
DMN Modeling and
Simulation

How do I model decisions? Use Sparx Systems
Enterprise Architect to apply the Decision

Model and Notation (DMN) standard constructs
to model and document decisions and business

rules for business and technical users, in
Decision Tables created in FEEL.

Enterprise Architect

User Guide Series

Author: Sparx Systems
Date: 2020-01-20

Version: 15.1

CREATED WITH

Table of Contents

DMN Modeling and Simulation 6
An Example of Decision Modeling 11
Building a Decision Model in Enterprise Architect 15
Components of Decision Requirements Diagrams 28
Decision 31
Business Knowledge Model 34
BKM Parameters 38
Input Parameter Values for Simulation 41
Decision Table simulation example 43
Literal Expression Simulaton Example 45

Input Data 47
InputData DMN Expression 49

Item Definition 52
Item Definition Toolbar 55
Item Definitions and Data Sets 57
Types of Components 60
Allowed Value Enumerations 63

Data Sets 65
Exchange Data Sets using DataObjects 68

DMN Expression Editor 72
Decision Table 77
Toolbar for Decision Table Editor 87
Decision Table Hit Policy 90

Decision Table Validation 94
Literal Expression 99
Toolbar for Literal Expression Editor 104
Example - Loan Repayment 106

Boxed Context 108
Toolbar for Boxed Context Editor 113
Example - Loan Installment Calculation 116

Invocation 122
Toolbar for Invocation Editor 126
Example 1 - Bind Input Data to Business
Knowledge Model 129
Example 2 - Bind Context Entry variables to
Business Knowledge Model 131

Expression Editor Dialog 133
DMN Expression Auto Completion 137
DMN Expression Validation 143

Decision Service 147
Simulating a Decision Service 152

DMN Simulation 156
DMN Simulation Toolbar 160
Simulate DMN Model 164
Example DMN Simulation 171

DMN Module Code Generation and Test Module 175
Integrate a DMN Module Into BPSim for Simulation 181
Example: Integrate DMN Decision Service into
BPSim Data Object and Property Parameter 190
Example: Integrate DMN Business Knowledge
Model into BPSim Property Parameter 192

Integrate DMN Module Into UML Class Element 195
Importing DMN XML 204

User Guide - DMN Modeling and Simulation 20 January, 2020

DMN Modeling and Simulation

Decision Model and Notation (DMN) is a standard
published and managed by the Object Management Group
(OMG).

Portions of this topic have been used verbatim or are freely
adapted from the DMN Specification, which is available on
the OMG DMN web page
(https://www.omg.org/spec/DMN). A full description of the
DMN and its capabilities can be found on the OMG website.

The purpose of DMN is to provide the constructs that are
needed to model decisions, so that organizational
decision-making can be readily depicted in diagrams,
accurately defined by business analysts, and (optionally)
automated. It also intended to facilitate the sharing and
interchange of decision models between organizations.

What is DMN?

DMN is intended to provide a bridge between business
process models and decision logic models:

Business process models will define tasks within business·
processes where decision-making is required to occur

Decision Requirements Diagrams will define the·
decisions to be made in those tasks, their
interrelationships, and their requirements for decision
logic

(c) Sparx Systems 2019 Page 6 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Decision logic will define the required decisions in·
sufficient detail to allow validation and/or automation.

Business Process BPMN

Collect Application
Data

Decide Routing

Offer Product Decline Application

Business Process
Model (BPMN)

Routing = ACCEPT Routing = DECLINE

dmn Decision Model (DMN)

Application risk category table

Application risk score model

Application Risk Eligibility Eligibility Rules

Routing

Application

Decision
Model (DMN)

Decision Requirements
Level

custom Decision Logic

Employment status

UNEMPLOYED

-

-

-

Country

-

not(UK)

-

-

Age

-

-

<18

-

Eligibilty

INELIGIBLE

INELIGIBLE

INELIGIBLE

ELIGIBLE

P

1

2

3

4

Eligibility Rules

Decision Logic
Level

Taken together, Decision Requirements diagrams and
decision logic allow you to build a complete decision model
that complements a business process model by specifying -
in detail - the decision-making carried out in process tasks.

DMN provides constructs spanning both decision
requirements and decision logic modeling.

For decision requirements modeling, it defines the·
concept of a Decision Requirements Graph (DRG)
comprising a set of elements and their connection rules,
and a corresponding notation: the Decision Requirements
Diagram (DRD).

(c) Sparx Systems 2019 Page 7 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

For decision logic modeling it provides a language called·
FEEL for defining and assembling decision tables,
calculations, if/then/else logic, simple data structures, and
externally defined logic from Java and PMML into
executable expressions with formally defined semantics.

Benefits of Using DMN in Enterprise
Architect

Modeling decision-making processes using DMN allows
you to record, specify and analyze complex decision
processes as a system of interrelated decisions, business
rules, data sets and knowledge sources. By doing so, you
can decompose a highly complex decision making process
into a network of supporting decisions and input data. This
facilitates easier understanding of the overall process,
supports refactoring of processes and simplifies the task of
validating the process, by allowing you to easily validate the
individual steps that make up the overall process.

When you build a Decision Model in Enterprise Architect
using DMN, you can run simulations of the model to verify
the correctness of the model. After you have verified your
model, you can generate a DMN Module in Java,
JavaScript, C++ or C#. The generated DMN Module can be
used with the Enterprise Architect BPSim Execution
Engine, Executable StateMachine, or within a separate
software system that you are implementing.

(c) Sparx Systems 2019 Page 8 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Enterprise Architect also provides a 'Test Module' facility,
which is a preprocess for integrating DMN with BPMN.
The aim is to produce BPMN2.0::DataObject elements, then
use these to verify that a specified target decision is
evaluated correctly with the DMN Module. You then
configure BPSim by loading DataObjects and assigning
DMN Module decisions to BPSim Properties.

This feature is available in the Unified and Ultimate editions
of Enterprise Architect, from Release 15.0.

Decision Requirements Graphs

The DMN decision requirement model consists of a
Decision Requirements Graph (DRG) depicted in one or
more Decision Requirements Diagrams (DRDs). The
elements modeled are decisions, areas of business
knowledge, sources of business knowledge, input data and
decision services.

A DRG is a graph composed of elements connected by
requirements, and is self-contained in the sense that all the
modeled requirements for any Decision in the DRG (its
immediate sources of information, knowledge and authority)
are present in the same DRG. It is important to distinguish
this complete definition of the DRG from a DRD presenting
any particular view of it, which might be a partial or filtered
display.

(c) Sparx Systems 2019 Page 9 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Input Data

Decision Business Knowledge

(c) Sparx Systems 2019 Page 10 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

An Example of Decision Modeling

Imagine you are an Airline reservation officer working at
the check-in counter for a busy domestic airline. Getting the
aircraft off on-time is critical as delays can result in fees
applied by the airport controllers, needing to fly at a lower
altitude increasing the cost of fuel, and other penalties.

A message from the supervisor appears on your screen
saying that the economy cabin is overbooked; you will need
to upgrade some passengers to Business or First Class —
but which passengers should be chosen and which cabin
should they be upgraded to? A decision needs to be made
but what factors should be considered? This can be recorded
in a Decision Model using a Decision Requirements
diagram.

Cabin Upgrade Policy

Customer Cabin Status

Determine Cabin for Upgrade

This is helpful but the busy check-in officer would still need
to weigh up all the factors and make an unbiased decision.
Should a disgruntled passenger be given priority over a
Gold level frequent flyer, or should the fact that a particular
passenger is connecting to an international flight take
precedence. These 'rules' can all be recorded in a Decision
table, making it clear which passengers should get an
upgrade and to which cabin: Business or First Class. This

(c) Sparx Systems 2019 Page 11 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

will make it much easier to make the decision and the rules
can be formulated, agreed upon and checked for consistency
back at head office. In this example we have kept it simple
and used two factors: firstly the number of flights the
passenger has made in the last month and secondly how
overbooked the cabin is.

The table is divided into columns and rows. There are three
types of column: inputs that are required to make the
decision, outputs that are the result of applying the rules,
and annotations.

This is again very helpful but still requires the busy check-in
officer to be able to source all the required information
required to find the right row in the Decision table. Even if
all this information were available, a wrong decision could
still result from human error in selecting the wrong row in
the table.

Fortunately the Decision Models can be automated and
generated to programming code that can be executed by an
application. So our busy check-in officer would not need to
do anything or make any decisions; as he or she was
checking in the passengers, if a particular passenger was
entitled to an upgrade it would be visible on the computer

(c) Sparx Systems 2019 Page 12 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

screen. In the next diagram the model has been simulated so
that the business and technical staff can agree that the model
has been defined correctly. Any number of user defined data
sets can be used to test the model before generating out the
programming code that will run in the check-in system and
display the result to the end user.

When developing the models a business or technical user
can step through the simulation and the system will show
that user which row in the Decision table was fired to
determine the output. This is very useful in models that are
made up of multiple decisions.

It is common for the rules that govern the upgrade decision
to change. For example, the Marketing Department might
decide they want to reward passengers that travel on
long-haul flights. The Decision Requirements diagram can

(c) Sparx Systems 2019 Page 13 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

be altered to include the new input, the Decision table
modified, and the programming code regenerated. Once the
changes have been pushed through to the airport systems,
the right passengers will be automatically upgraded. The
check-in officer could still view the Decision tables during a
training and briefing session to understand the rules.

(c) Sparx Systems 2019 Page 14 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Building a Decision Model in
Enterprise Architect

In the model we described in An Example of Decision
Modeling, we showed how a decision can be modeled using
a Decision Table, in which a decision result is determined
by finding a row in the table where the input values in the
table match the input values under consideration, giving a
particular output result.

We will now look at how such a model can be created in
Enterprise Architect, by stepping through the process of
creating the decision model for the Airline Cabin Upgrade
example.

