mFQL query compositions.

GetByAddress

The getByAddress function is used in applying the results of
one query to another. For example, we might have a node of
particular interest, and we want our query to return only
nodes that join (in some way) to the specified node.

 getByAddress(node: number)

This sample builds a set containing the single node related
to the address specified:

 getByAddress(11256)

To create a set of more than one node, use several calls to
the node function from within a union join. This sample
creates a set of three specific nodes:

 union(

 getByAddress(11256),

 getByAddress(55388),

 getByAddress(117740)

)

GetByPosition

(c) Sparx Systems 2019 Page 665 of 672

User Guide - Software Models 20 January, 2020

getByPosition(File: String, Offset: Number)

The getByPosition function is used to return the inner most
node that covers a certain position in a file. This function is
useful for locating a position in the AST based upon a file
position.

Distinct

distinct(source: set)

The distinct function ensures that a set has no duplicate
values. All duplicate values are excluded from the result
set.

This function is required to handle a side effect of the move
function; it can create a set that includes duplicate nodes.
The move function operates in this manner by design – it
should only remove nodes that fail the specified traversal,
ensuring the resulting set is discrete is beyond its scope and
(in some cases) undesirable behavior.

(c) Sparx Systems 2019 Page 666 of 672

User Guide - Software Models 20 January, 2020

Code Miner Service

The Codeminer service program provides a means for
development projects and players to gain valuable insight
into the code bases and software frameworks they are
working with. The service acts as a provider to Enterprise
Architect clients, allowing access to Intelli-sense in code
editing and insightful search results in search tools.

The Codeminer service is part of the Sparx Satellite
Services umbrella. The service can run on a local network or
Cloud running Microsoft Windows. The Codeminer
Satellite service can be installed as a Windows service or
run as a standalone process. The service allows multiple
Enterprise Architect clients to access and query the same
information from many different software domains and
frameworks.

This feature is available from Enterprise Architect Release
14.1.

(c) Sparx Systems 2019 Page 667 of 672

User Guide - Software Models 20 January, 2020

Service Configuration

Service program

The name of the service program is SparxintelService.exe

Configuration File

The service is configured by the file
SparxIntelService.config

The file must be located in the same directory as the service
program.

The file contains a number of directives and also lists the
Codeminer databases to be served.

The file is read once when the service is started.

Directives Description

port The Port number on which the service
will listen.

allow Names a domain or ip address that is
allowed access.: 198.* or 127.0.0.1

network Values can be "public", "network" or
"private".

(c) Sparx Systems 2019 Page 668 of 672

User Guide - Software Models 20 January, 2020

Use "private" when allow directives
specify one or more single ip addresses.
Use "network" when allow directives
specify a wildcard domain: 198*
Use "public" to allow all clients.

database Names the full physical file path of a
Codeminer database on the server.

Running the program standalone

From a normal console enter the command:
SparxIntelService -listen

Installing as Windows Service

From an Administrative console enter the command:
SparxIntelService -install

(c) Sparx Systems 2019 Page 669 of 672

User Guide - Software Models 20 January, 2020

Client Configuration

Configuring Enterprise Architect to use a
Codeminer Service

Enterprise Architect uses components known as Analyzer
Scripts for the configuration of many support systems. This
is where the location of the server is specified. This image
shows the Code Miner service page of a script.

Access

(c) Sparx Systems 2019 Page 670 of 672

User Guide - Software Models 20 January, 2020

Ribbon Develop > Preferences > Analyzer > Edit
Analyzer Scripts

(c) Sparx Systems 2019 Page 671 of 672

User Guide - Software Models 20 January, 2020

(c) Sparx Systems 2019 Page 672 of 672

	Software Models
	Integrated Development
	Feature Overview
	Generate Source Code
	Generate a Single Class
	Generate a Group of Classes
	Generate a Package
	Update Package Contents
	Synchronize Model and Code

	Namespaces

	Importing Source Code
	Import Projects
	Import Source Code
	Notes on Source Code Import
	Import Resource Script
	Import a Directory Structure
	Import Binary Module
	Classes Not Found During Import

	Editing Source Code
	Languages Supported
	Configure File Associations
	Compare Editors
	Code Editor Toolbar
	Code Editor Context Menu
	Create Use Case for Method

	Code Editor Functions
	Function Details
	Intelli-sense
	Find and Replace
	Search in Files
	Find File