There are a number of model elements involved in this
example, such as Input Data elements, Item Definitions that
are used to describe the Input Data (defining the data types),
a Decision element and also a Business Knowledge Model
element that holds the Decision Table definition.

Create a Decision Requirements Diagram

These steps will guide you through the creation of a simple
Decision Requirements Diagram (DRD). In this example,
we will create the model from scratch, rather than using a
pattern from the Model Wizard.

Step Description

(c) Sparx Systems 2019 Page 15 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

1 Select the perspective 'Requirements |
Decision Modeling'.
(The Model Wizard is displayed, but we
will not use it for this example, so close
the Model Wizard.)

2 Create a new DMN diagram. Name it
'Airline Cabin Upgrade'.

3 Using the diagram toolbox, place a
Decision Element on the diagram.
Choose 'Invocation' as the type - we will
use this element to 'invoke' a decision
from a Business Knowledge Model
element. Name the element 'Determine
Cabin for Upgrade'.

4 Place an InputData element on the
diagram. Name this element 'Customer'.

5 Place another InputData element on the
diagram. Name this element 'Cabin
Status'.

6 Place a Business Knowledge Model
element on the diagram. Choose the type
'Decision Table'. Name this element
'Cabin Upgrade Policy'.

(c) Sparx Systems 2019 Page 16 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

7 Draw an 'Information Requirement'
connector from the decision 'Determine
Cabin for Upgrade' to the input data
'Customer'.

8 Draw an 'Information Requirement'
connector from the decision 'Determine
Cabin for Upgrade' to the input data
'Cabin Status'.

9 Draw a 'Knowledge Requirement'
connector from the decision 'Determine
Cabin for Upgrade' to the BKM 'Cabin
Upgrade Policy'.

Class

At this stage, we should have a simple DRD, that resembles
this:

Cabin Upgrade Policy

Customer Cabin Status

Determine Cabin for Upgrade

We can now specify the details for each of the elements
making up this model.

(c) Sparx Systems 2019 Page 17 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Define the Decision Table

By double-clicking on the Business Knowledge Model
element 'Cabin Upgrade Policy', the 'DMN Expression'
window is displayed, showing an empty decision table. This
is where we will define the rules of our cabin upgrade
policy.

By default, new decision tables are created with two input
columns and one output column, a header row and three
empty rules rows.

The left-most column in the table displays the 'hit policy'
and also numbers the rules. By default, the 'hit policy' is 'U'
for 'Unique'. This is the policy that we will use for our
example, so you do not need to change this column heading.

For more information on 'hit policy', refer to the Decision
Table Hit Policy Help topic.

Name and Define Types for Decision Table
Inputs and Outputs

(c) Sparx Systems 2019 Page 18 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Step Description

1 On the toolbar of the 'DMN Expression'
window, click on the 'Edit Parameters'
button, .
The 'Edit Parameters' dialog displays.

2 Replace the parameter name 'Input 1'
with 'Num of Pax Overbooked'.
If necessary, click on the 'Type'
drop-down arrow and set the type of this
parameter to 'number'.

3 Replace the parameter name 'Input 2'
with 'Num of Flights in Last Month by
Pass'.
Set the type of this parameter to 'number'
as well.
Close the 'Edit Parameters' dialog.

4 Edit the input expression that will be
evaluated for column 1.
Select the header cell (containing the text
'Input 1') then click again or press F2 to
enter 'Edit' mode. Select all of the cell
text, then press the Spacebar. The list of
input parameters is displayed. Click on

(c) Sparx Systems 2019 Page 19 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

'Num of Pax Overbooked', then press
'Enter'. The expression for column 1 is
set to 'Num of Pax Overbooked'.
Note: The input expressions evaluated
for each column typically just use the
corresponding input parameter; however,
you can use a complex expression.

5 Right-click on the column 1 expression
and check that its data type is set to
'number'.

6 Edit the input expression that will be
evaluated for column 2.
Select all of the text, then press the
Spacebar. The list of input parameters is
displayed. Choose 'Num of Flights in
Last Month for Pass', then press 'Enter'.
The expression for column 2 is set to
'Num of Flights in Last Month for Pass'.

7 Right-click on the column 2 expression
and set its data type to 'number'.

8 Edit the name of the decision table
output.
Replace 'Output 1' with 'Upgrade Cabin',
then press 'Enter'.

(c) Sparx Systems 2019 Page 20 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

9 Set the data type of the decision output.
Right-click on the output column header
and choose 'string'.

10 Set the allowable values for the decision
output.
In the cell directly beneath the output
column header (but above row 1), define
the allowable values for output. Enter
"Business Class, First Class".
Note: There is no need for quote marks
around the values, as the data type has
been specified as 'string'.

Define the Rules of the Decision Table

Enter values into the table cells to match this image.

(c) Sparx Systems 2019 Page 21 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Click on a cell to select it, and click again to edit it.

You can copy and paste existing rules by selecting the rows
to copy (Shift+click adds to the selection), right-click and
choose 'Copy', then right-click and choose 'Append'.

Once you have finished editing the rules, click on the Save
button .

Finally, click the Validate button , to check for errors in
the table of rules.

Create ItemDefinition Elements

Add two ItemDefinition elements to the diagram, one for
each of the InputData elements. Name one element
'CustomerDefinition' and the other 'CabinStatusDefinition'.

Cabin Upgrade Policy

Customer Cabin Status

Determine Cabin for Upgrade

«ItemDefinition»
CustomerDefinition

«ItemDefinition»
CabinStatusDefinition

Double-click the ItemDefinition named
'CustomerDefinition' to edit the definition. The DMN
Expression window is displayed.

(c) Sparx Systems 2019 Page 22 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Right-click on the cell 'CustomerDefinition' and choose
'Add Child Component'. Set the name of the child
component to 'Num of Flights in Last Month' and set its
datatype to 'number'. Click the 'Save' button to save the
changes.

Similarly, edit the ItemDefinition named 'CabinStatus
Definition' adding a child component named 'Num Pax
Overbooked' and set its data type as 'number'. Save the
changes.

Specify the Data Type For Each InputData
Element

Select the InputData element 'Customer'. In the Properties
window, select the property 'typeRef' and click on the
browse button ('...').

(c) Sparx Systems 2019 Page 23 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Select the ItemDefinition 'Customer Definition' as the type.
Click on 'OK'.

Similarly, specify 'Cabin Status Definition' as the type for
'Cabin Status'.

Specify the Inputs to the Decision Element

Select the decision element 'Determine Cabin for Upgrade'

In the DMN Expression window, locate the table row
containing the text 'Num of pax overbooked' in first column.
Click in the cell in the second column of this row, and press
the space bar. A list of possible input values is displayed.
Choose 'Cabin Status . Num Pax Overbooked' and press
'Enter'. The selection is written into the cell.

(c) Sparx Systems 2019 Page 24 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Repeat this process for the second table row 'Num of flights
in last month', choosing 'Customer . Num of Flights in Last
Month'.

Click on the Save button.

Click on the Validate button.

Define Data Sets

The 'correctness' of your decision model can be tested, by
running simulations using a range of representative data sets
to verify that the model produces the correct result in all
situations.

You can create numerous Data Sets with various names,
using a range of data values. You can set one of the data
sets as the default value.

We will now create a Data Set for each of our InputData
elements.

Step Description

1 Double-click on the InputData element
'Customer'.
The DMN Expression window displays.

2 In the DMN Expression window, click on
the 'Edit Data Set' button .
The 'Edit Data Set' window is displayed.

(c) Sparx Systems 2019 Page 25 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

3 Click on the button.
A new data set is created.

4 Overwrite the name of the data set if you
wish.
Leave the Type as 'number'. Enter a
value of say, 3.
Click on OK.

5 Repeat for the InputData 'Cabin Status'.
Enter a value of say, 4.

Add a DMNSimConfiguration Artifact

Locate the 'DMN Sim Configuration' artifact in the diagram
toolbox. Drop one of these onto the diagram as well.

Double-click on it to open the DMN Simulation window.

From this window, you can run simulations of the
completed Decision Model. You can also perform
Validation, generate code and generate test modules.

Step Description

1 Locate the edit field in toolbar of this
window.

(c) Sparx Systems 2019 Page 26 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

2 Click on the drop-down arrow in this
field.
A list displays, showing all of the
Decision Services and Decision elements
in the Package associated with the
SysMLSim Configuration artifact. In
this case, 'Determine Cabin for Upgrade'
is the only item in the list.

3 Choose 'Determine Cabin for Upgrade'.

4 The body of the window now displays the
InputData elements and the decision
results that are available as inputs to the
selected decision.
Click on the Save button.

5 Use the 'Value' column to select one of
the predefined DataSets for the
InputValues, then you can click on the
'Run' button to run a simulation,
using the selected data sets.

(c) Sparx Systems 2019 Page 27 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Components of Decision Requirements
Diagrams

The elements modeled in DRG and DRD are decision,
business knowledge model, input data, knowledge source
and decision service. The dependencies between these
elements express three kinds of requirements: information,
knowledge and authority.

Components of Decision Requirements
Diagrams

This table summarizes the notation for all components of a
DRD.

Component Description

Decision A Decision element denotes the act of
determining an output from a number of
inputs (Input Data or Decision), using
decision logic expressed as Literal
Expressions, Decision Tables,
Invocations or Boxed Context.

Business
Knowledge
Model

A business knowledge model denotes a
reusable module of decision logic
represented by a function, which includes

(c) Sparx Systems 2019 Page 28 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

zero or more parameters.

Decision
Service
(expanded)

A decision service can enclose a set of
reusable decisions that are invoked
internally - for example, by another
decision or business knowledge model -
or externally - for example, by a BPMN
Process.
A good practice is to use a diagram to
describe a single expanded Decision
Service.

Decision
Service
(collapsed)

If a Decision Service element serves as
an invocable element, connected with
knowledge requirement to other elements
with invocation logic, we can hide the
details of the decision service to focus on
the decision hierarchies in the big picture.

Input Data An Input Data element denotes
information used as an input to one or
more Decisions.

Item
Definition

An Item Definition is used to define the
type and structure of data items used in
the decision model. It is primarily
referenced by Input Data Elements as
basis for the type and structure of data
expected to be input. It can also be

(c) Sparx Systems 2019 Page 29 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

referenced for setting the structure for an
output.
The Item Definition contain Data Sets
that provide sets of values useful when
performing varied Simulations.

Knowledge
Source

A Knowledge Source element denotes an
authority for a Business Knowledge
Model or Decision.

Information
Requirement

An Information Requirement denotes
Input Data or Decision output being used
as input to a Decision.

Knowledge
Requirement

A Knowledge Requirement denotes the
invocation of a Business Knowledge
Model or Decision Service.

Authority
Requirement

An Authority Requirement denotes the
dependence of a DRG element on another
DRG element that acts as a source of
guidance or knowledge.

(c) Sparx Systems 2019 Page 30 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Decision

A Decision element is used to evaluate an output based on
one or more inputs. The logic that determines the output is
either defined within that Decision element or it invokes the
decision logic contained in a Business Knowledge Model
that is connected to the Decision.

Inputs

A Decision can have any number of inputs, including the
option to define the input values in the element. The most
common input is to use an Input Data Element.

Output

A decision can have zero or one output. The output can be a
complex data set.

Value Expressions

The output of a Decision element is determined using a

(c) Sparx Systems 2019 Page 31 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Value Expression. The Value Expression contains the
element's decision logic and can take one of four forms:
Decision Table, Literal Expression, Invocation or Boxed
Context. Value Expressions are defined and edited using
the DMN Expression editor, which displays one of four
formats according to the type of expression being used.

When displayed on a diagram, the Decision element shows
an icon in the top-right corner that indicates which type of
value expression it is using.

Type Description

A Decision table is a tabular
representation of a set of related input
and output expressions, organized into
rules indicating which output entry
applies to a specific set of input entries.

A Literal Expression is the simplest form
of DMN expression. It is commonly
defined as a single-line statement or an
if-else conditional block.

A Decision Invocation requires that a
Business Knowledge Model element is
referenced using a Knowledge
Requirement connector. The Decision
element simply contains the parameters
that provide the context for evaluating the
Business Knowledge Model (BKM). Part

(c) Sparx Systems 2019 Page 32 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

or all of the result returned from the
BKM can be set to be passed as the
output of the Decision.

A Boxed Context is a collection of
context entries. Each context entry
consists of a variable and an expression.
The Context also has a result value.

(c) Sparx Systems 2019 Page 33 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Business Knowledge Model

A Business Knowledge Model element (BKM) represents a
reusable piece of decision logic. Typically, it is connected to
a Decision element that invokes the BKM and passes on a
set of inputs. The BKM, using its internal logic, evaluates an
output that is passed back to the Decision.

Unless a BKM is working on fixed values, it usually
requires defining a set of input parameters, as well as the
definition of an output. The parameters and the decision
logic are defined using the DMN Expression window.

Inputs and output

When used in a decision model, a BKM must be connected
via a KnowledgeRequirement to a Decision or a BKM,

(c) Sparx Systems 2019 Page 34 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

through which it receives its inputs . The input parameters
are defined using the icon. These can be set as a simple
type or a complex type defined using an ItemDefinition. The
naming of the Input parameters influences the naming
within the Value Expression.

Output

A BKM output is via a KnowledgeRequirement which must
be an input to a Decision or to another BKM. The output is
defined using:

The icon for a Literal Expression·

Output column(s) in the DMN Expression table for a·

Decision Table, Boxed Content and Invocation.

An output can be a simple type or a complex type defined
using an ItemDefinition.

Value Expressions

To define a means for evaluating an output, based on the
decision logic, a BKM element contains a Value Expression.
This is defined and edited using the DMN Expression
window, which has four formats, the format being
determined by the type of Value Expression that you want to
use.

(c) Sparx Systems 2019 Page 35 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

The BKM element can be set with these structures for the
Value Expression. Each is shown in the model with an icon.

Type Description

A Decision table is a tabular
representation of a set of related input
and output expressions, organized into
rules indicating which output entry
applies to a specific set of input entries.

A Literal Expression is the simplest form
of DMN expression. It is commonly
defined as a single-line statement or an
if-else conditional block.

A Decision Invocation requires that a
Business knowledge model Element is
referenced using a Knowledge
Requirement connector. It simply
contains the parameters that provide the
context for the evaluating a business
knowledge model.

A Boxed Context is a collection of
context entries. Each context entry
consists of a variable and an expression.
The Context also has a result value.

(c) Sparx Systems 2019 Page 36 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Validation and Testing

To ensure a BKM element is able to produce a correct
output it can be validated using the Validation icon . A
BKM can also be tested as a unit to ensure it is operative
using the Simulation button. For more details see the
Input Parameter Values for Simulation Help topic.

(c) Sparx Systems 2019 Page 37 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

BKM Parameters

A Business Knowledge Model is implemented as a function
definition, with parameters and a DMN expression as its
body (such as Decision table, Boxed Context or Literal
Expressions).

As a BKM is intended to function stand alone, and be called
by other Decisions or BKM's, it is necessary to define any
input parameters. Also, for Literal Expressions, you need to
define the output parameter.

When defining any input Parameters you can set these with
default values for testing. After creating a BKM, to verify
that it functions correctly, you can run a simulation based on
these default values.

Parameters of a Business Knowledge Model

To open the 'Edit Parameters' dialog, in the DMN
Expression window, click on the Edit Parameters button :

(c) Sparx Systems 2019 Page 38 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Note: this is an example for a Literal Expression which
includes a return type.

Edit parameters

You can perform these actions on the parameters:

Action Description

Add a new parameter by typing in the
'New Parameter...' row.

Modify the name of the existing
parameter by in-place editing in the cell.

Delete an existing parameter using the

(c) Sparx Systems 2019 Page 39 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

context menu.

Click on the Type to enable a drop-down.
Select a type for the parameter from the
drop-down.
Set an Item Definition Type
When changing the type of Parameter
there is an option to select a pre-defined
type from an ItemDefinition. The option
for this is 'Select Type ...'. When this
option is selected it will open a dialog for
selecting an ItemDefinition.

(c) Sparx Systems 2019 Page 40 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Input Parameter Values for Simulation

As a Business Knowledge Model is self-contained, it is
possible to perform a simulation 'Unit Test' by providing a
default set of values as an input for its parameters. These
values can be defined in the Input Parameter Values for
Simulation tab in the DMN Expression window.

Parameters of a Business Knowledge Model

Parameters for a BKM are accessed from the DMN
Expression window, using the Edit Parameters button on
the toolbar:

A default set of values for these parameters, that can be used
in a simulation of the BKM, are defined in the 'Input
Parameter Values for Simulation' tab on the DMN

(c) Sparx Systems 2019 Page 41 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Expression window:

With these parameters set the BKM can be tested using the
Simulation button.

Simulation examples

These are two examples of using the Input Parameter
Values for Simulation.

Type Description

Decision
Table

An example simulation of a BKM
Decision Table element based on values
set in the Input Parameter Values for
Simulation tab.

Literal
Expression

An example simulation of a BKM Literal
Expression element based on values set in
the Input Parameter Values for
Simulation tab.

(c) Sparx Systems 2019 Page 42 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Decision Table simulation example

The Business Knowledge Model (BKM) described in this
section is available from the Model Wizard (Ctrl+Shift+M).
In the 'Perspectives' field, select 'Requirements | Decision
Modeling'.

To access the example used in the this section:

Create a pattern for 'DMN Decision | A Complete·

Example'

Navigate in the Browser window to 'A Complete Example·

| Business Knowledge Models | Eligibility rules'

Double-click on the 'Eligibility rules' element to open the·

BKM in the DMN Expression window

When a Decision Table is created for a Business Knowledge
Model, we can test this BKM by binding some values:

We can provide test values such as these:

(c) Sparx Systems 2019 Page 43 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Click on the Simulation button on the tool bar to obtain
this result:

The runtime parameter value will take the place of·

'Allowed Values' in simulation mode

Valid rule(s) are highlighted·

Since this Decision table's hit policy is P (Priority) the·

final result is determined by the order of 'output values';
since 'INELIGIBLE' and 'ELIGIBLE' are the output
values and 'INELIGIBLE' comes ahead of 'ELIGIBLE',
rule #3 will give the final result and this applicant is
'INELIGIBLE'.

(c) Sparx Systems 2019 Page 44 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Literal Expression Simulaton Example

The Business Knowledge Model (BKM) described in this
section is available from the Model Wizard (Ctrl+Shift+M).
In the Perspectives select the Requirements | Decision
Modeling.

Create the pattern for 'DMN Business Knowledge Model |·

Business Knowledge Model Literal Expression'

Navigate in the Browser window to 'Business Knowledge·

Model Literal Expression | Payment'

Double-click on the 'Payment' element to open the BKM in
the DMN Expression window

Similar to Decision table, the Business Knowledge Model
implemented as a Boxed Expression can be tested as well.

Take this 'Payment_2_decimal' BKM as an example:

This BKM will calculate the monthly repayment based on
interest rate, number of terms and principal amount.

We could provide test values such as these:

(c) Sparx Systems 2019 Page 45 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Click on the Simulation button on the tool bar; this result
is obtained:

The runtime parameter and return value will be displayed
with an equals sign '=', followed by the runtime value.

In this example, given an annual Rate of 4% for 30 years
and a principal of $300,000, the monthly repayment is
$1,432.25

Note: The DMN Library already has a PMT function
defined; this example mainly demonstrates how Literal
Expression works and how to test it with a set of arguments.

(c) Sparx Systems 2019 Page 46 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Input Data

An InputData element is used to input into Decisions a set
of values that originate outside the model. That set of values
is used for evaluating Decisions. It derives its type and a set
of values from an ItemDefinition.