	Search Intelli-sense

	Code Editor Key Bindings

	Application Patterns (Model + Code)
	MDG Integration and Code Engineering

	Behavioral Models
	Code Generation - Activity Diagrams
	Code Generation - Interaction Diagrams
	Code Generation - StateMachines
	Legacy StateMachine Templates
	Java Code Generated From Legacy StateMachine Template

	StateMachine Modeling For HDLs

	Win32 UI Technology
	Modeling UI Dialogs
	Import Single Dialog from RC File
	Import All Dialogs from RC File
	Export Dialog to RC File
	Design a New Dialog

	GoF Patterns
	ICONIX
	Configuration Settings
	Source Code Engineering Options
	Code Generation Options
	Import Component Types

	Source Code Options
	Options - Code Editors
	Editor Language Properties

	Options - Object Lifetimes
	Options - Attribute/Operations

	Modeling Conventions
	ActionScript Conventions
	Ada 2012 Conventions
	C Conventions
	Object Oriented Programming In C

	C# Conventions
	C++ Conventions
	Managed C++ Conventions
	C++/CLI Conventions

	Delphi Conventions
	Java Conventions
	AspectJ Conventions

	PHP Conventions
	Python Conventions
	SystemC Conventions
	VB.NET Conventions
	Verilog Conventions
	VHDL Conventions
	Visual Basic Conventions

	Language Options
	ActionScript Options - User
	ActionScript Options - Model

	Ada 2012 Options - User
	Ada 2012 Options - Model

	ArcGIS Options - User
	ArcGIS Options - Model

	C Options - User
	C Options - Model

	C# Options - User
	C# Options - Model

	C++ Options - User
	C++ Options - Model

	Delphi Options - User
	Delphi Options - Model
	Delphi Properties

	Java Options - User
	Java Options - Model

	PHP Options - User
	PHP Options - Model

	Python Options - User
	Python Options - Model

	SystemC Options - User
	SystemC Options - Model

	VB.NET Options - User
	VB.NET Options - Model

	Verilog Options - User
	Verilog Options - Model

	VHDL Options - User
	VHDL Options - Model

	Visual Basic Options - User
	Visual Basic Options - Model

	MDG Technology Language Options
	Reset Options

	Set Collection Classes
	Example Use of Collection Classes

	Local Paths
	Local Paths Dialog

	Language Macros

	Developing Programming Languages
	Code Template Framework
	Code Template Customization
	Code and Transform Templates
	Base Templates
	Export Code Generation and Transformation Templates
	Import Code Generation and Transformation Templates
	Synchronize Code
	Synchronize Existing Sections
	Add New Sections
	Add New Features and Elements

	The Code Template Editor
	Code Template Syntax
	Literal Text
	Variables
	Macros
	Template Substitution Macros
	Field Substitution Macros
	Substitution Examples
	Attribute Field Substitution Macros
	Class Field Substitution Macros
	Code Generation Option Field Substitution Macros
	Connector Field Substitution Macros
	Constraint Field Substitution Macros
	Effort Field Substitution Macros
	File Field Substitution Macros
	File Import Field Substitution Macros
	Link Field Substitution Macros
	Linked File Field Substitution Macros
	Metric Field Substitution Macros
	Operation Field Substitution Macros
	Package Field Substitution Macros
	Parameter Field Substitution Macros
	Problem Field Substitution Macros
	Requirement Field Substitution Macros
	Resource Field Substitution Macros
	Risk Field Substitution Macros
	Scenario Field Substitution Macros
	Tagged Value Substitution Macros
	Template Parameter Substitution Macros
	Test Field Substitution Macros

	Function Macros
	Control Macros
	List Macro
	Branching Macros
	Synchronization Macros
	The Processing Instruction (PI) Macro

	Code Generation Macros for Executable StateMachines
	EASL Code Generation Macros
	EASL Collections
	EASL Properties

	Call Templates From Templates

	The Code Template Editor in MDG Development
	Create Custom Templates
	Customize Base Templates
	Add New Stereotyped Templates
	Override Default Templates

	Grammar Framework
	Grammar Syntax
	Grammar Instructions
	Grammar Rules
	Grammar Terms
	Grammar Commands
	AST Nodes

	Editing Grammars
	Parsing AST Results
	Profiling Grammar Parsing
	Macro Editor
	Example Grammars

	Code Miner Framework
	Code Miner Libraries
	Code Miner Queries
	Code Miner Query Language (mFQL)
	Set Extraction
	Set Traversal
	Set Joining
	Helper Functions

	Code Miner Service
	Service Configuration
	Client Configuration