Overview

InputData elements are created by dragging an
InputData-type icon from the Toolbox onto a
DMN diagram.

The name of the InputData element must be unique and not
duplicate the name of any other decision, input data,
business knowledge model, decision service, or import in
the decision model.

Referencing an ItemDefinition

The structure of the data, as well as sets of values for an
InputData element are defined in an ItemDefinition
Element. A DMN InputData Element must be referenced
(typed) by an ItemDefintion using either:

(c) Sparx Systems 2019 Page 47 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

The icon on the DMN Expression window of the·

InputData Element or

Selecting the InputData Element and pressing Ctrl+L to·

select the ItemDefinition from the dialog.

Input Data properties

The properties of an InputData element are accessible via
the DMN Expression window. Double-click on the
InputData element to open this window.

The DMN Expression window provides a view of the data
structure as well as access to Data Sets that can be used in
simulations.

(c) Sparx Systems 2019 Page 48 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

InputData DMN Expression

The DMN Expression window provides a view of an
InputData's data structure, options to alter the value of
Items, and access to Data Sets that can be used in
simulations.

Access

Ribbon Simulate > Decision Analysis > DMN >
DMN Expression, then select / create an
InputData

Other Double-click on a DMN InputData

Toolbar Options

(c) Sparx Systems 2019 Page 49 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Option Description

Saves the configuration to the current
InputData Element.

Sets the InputData's type by selecting a
reference to an ItemDefinition.

Opens the ItemDefinition element that is
referenced by this InputData as its type
definition.

Runs a validation of the InputData.
Enterprise Architect will perform a series
of validations to help you identify errors
in the InputData.

Option to select a Data Set as defined in
the ItemDefinition that references this
InputData.

Opens the dialog for editing data sets for
this input data. Each InputData can define
multiple data sets. With this feature, the
DMN Simulation can quickly test the
results of a decision by choosing different
data sets.

(c) Sparx Systems 2019 Page 50 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Auto Completion

If the InputData has a field with 'Allowed Value' defined,
then the field can be populated by, selecting the field,
pressing on the space-bar, then selecting an option from the
drop-down.

Data Sets

Data Sets are defined in the ItemDefinition referenced by
the InputData element. Using the toolbar drop-down you
can select a data set from the ItemDefinition. Once a set is
selected you can alter the values of the items. You can also
add new Data Sets by opening the Data Set window using
the icon.

(c) Sparx Systems 2019 Page 51 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Item Definition

Fundamental to creating Decision Models is the definition
of the structure of data items used within the model. An
ItemDefinition is used to define the structure of the input
data and optionally, to restrict the range of allowable values
of the data. ItemDefinitions can range from a simple single
type through to a complex structured type.

Overview

ItemDefinition elements are created by dragging a
 icon from the DMN Toolbox onto a DMN

diagram.

The core properties of an ItemDefinition element are
accessed via the DMN Expression window.

Access

(c) Sparx Systems 2019 Page 52 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

To open the DMN Expression window for an ItemDefinition
Element:

Ribbon Simulate > Decision Analysis > DMN >
DMN Expression, then select or create an
ItemDefinition

Other Double-click on a DMN ItemDefinition

DMN Expression and Data set

This image is an overview of the DMN Expression window,
showing a complex data item and the layout of the key
fields used in the definition of the data. Included is a view
of a Data Set defined using this ItemDefintion. A Data Set
is an 'instance' of data conforming to an ItemDefinition,
which contains a set of values to be used in the DMN
simulation.

(c) Sparx Systems 2019 Page 53 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

As ItemDefinitions are foundation elements in the model, it
is recommended that they are 'validated' before going on to
using them in the model. This will ensure that any issues are
resolved early on in the process of creating a complex
model.

For more details of setting up ItemDefinitions, see the
related topics.

(c) Sparx Systems 2019 Page 54 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Item Definition Toolbar

This table provides descriptions of the features accessible in
the DMN Expression window when an Item Definition is
selected.

Toolbar Options

Option Description

Saves the configuration of the current
ItemDefinition.

Creates a new data component as a child
of the selected component.

Creates a new data component as a
sibling to the selected component.

Deletes the selected data component.

Validates the ItemDefinition; Enterprise
Architect will perform a series of
validations to help you identify any errors
in the ItemDefinition.

Opens the Edit Data Set dialog, in which

(c) Sparx Systems 2019 Page 55 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

you can create and edit 'instances' of the
ItemDefinition, for use by InputData
elements.

(c) Sparx Systems 2019 Page 56 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Item Definitions and Data Sets

An ItemDefinition describes the types and structures of data
items used in a decision model. It serves as the data type
definition for InputData elements, Decision elements and
Business Knowledge Model parameters. An ItemDefinition
can also define Data Sets that provide sets of values for use
in DMN Simulations. Switching between different data sets
provides the ability to do 'what-if' analysis using the
decision model.

ItemDefinition Structure

The tApplicationData ItemDefinition example is a
composite type of 5 child items, "Monthly" is composed of
3 children (expenses, Income and repayments). The Leaf
components (non composite), will have a primitive type
such as number, string or boolean.

A complex ItemDefinition consists of nested Elements. For
example the tApplicationData is structured as:

(c) Sparx Systems 2019 Page 57 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Data Set

The ItemDefinitions Data Set can be viewed and edited
using the icon on the Toolbar. With the data set editing
dialog, you can add, delete and duplicate the data sets. There
is also support for CSV import and export of data sets.

For example, in the bottom-right of the image above, the
Item definition for tApplicantData defines 3 data sets:

Default·

Income4000·

Income5000.·

This Data Set can be viewed in an InputData Element that is
typed to the ItemDefintion.

For example the "Applicant Data" InputData Element is
typed to the ItemDefinition "tApplicantData" and shows the
values according to the selection of a data set from the
drop-down. See the bottom-left window in the image above.

Setting a Reference to an ItemDefinition

A DMN InputData Element is set to be referenced (typed)
by an ItemDefintion using either:

The icon on the DMN Expression window of the·

InputData Element or

Selecting the InputData Element and pressing Ctrl+L to·

(c) Sparx Systems 2019 Page 58 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

select the ItemDefnition from the dialog.

There are other cases of using ItemDefinitions for instance
when setting the type for an Input Parameter in a BKM or an
output parameter in a Decision Table.

(c) Sparx Systems 2019 Page 59 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Types of Components

An ItemDefinition element can be defined as a tree of
components that consists of only one of either:

A built-in type or·

A Composition of ItemDefinition elements.·

In this tree of components if a component is a 'leaf', that has
no child components, it must be set as a built-in type. If an
ItemDefinition has child components, it is the leaves of
these components that are set as a built-in type.

For example Applicant Data and Monthly are compositions,
whereas Age and Expenses are leaves set to a built-in type:

The FEEL language has these built-in types:

number·

string·

boolean·

days and time duration·

(c) Sparx Systems 2019 Page 60 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

years and months duration·

time·

date and time·

Note: 'number', 'string' and 'boolean' are supported by
Enterprise Architect for simulation.

To set a type for a 'leaf' ItemDefinition, you can use one of
three methods:

Use the context menu (Recommended)·

Type in the cell after the name by appending ': string', ':·

boolean' or ': number'

Input 'string', 'boolean' or 'number' in the tag 'type' for the·

ItemDefinition.

The context menu, for items under the main item, offers the
options to create a child or a sibling component, as well as

(c) Sparx Systems 2019 Page 61 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

the option to delete the selected item:

(c) Sparx Systems 2019 Page 62 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Allowed Value Enumerations

When defining data inputs for a decision, it is common to
want to restrict the set of allowable values for an input. For
example, you might want to restrict the allowed values for
Marital Status to just two options, Single and Married.

You can specify the allowed values for any leaf component
of an ItemDefinition. These are called Allowed Value
Enumerations and they are also used to support Auto
Completion. When specifying values for an InputData
element or an input parameter that references an
ItemDefintion where Allowed Values have been defined, the
user can simply choose a value from the list.

Each 'leaf' component of the ItemDefinition can define a list
of Allowed Values. For example, the ItemDefinition
Strategy has three allowed values - BUREAU, DECLINED
and THROUGH.

The input parameters and output clauses of Decision Tables
also support specification of allowable values. This restricts
the values that can be used when defining the rules in the
table, but also allows the user to fast fill the rules by
pressing the spacebar then selecting the required item:

(c) Sparx Systems 2019 Page 63 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

You can also autocomplete by typing the first letter of the
option you want to enter.

A more complex example can include a number of Allowed
Value Enumerations:

(c) Sparx Systems 2019 Page 64 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Data Sets

Each InputData can define multiple data sets. With this
feature, the DMN Simulation can quickly test the result of a
decision by choosing different data sets.

The values in the 'default' data set will shown in the DMN·

Expression window when the InputData is selected

You can add, duplicate or delete a dataset and set an·

existing dataset as default

You can export the datasets to a CSV file and import them·

from a CSV file

Access

(c) Sparx Systems 2019 Page 65 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Ribbon Simulate > Decision Analysis > DMN >
DMN Expression > click on InputData
item : icon

Other In a diagram, double-click on the DMN
InputData element : icon.

Toolbar Options

Option Description

Click on this button to create a new
dataset.

Click on this button to delete the selected
dataset.

Click this button to duplicate the selected
dataset.

Click on this button to save the datasets
to the InputData.

Click on this button to reload the datasets
for the InputData.

(c) Sparx Systems 2019 Page 66 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Click on this button to set the selected
dataset as default.

Click on this button to import datasets
from a CSV file.

Click on this button to export the datasets
to a CSV file.

(c) Sparx Systems 2019 Page 67 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Exchange Data Sets using DataObjects

When testing code generated from a DMN model, or when
simulating BPMN models that call DMN models, you need
a means of exchanging data sets. For example, in a BPMN
call of a DMN model, a BPMN DataObject is used to store
the set of variables that will be passed on to the DMN model
that it is calling. This DataObject needs to be populated
with data fitting the DMN InputData's data structure ready
to be passed to that InputData object.

This same BPMN DataObject is used when testing the code
generated from a DMN model.

This topic describes the process of creating BPMN
DataObjects, from DMN DataSets.

A Data Set is stored in a DMN InputData element and can
be accessed using the icon on the DMN Expression
window.

This opens the InputData's Edit Data Set dialog which can

(c) Sparx Systems 2019 Page 68 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

contain multiple sets of values:

There are two options to transfer the Data Set to a
DataObject:

1. Direct

Create a BPMN DataObject under a Package in the·

Browser.

Open the DMN Simulation window·

(c) Sparx Systems 2019 Page 69 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Select a Data Set from the Value drop-down·

Click on the icon on the DMN Simulation window.·

This opens the Select Element dialog.

Select the BPMN DataObject element·

Click on OK.·

The Data Set is now viewable in the Notes of the
DataObject.

2. Manual

(c) Sparx Systems 2019 Page 70 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

To manually exchange this Dataset:

Open the InputData element's DMN Expression dialog·

(see above)

Click on the Edit DataSet icon . This opens the Edit·

Data Set dialog.

Use the CSV Export icon to export these details to a·

file.

The text in the csv file can be added as text in the Notes of a
BPMN DataObject Element.

(c) Sparx Systems 2019 Page 71 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

DMN Expression Editor

The DMN Expression Editor is the window in which you
will define, review and update the details of most of the
different types of DMN element within your model.
Primarily, it is used for editing the Value Expressions of
Decision elements and BusinessKnowledgeModel (BKM)
elements.

A different version of the DMN Expression Editor is
displayed for each of the four types of value expression used
by Decision elements and BKM elements. For BKM
elements a second window tab is also presented, for defining
the input and output parameters used in calling the BKM.

Two additional versions of the DMN Expression Editor also
exist to support editing of ItemDefinitions and InputData
elements.

The toolbar that is displayed and the layout of the window
content are dependent upon the type of DMN element that is
currently selected and, where applicable, the type of Value
Expression being defined.

This image shows the version of the DMN Expression
Editor used for defining a Decision Table. In this case, the
underlying element is a BusinessKnowledgeModel, and so
the decision logic is 'invoked' by other elements, with input
and output passed via parameters.

(c) Sparx Systems 2019 Page 72 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Detailed explanations of the DMN Expression Editor's
features for each element and expression type are provided
in the Help topics that follow this one.

Access

Diagram Double-click a DMN element on a
diagram.
The DMN Expression editor window
corresponding to the element and its
expression type is displayed.

Value Expressions

Summarized in this table are four distinct types of value
expression with references to the Help topics detailing each

(c) Sparx Systems 2019 Page 73 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

of them.

Type Description

Decision
Table

A decision table is a tabular
representation of a set of related input
and output expressions, organized into
rules indicating which output entry
applies to a specific set of input entries.

Literal
Expression

A literal expression specifies the decision
logic as a textual expression that
describes how an output value is derived
from its input values. To support
simulation and execution, the literal
expression can use Javascript functions.

Boxed
Context

A boxed context is a collection of context
entries, consisting of (name, value) pairs,
each with a result value.
The context entries provide a means of
decomposing a complex expression into a
series of simple expressions, providing
intermediate results that can be used in
subsequent context entries.

Invocation An invocation calls on another model
element (a BusinessKnowledgeModel or
a Decision Service) to provide a decision
result. The invocation defines parameters

(c) Sparx Systems 2019 Page 74 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

that are passed into the 'invoked' element,
providing context for evaluation of its
decision logic. The decision result is then
passed back to the 'invoking' element.

ItemDefinition and InputData Elements

Element Description

ItemDefinitio
n

ItemDefinition elements are used to
define data structures and optionally, to
restrict the range of allowable values of
the data. ItemDefinitions can range from
a simple single type through to a complex
structured type. ItemDefintions are used
to specify the type of InputData elements
as well as input parameters.

InputData InputData elements are used to provide
input to Decision elements.
The data type of an InputData element is
defined using an ItemDefinition element.
Data Sets can also be defined as part of
an ItemDefintion and an InputData
element can then specify a Data Set to be
used when running a simulation.

(c) Sparx Systems 2019 Page 75 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

(c) Sparx Systems 2019 Page 76 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Decision Table

A Decision Table is a tabular representation of a set of
related input and output expressions, organized into rules
indicating which output entry applies to a specific set of
input entries.

Decision Tables are supported by both the Decision and the
Business Knowledge Model element types. They are denoted
by the icon.

Access

Diagram On a diagram, double-click on a Decision
element or BusinessKnowledgeModel
element.
The DMN Expression editor window is
displayed, showing details of the selected
element.

Overview

This image shows the DMN Expression editor window as it
appears for a Decision Table.

(c) Sparx Systems 2019 Page 77 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

A decision table consists of:

A list of rules, where each rule contains specific input·

entries and corresponding output entries

A list of input clauses, defined as expressions that·

generally involve one or more input values

A list of output clauses, defining the output corresponding·

to a specific set of inputs

The table hit policy that specifies how the rules are·

applied.

An input clause consists of an expression and an optional
list of allowed values. Very often, the expression is simply
an unmodified input value, however, it could also be an
expression involving more than one input value or perhaps a
conditional statement such as 'Application Risk Score >
100'. The allowable values apply to the expression result
rather than the input values used.

Each output clause consists of an identifier (a name) and
again an optional list of allowed values for that clause.

The table itself consists of a list of numbered rules, defining
a set of input entries and corresponding output entries.

(c) Sparx Systems 2019 Page 78 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

The decision table should contain all (and only) the inputs
required to determine an output.

In determining which rules are applied, the expressions
defined in the input clauses are evaluated for the given
inputs and the expression results are then used to find rules
with matching input entries.

Toolbar for Decision Table Editor

When a Decision Table is selected, the layout of features
accessible in the DMN Expression window is as shown:

For more details refer to the Help topic 'Toolbar for
Decision Table Editor'.

Parameters

In the case of BusinessKnowledgeModel elements,
parameters are used to pass input values supplied by the
invoking element. The BKM's decision logic is evaluated
using the input parameters and the result is returned to the
invoking element. By default, a BKM element is created
with two input parameters, 'Input 1' and 'Input 2'.

Click on the icon in the toolbar of the DMN Expression

(c) Sparx Systems 2019 Page 79 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

editor window to display the 'Edit Parameters' window.

Here you can change the parameter names, set their data
types, create additional parameters or delete existing ones.

Hit Policy

Right-click on the 'Hit Policy Indicator', then choose the
desired hit policy from the pop-up menu. The various table
hit policies are described in detail in the Help topic Decision
Table Hit Policy.

Input Clauses

An input clause of a Decision Table is defined as an

(c) Sparx Systems 2019 Page 80 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

expression. Very often, the expression is simply an
unmodified input value; however, it could also be an
expression involving more than one input value or could be
defined as a conditional statement, such as 'Application Risk
Score > 100'. The allowable values apply to the expression
result rather than the input values used and, as such, the type
of the values should match the type of the expression result.

Decision Tables are created with two default input clauses,
'Input 1' and 'Input 2'. The data type for both of these
clauses is 'number'. In the expression editor, the input
clauses are displayed as column headings on the Decision
Table. To modify an input clause, click on the column
heading to select the cell, then click again or press F2 to
edit.

Auto-completion is supported when editing input clauses.
That means, for Decision elements, any inputs that are
connected to the decision element are made available for
selection from a list. Similarly, for BKM elements, the
invocation parameters are made available for selection from
a list. See the Help topic Auto-completion for further
information.

To add additional columns of input entries to the Decision
Table, click on the icon on the toolbar of the Expression
editor window.

To remove input columns from the table, right-click within

(c) Sparx Systems 2019 Page 81 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

the unwanted input column, then select the option 'Delete
Input Column' from the pop-up menu.

The order of the columns in the table can be re-arranged by
dragging and dropping columns to new positions. (Drag the
unlabelled cell at the very top of the table column to the
required position.)

Allowed Values

When defining an Input or an Output column, the second
row of this column defines the Allowed Values. This is an
optional cell in the column, but useful for clarifying the
entries in the rows below this. When running a validation,
each of the cells below this are checked that they conform to
the expression in this cell.

The expressions used in this cell depends on the how the
'Input' or 'Output' column is typed. For example:

number - [18 ..35]·

string - 'High', 'Low', 'Medium'·

boolean - true, false·

Fast Fill Allowed Values

The Input/Output Expression that this references can be a
simple value or a complex FEEL expression; however if it is
directly related to an ItemDefinition's 'Allowed Values' field
then pressing the Spacebar will enable a fast-fill option to
set the 'Allowed Values' as defined in the ItemDefinition
(usually referenced via an InputData element) .

(c) Sparx Systems 2019 Page 82 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Fast Fill Rows

Once the 'Allowed Values' field is defined, as well as
restricting the values that can be used when defining the
rules in the table, the 'Allowed Values' field also provides
the user with a fast fill option. This is invoked, in a rule cell,
by pressing the Spacebar and selecting the required item:

For more details see the Help topic DMN Expression Auto
Completion.

Output Clauses

An output clause consists of a name, a data type and an
optional list of allowed values. To modify an output clause,
click on the column heading cell to select the cell, then click
again or press F2 to edit.

To add additional columns of output entries to the decision
table, click on the icon on the toolbar of the Expression

(c) Sparx Systems 2019 Page 83 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

editor window.

To remove output columns from the table, right-click within
the unwanted output column, then select the option 'Delete
Output Column' from the pop-up menu.

The order of the columns in the table can be re-arranged by
dragging and dropping columns to new positions. (Drag the
unlabelled cell at the very top of the table column to the
desired position.)

Data Type for Input/Output Clauses

For the simulation to work It is critical to set the data type
for all input and output clauses. Range, gap and overlap
validations are supported for clauses of type 'number', but
validation cannot be performed if the type has not been
specified. Code Generation for typed languages such as
C++, C# and Java requires that the data types are specified.
When the data type is specified as 'string', there is no need to
enclose each string literal within quotes. String values are
displayed using italic font if the type has been declared.

To set the data type, right-click on the Input Clause or
Output Clause and select the required type from the list.

(c) Sparx Systems 2019 Page 84 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Defining Decision Table Rules

Decision Table rules are defined by specifying input entries
and corresponding output entries within the cells of a table
row. For 'number' data types, input entries can be specified
as a single value, or as a number range, such as '<10', '>100'
or '(2..8]'. (When defining number ranges, the use of round
brackets indicate that the bounding number is NOT
included, use of square brackets indicates the bounding
number is included.) Output entries should specify a single
value per cell.

Additional rules can be appended to the list of rules by
clicking on the icon in the toolbar. Unwanted rules can
be deleted from the table by right-clicking on the rule and
selecting the option 'Delete Rule Row' from the pop-up
menu.

Existing rules can be copied and pasted within the table by
first selecting the rules, (use 'Ctrl+Click' to add/remove from
selection), then using the menu options 'Copy Rules to
Clipboard' and 'Paste Rules from Clipboard' to perform the

(c) Sparx Systems 2019 Page 85 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

copy and paste. The copied rules can then be modified by
selecting and editing individual cell entries.

If the 'Allowed Values' field is set for a string or boolean
expression, the Spacebar can be used for selecting a value
from the list of allowed values.

Rules can also be sorted within the table, either by:

Clicking the icon on the toolbar, then choosing to·

either 'Sort By Input' or 'Sort By Output', or

Right-clicking on individual rules within the table and·

selecting the 'Move Rule Up' or 'Move Rule Down' option
from the pop-up menu

To determine which table rows are selected for output, the
expressions that are defined by the input clauses are
evaluated for the given inputs and the results of the
expressions are then compared against the input entries of
the table rows. Where the expression results match the
input entries of a table row, that row is selected for output.

The Decision Table's 'Hit Policy' determines how the table's
matching rows are then used to produce its output.

(c) Sparx Systems 2019 Page 86 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Toolbar for Decision Table Editor

This table provides descriptions of the features accessible in
the DMN Expression window when a Decision Table is
selected.

Toolbar Options

Icon Description

Save changes to the currently selected
Decision or BusinessKnowledgeModel
element.

Switch views between Rule-as-Row and
Rule-as-Column for the Decision Table.

Click on 'Sort By Input' to sort the rules
by input columns; click on 'Sort By
Output' to sort the rules by output
columns. The columns can be dragged
and dropped to organize the sorting order.

Merge cells of adjacent rules, where the
content of the input entries is the same.

Split input entry cells that have

(c) Sparx Systems 2019 Page 87 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

previously been merged.

Display the 'Edit Parameters' window,
where you can specify the names and
data types of the parameters that are
passed when invoking the decision logic
of a BusinessKnowledgeModel element.

Append an input column to the Decision
Table.

Append an output column to the Decision
Table.

Append a rule to the Decision Table.

Show or hide the allowed values fields
for the 'Input' and 'Output' columns.
The allowed values defined for an input
or output will be used for validation and
auto completion editing.

Perform validation of the Decision Table.
Enterprise Architect will perform a series
of validations to help you discover any
errors in the Decision Table.

This button is enabled when a Decision
Table is defined for a

(c) Sparx Systems 2019 Page 88 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

BusinessKnowledgeModel element.
Select the 'Input Parameter Values for
Simulation' tab, complete the fields, then
click on this button. The test result will
be presented on the Decision Table, with
the runtime values of inputs and outputs
displayed and valid rule(s) highlighted.
You can use this functionality to unit test
a BusinessKnowledgeModel element,
without specifying its context.
A number of menu options are available
for this tool bar button. For more
information, see the Help topic
'BusinessKnowledgeModel and Test
Harness'.

(c) Sparx Systems 2019 Page 89 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Decision Table Hit Policy

The Hit Policy specifies the result of the Decision table in
cases of overlapping rules. The single character in a
particular Decision table cell indicates the table type and
unambiguously reflects the decision logic.

Single Hit Policies:

Unique: no overlap is possible and all rules are disjoint;·

only a single rule can be matched (this is the default)

Any: there might be overlap, but all the matching rules·

show equal output entries for each output, so any match
can be used

Priority: multiple rules can match, with different output·

entries; this policy returns the matching rule with the
highest output priority

First: multiple (overlapping) rules can match, with·

different output entries; the first hit by rule order is
returned

Multiple Hit Policies:

Output order: returns all hits in decreasing output priority·

order

Rule order: returns all hits in rule order·

Collect: returns all hits in arbitrary order; an operator (‘+’,·

‘<’, ‘>’, ‘#’) can be added to apply a simple function to
the outputs

Collect operators are:

(c) Sparx Systems 2019 Page 90 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

+ (sum): the result of the Decision table is the sum of all·

the distinct outputs

< (min): the result of the Decision table is the smallest·

value of all the outputs

> (max): the result of the Decision table is the largest·

value of all the outputs

(count): the result of the Decision table is the number of·

distinct outputs

Example of Unique hit policy

The 'Unique' hit policy is the most popular type of Decision
table and all rules are disjoint.

Example of Priority hit policy

(c) Sparx Systems 2019 Page 91 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

In a table with the 'Priority' hit policy, multiple rules can
match, with different output entries. This policy returns the
matching rule with the highest output priority.

NOTE: The list of allowable values is used to define the
output priority. Here, the allowable values are listed as
INELIGIBLE, ELIGIBLE; which defines INELIGIBLE as
having a higher priority than ELIGIBLE.

One possible simulation result might resemble this:

The matching rules are highlighted, but the output from rule
2 is chosen because INELIGIBLE has higher priority than
ELIGIBLE.

Example of Collection-Sum hit policy

(c) Sparx Systems 2019 Page 92 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

For a Decision table with the 'Collect-Sum' (C+) hit policy,
the result of the Decision table is the sum of all the distinct
outputs.

In this example, the output Partial Score is calculated as 43
+ 45 + 45 = 133

(c) Sparx Systems 2019 Page 93 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Decision Table Validation

A Decision table is one of the most common and powerful
DMN Expressions used to express decision logic. However,
modeling a Decision table can also be complicated,
especially if multiple input clauses are used in combination
for many Decision table rules. Enterprise Architect provides
a feature to validate Decision tables; this topic explains how
to apply this feature.

Access

DMN
Expression
Window

Simulate > Decision Analysis > DMN >
DMN Expression : Validate button

DMN
Simulation
Window

Simulate > Decision Analysis > DMN >
Open DMN Simulation > Configure :
Validate button

Entries out of range detection

It is good practice to define 'allowed values' for the input
clauses and output clauses of a Decision Table. The

(c) Sparx Systems 2019 Page 94 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

'allowed values' list is used to perform range checking of the
input entry and output entry values for the table rules.

In this example:

The 'Age' input clause defines a range of [20..120].·

However, the input entry for rule 1 specifies a range of
[18..21]; this is outside the range of allowed values, so
rule 1 is reported as invalid.

The 'Marital Status' clause defines its allowed values as an·

enumeration of 'S, M'. Rule 7 specifies a value of 'D',
hence that rule is also reported as invalid.

These issues can be corrected, either by updating the
'allowed values' or by modifying the input entries for the
invalid rules, depending on the actual business rules.

(c) Sparx Systems 2019 Page 95 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Completeness detection — report gaps in
the rules

The gaps in rules for a Decision table mean that, given a
combination of input values, no rule is matched. This
indicates that some logic or rule might be missing (unless a
default output is defined).

When the Decision table contains many rules that specify
number ranges, it becomes difficult to detect gaps by eye
and quite time-consuming to compose and run exhaustive
test cases.

For example,

The validation reports a gap in the rules. Closer inspection
reveals an error in rule 9. The input entry (580..600], should
be [580..600].

(c) Sparx Systems 2019 Page 96 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Rule Overlaps detection for Unique Hit
Policy

When rules overlap, for a given combination of input
values, multiple rules are matched. This is a violation if the
Decision table specifies its Hit Policy as 'Unique'.

When the Decision table contains many rules that specify
number ranges, it becomes difficult to detect gaps by eye
and quite time-consuming to compose and run exhaustive
test cases.

For example:

The validation reports an overlap in the rules, involving
rules 4 & 5. Closer inspection reveals the overlap exists in
the third input 'Credit Score', where '<610' overlaps with

(c) Sparx Systems 2019 Page 97 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

'[600..625]'. You could correct this issue either by changing
rule 4 to '<600' or by changing rule 5 to '[610..625]', to
reflect the actual business rules.

(c) Sparx Systems 2019 Page 98 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Literal Expression

A Literal Expression is the simplest form of DMN
expression. It is commonly defined as a single-line
statement or an if-else conditional block. As the expression
becomes more complex, you might prefer a Boxed Context,
or in order to improve the readability you can encapsulate
some of the logic as a function in the DMN Library. The
Literal Expression is a type of value expression used in both
Decision Elements and BusinessKnowledgeModel (BKM)
elements.

The icon on the top right corner of the Decision or BKM
element indicates that it is implemented as a Literal
Expression.

Access

Diagram On a diagram, double-click on a Decision
element or BusinessKnowledgeModel
element.
The DMN Expression editor window is
displayed, showing details of the selected
element.

(c) Sparx Systems 2019 Page 99 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Overview

This image shows the DMN Expression editor window, as it
appears for a Literal Expression.

The Literal Expression is a textual representation of the
decision logic. It describes how an output value is derived
from its input values, using mathematical and logical
operations.

The expression editor window presents the Literal
Expression as a table, with two key rows:

Parameters: defines the input parameters used in the·

expression

Literal Expression: where the formula for the expression·

is defined - this defines the output of the Decision

In order to support simulation and execution, the literal
expression can use Javascript global functions or Javascript
object functions. Users can also create DMN Library
functions for use within the expressions.

Toolbar for Literal Expression Editor

(c) Sparx Systems 2019 Page 100 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

When a Literal Expression is selected, the layout of features
accessible in the DMN Expression window is:

For more details refer to the Help topic 'Toolbar for Literal
Expression Editor'.

Expression Editor and Intelli-sense support

In accordance with the FEEL language specification,
parameter names can contain spaces, which makes the
expression easier to read. Enterprise Architect also provides
Intelli-sense support for editing the expressions, allowing
for minimal typing and fewer mistakes.

Given a decision hierarchy such as the one shown, when

(c) Sparx Systems 2019 Page 101 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

editing the expression for 'Decision1', the inputs to
'Decision1' - namely 'Decision2', 'Decision3', 'InputData1'
and 'InputData2' - will be available through Intelli-sense in
the editor.

By right-clicking on the 'Expression' row of the DMN
Expression window, then choosing the menu option 'Edit
Expressions...', the expression code editor dialog is
displayed. Pressing 'Ctrl+Space' displays the Intelli-sense
menu:

For 'Decision' elements, all of the inputs to the decision·

will be displayed

For 'BKM' elements, all of the input parameters will be·

displayed

The DMN Model can be generated as source code in
JavaScript, Java, C# or C++; since some languages might
have different syntax for some expressions, Enterprise
Architect provides language override pages for each

(c) Sparx Systems 2019 Page 102 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

language. If no override code is specified for a language, the
expression defined for the FEEL language will be used.

In the generated code, the space inside a variable name will
be replaced by an underscore.

(c) Sparx Systems 2019 Page 103 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Toolbar for Literal Expression Editor

This table provides descriptions of the features accessible in
the DMN Expression window when a Literal Expression is
selected.

Toolbar Options

This toolbar is for Literal Expressions.

Options Description

Click on this button to save the
configuration to the current Decision or
BusinessKnowledgeModel.

Click on this button to edit parameters for
the Business Knowledge Model.

This option is disabled for Literal
Expressions.

This option is disabled for Literal
Expressions.

This option is disabled for Literal
Expressions.

(c) Sparx Systems 2019 Page 104 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

This option is disabled for Literal
Expressions.

Perform validation of the Literal
Expression. Enterprise Architect will
perform a series of validations to help
you locate any errors in the Expression.

This button is enabled when the literal
expression is defined for a
BusinessKnowledgeModel.

(c) Sparx Systems 2019 Page 105 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Example - Loan Repayment

This Business Knowledge Model (BKM)
Payment_2_decimal is implemented as a Literal Expression.

The BKM defines three parameters: Rate, Term and·

Principle

Set the values for the Input Parameters and evaluate the
model:

The runtime parameter value will be displayed; for·

example, Rate = 00.005

The BKM's result will be evaluated by the literal·

expression and the value is displayed on the declaration
line; for example, return = 1798.65

Although the formula for this can be written in one line, it is

(c) Sparx Systems 2019 Page 106 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

quite complicated. We can re-factor this model with Built-In
function and Boxed Context to improve readability:

The Boxed Context defines two variable-expression·

paired entries; these variables serve as 'local variables',
which can be used in later expressions

Return value: the expression can use the value of 'local·

variables'

Any expressions in a Boxed Context can use built-in·

functions that are defined in the customizable Template
— DMN Library; for example, functions PMT(...) and
decimal(...) are used in this example

The simulation result is exactly the same as a Literal
Expression:

(c) Sparx Systems 2019 Page 107 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Boxed Context

A Boxed Context is a collection of context entries, presented
in the form of a table, followed by a final result expression.

These context entries consist of a variable paired with a
value expression and can be thought of as intermediate
results. This allows for complex expressions to be
decomposed into a series of simple expressions, with the
final result being evaluated in a much simpler form.

The Boxed Context type is supported in both the Decision
and the Business Knowledge Model element types. It is

denoted with the icon.

Access

Diagram On a diagram, double-click on a Decision
element or BKM element.
The DMN Expression editor window is
displayed, showing details for the
selected element.

Overview

(c) Sparx Systems 2019 Page 108 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

This image shows the DMN Expression editor window as it
appears for a Boxed Context.

A Boxed Context is a collection of context entries, presented
in the form of a table, followed by a final result expression.
Each context entry consists of a variable and a value
expression. The variable can be considered as an
intermediate result and it can be used within the value
expression of any subsequent context entry. The value
expression of a context entry can be either a Literal
Expression or an Invocation and can make use of any
available inputs, such as parameters (to a BKM element),
InputData or decision results as well as any previously
defined context variables.

The final result of a boxed context is determined by working
through each context entry in turn, evaluating the value
expression and assigning its result to the variable, then
finally evaluating the result expression. The result
expression can also make use of any input or local variable,
but must evaluate to provide a result.

Toolbar for Boxed Context Editor

(c) Sparx Systems 2019 Page 109 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

When a Boxed Context is selected, the layout of features
accessible in the DMN Expression window is:

For more details refer to the Help topic 'Toolbar for Boxed
Context Editor'.

Specifying Parameters

In the case of BusinessKnowledgeModel elements,
parameters are used to pass input values supplied by the
invoking element. The BKM's decision logic is evaluated
using the input parameters and the result is returned to the
invoking element. By default, a BKM element is created
with two input parameters, 'Input 1' and 'Input 2'.

Click on the icon in the toolbar of the DMN Expression
editor window to display the 'Edit Parameters' window.

(c) Sparx Systems 2019 Page 110 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Here you can change the parameter names, set their data
types, create additional parameters or delete existing ones.

Specifying Context Entries

Each context entry consists of a variable-expression pair.

The variable name can be any text that you like and can
even contain spaces. To edit the variable name, click on the
cell to select it, then click again or press F2 to enter edit
mode. To exit edit mode, click elsewhere or press the Enter
key.

In general, it is not necessary to specify a data type for the
expression or variables - the type will be inferred from the
value. However, if you intend to generate code for
compiled languages such as Java, C++ or C#, you will have
to specify the type of all context entry variables.

(c) Sparx Systems 2019 Page 111 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

The value expression of a context entry can be either a
Literal Expression or an Invocation and can make use of any
available inputs, such as parameters (to a BKM element),
InputData or decision results, as well as any previously
defined context variables. Right-clicking on the expression
cell displays a pop-up menu that provides options for
displaying an expression code editor, or for setting the value
expression as an If-Else statement or an Invocation.

You can also edit the value expression by entering text
directly into the expression cell.

For further information on how to specify Literal
Expressions or Invocations, please see the Help topics
covering those subjects.

(c) Sparx Systems 2019 Page 112 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Toolbar for Boxed Context Editor

This table provides descriptions of the features accessible in
the DMN Expression window when a Boxed Context is
selected.

Toolbar Options

This toolbar is for Boxed Context.

Options Description

Save changes to the currently selected
Decision or BusinessKnowledgeModel
element.

Display the 'Edit Parameters' window,
where you can specify the name and data
type of each parameter that is passed
when invoking the decision logic of a
BusinessKnowledgeModel element.

Create a new context entry and append it
to the list of context entries.

Delete the currently selected context
entry.

(c) Sparx Systems 2019 Page 113 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Move the currently selected context entry
up one position in the list.

Move the currently selected context entry
down one position in the list.

Perform validation of the BoxedContext.
Enterprise Architect will perform a series
of validations to help you discover any
errors in the BoxedContext definition.

This button is enabled when a Decision
Table is defined for a
BusinessKnowledgeModel element.
Select the 'Input Parameter Values for
Simulation' tab, complete the fields, then
click on this button. The test result will
be presented on the Decision Table, with
the runtime values of inputs and outputs
displayed and valid rule(s) highlighted.
You can use this functionality to unit test
a BusinessKnowledgeModel element,
without specifying its context.
A number of menu options are available
for this tool bar button. For more
information, see the Help topic
'BusinessKnowledgeModel and Test
Harness'.

(c) Sparx Systems 2019 Page 114 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

(c) Sparx Systems 2019 Page 115 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Example - Loan Installment Calculation

The Business Knowledge Model (BKM) Installment
calculation is implemented as Boxed Context.

The BKM defines four parameters: Product Type, Rate,·

Term and Amount

The Boxed Context defines two variable-expression pair·

entries, these variables serve as 'local variables' that can
be used in later expressions

Return value: The expression can use the value of 'local·

variables'

Any expressions in a Boxed Context can use built-in·

functions, which are defined in the customizable Template
— DMN Library; for example, functions PMT(...) and
decimal(...) are used in this example

(c) Sparx Systems 2019 Page 116 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Specify Type to Context Entry Variable

In general, the expression and variables do not have to
specify a type, which is inferred from the value provided.
This feature is supported generically by JavaScript, which is
used for Enterprise Architect's DMN Simulation.

However, if you want to generate code from a DMN model
to compiled languages such as Java, C++ or C#, you will
have to specify the type for each Context Entry Variable.
Otherwise, if you validate the model, you will see warnings
such as:

Right-click on the Context Entry Variable (Monthly Fee,
Monthly Repayment) in this model.

(c) Sparx Systems 2019 Page 117 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Select the 'Show Variable Type' option.

Now type in the variable type, appending it to the variable
name, separated by a colon (see the field above Monthly
Fee).

Then click on the Save button on the toolbar to save the
expression, and click on the Validation button (seventh from

(c) Sparx Systems 2019 Page 118 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

the left in the toolbar) to validate the model again.

Expression Editor and Intelli-sense Support

The parameter and Context Entry's variable name can
contain spaces, according to the FEEL language
specification. This feature makes the expression easy to
read. In order to help you edit the expressions with less
typing and making fewer mistakes, Enterprise Architect
provides Intelli-sense support for editing expressions:

 Right-click on the Expression | Edit Expressions... the
'Expression' dialog displays

 Press Ctrl+Space to show the Intelli-sense menu:

All the Context Entry Variables earlier than the current·

one will be included (the context entries later than the
current one are excluded)

(c) Sparx Systems 2019 Page 119 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

For BKM, all the parameters will be included·

For Decision, all the required Decisions will be included·

The DMN model can be generated as source code for
JavaScript, Java, C# and C++. Since some languages might
have different syntax for some expressions, Enterprise
Architect provides language override pages for each
language. If no override code is specified for a language, the
expression defined for the FEEL language will be used.

In the generated code, the space inside a variable name will
be replaced by an underscore.

Test Harness for Business Knowledge Model

Select the 'Input Parameter Values for Simulation' tab and
complete the fields.

Click on the Test Harness button on the toolbar; the test
result will be presented in the Boxed Context.

(c) Sparx Systems 2019 Page 120 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

The runtime parameter value will be displayed; for·

example, 'Rate = 0.00375'

The 'Context Entry' variable's runtime value will be·

displayed; for example, 'Monthly Repayment = 1520.05'

The BKM's result will be evaluated by the last entry and·

the values displayed on the declaration line; for example,
'return = 1540.06'

You can use this functionality to unit test a
BusinessKnowledgeModel without knowing the context and
later on invoked by a Decision or other
BusinessKnowledgeModel.

Menu options are available for this tool bar button. For more
information, see the Business Knowledge Model and Test
Harness Help topic.

(c) Sparx Systems 2019 Page 121 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Invocation

An invocation is a container for the parameter bindings that
provide the context for the evaluation of the body of a
business knowledge model. There are two common use
cases for an Invocation:

Bind Input Data to Business Knowledge Model·

Bind parameters or context entry variables to Business·

Knowledge Model

An example of each is provided in the sub-topics.

Access

Diagram On a diagram, double-click on a Decision
element or BKM element.
The DMN Expression editor window is
displayed, showing details for the
selected element.

Overview

A type of value expression applicable to both Decision
Elements and Business Knowledge Model elements.

(c) Sparx Systems 2019 Page 122 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

An invocation is a tabular representation of how decision
logic that is defined within an invocable element (a business
knowledge model or a decision service) is invoked by a
decision or by another business knowledge model.

Toolbar for Invocation Editor

When an Invocation is selected, the layout of features
accessible in the DMN Expression window is:

For more details refer to the Help topic 'Toolbar for
Invocation Editor'.

Bindings

The parameter bindings of an Invocation provide the context
for evaluation of the body of the invocable element.

(c) Sparx Systems 2019 Page 123 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

In this example:

Decision 'Post-bureau risk category' is represented as an·

invocation connecting to business knowledge model
'Post-bureau risk category table', implemented as a
Decision Table

Decision 'Post-bureau risk category' is the target of three·

information requirement connectors from two input data
and one decision

The binding list binds the input values to the business·

knowledge model's parameters

The invocation also specified the requested·

'OutputClause'; in the case where a Decision Table has
multiple output clauses defined, the invocation must
explicitly request an output clause as the result of the
expression

(c) Sparx Systems 2019 Page 124 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Inputs

Inputs from other Decisions and InputData element can be
set by pressing the spacebar in the field:

Output

As an Invocation can only invoke one Business Knowledge
Model the output is defined by the Business Knowledge
Model output.

(c) Sparx Systems 2019 Page 125 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Toolbar for Invocation Editor

This table provides descriptions of the features accessible in
the DMN Expression window when an Invocation is
selected.

Toolbar Options

This toolbar is for Invocations

Options Description

Click on this button to save the
configuration to the current Decision or
BusinessKnowledgeModel.

Click on this button to edit parameters for
the Business Knowledge Model.

Applicable to Invocation value
expressions, for both Decision elements
and BKM elements.
Click on this button to synchronize with
the invoked Business Knowledge Model.
For example, if the Business Knowledge
Model changes name, parameters, outputs
or types, click on this button to
synchronize these changes.

(c) Sparx Systems 2019 Page 126 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Applicable to Invocation value
expressions, for both Decision elements
and BKM elements.
Click on this button to set or change a
Business Knowledge Model as an
invocation.

Applicable to Invocation value
expressions, for both Decision elements
and BKM elements.
Click on this button to open the invoked
Business Knowledge Model in the DMN
Expression window.

Applicable to Invocation value
expressions, for both Decision elements
and BKM elements.
When a Business Knowledge Model is
implemented as a Decision table, it could
define multiple output clauses; the
invocation on this Business Knowledge
Model might have to specify which
output is requested.
Click on this button to list all the
available outputs in a context menu; the
currently configured output is checked.

Perform validation of the Invocation.

(c) Sparx Systems 2019 Page 127 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Enterprise Architect will perform a series
of validations to help you locate any
errors in the Invocation definition.

This button is enabled when the
Invocation is defined for a
BusinessKnowledgeModel.
Select the 'Input Parameter Values for
Simulation' tab, complete the fields and
click on this button. The test result will
be presented on the Decision table, with
the runtime values of inputs and outputs
displayed and valid rule(s) highlighted.
You can use this functionality to unit test
a BusinessKnowledgeModel without
knowing the context and later on invoked
by a Decision or other
BusinessKnowledgeModel.
Menu options are available for this
toolbar button. For more information, see
the BusinessKnowledgeModel and Test
Harness Help topic.

(c) Sparx Systems 2019 Page 128 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Example 1 - Bind Input Data to
Business Knowledge Model

A full example can be created with a Model Pattern
(Ribbon: Simulate > Decision Analysis > DMN > Apply
Perspective > DMN Decision > Decision With BKM :
Create Pattern(s))

In this example, Input Data Applicant Data is typed to
Applicant Data Definition, which has three components.

The Business Knowledge Model Application risk score
model is implemented as a Decision table with three inputs
and one output.

(c) Sparx Systems 2019 Page 129 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

The Decision Application risk score is implemented as an
Invocation to bind the Input Data's 'leaf' components to the
BKM's parameters.

In order to make the binding easier, Auto-Completion is
supported for the binding expression.

The full modeling and simulation instructions are available
in the Pattern's documentation.

(c) Sparx Systems 2019 Page 130 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Example 2 - Bind Context Entry
variables to Business Knowledge
Model

The full example can be created using a Model Pattern
(Access - Ribbon: Simulate > Decision Analysis > DMN >
Apply Perspective > DMN Business Knowledge Model >
Business Knowledge Model Invocation : Create Pattern).

In this example, the BKM Difference Of Two Squares is
implemented as Boxed Context:

The variable sum of ab is implemented as an invocation·

by binding parameters a and b to BKM Addition

The variable difference of ab is implemented as an·

invocation by binding parameters a and b to BKM
Subtraction

The variable difference of squares is implemented as an·

invocation by binding local variables sum of ab and
difference of ab to BKM Multiplication

(c) Sparx Systems 2019 Page 131 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

In order to make the binding easier, auto-completion is
supported for the binding expression.

The full modeling and simulation instructions are available
in the Pattern's document.

(c) Sparx Systems 2019 Page 132 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Expression Editor Dialog

The expression Editor dialog is used for setting expressions
in the Boxed content, Invocation and Literal Expression
element types. It provides Intelli-sense support for
constructing expressions based on the FEEL grammar, as
well as the code languages that can be used for the code
generation of the model.

Expression Editor and Intelli-sense support

In order to help you edit the expressions with less typing
and making fewer mistakes, Enterprise Architect provides
Intelli-sense support for editing these expressions.

Note that the parameter and Context Entry's variable name
can contain spaces, according to the FEEL language
specification. This feature is intended to make the
expression easy to read.

Examples

Given this decision hierarchy, the expression in 'Decision3'
is able to use the outputs from the two referenced Decisions.

(c) Sparx Systems 2019 Page 133 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

To open the Expression Editor:

Right-click on the Expression and select the menu option1.
'Edit Expressions...'

This will display the 'Expression' dialog.

Press Ctrl+Space to show the Intelli-sense menu:2.

(c) Sparx Systems 2019 Page 134 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

For 'BKM', all the parameters will be included·

For 'Decision', all the required Decisions will be included·

All the Context Entry Variables earlier than the current·

one will be included (the context entries later than the
current one are excluded).

In this example, editing a BKM Boxed Context expression,
the Input Parameters are shown in the Intelli-sense menu:

(c) Sparx Systems 2019 Page 135 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Lanaguage selection

The DMN Model can be generated as source code in
JavaScript, Java, C# or C++. As the syntax differs between
the languages, Enterprise Architect provides
language-override pages for each language. If no override
code is specified for a language, the expression that is
defined for the FEEL language will be used.

Note: In the generated code, the space inside a variable
name will be replaced by an underscore.

(c) Sparx Systems 2019 Page 136 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

DMN Expression Auto Completion

DMN defines many expressions, such as
FunctionDefinition, DecisionTable, Boxed Context,
Invocation and Literal Expression. The parameters,
arguments and logic of expressions is implemented largely
by 'text'.

To make modeling easy and reliable, Enterprise Architect
provides an Auto Completion facility, helping provide the:

Allowed Values of ItemDefinition·

Input/Output Entries of a Decision Table·

InformationRequirement·

Allowed Values of ItemDefinition

The idea is to define allowed value enumerations in
ItemDefinition, then compose a list for selection whenever
these values are requested.

In this example, ItemDefinition 'Applicant data .
Employment Status' defines an enumeration of allowed
values.

(c) Sparx Systems 2019 Page 137 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

When editing values for the InputData typed to this
ItemDefinition, press the Spacebar on the keyboard to
display a list of values to select from.

We could also define multiple data sets for the InputData, as
the Auto Completion feature is available on this dialog.

(c) Sparx Systems 2019 Page 138 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

On the Simulation window, you could change the test value
to simulate the model; the Auto Completion feature is
available on this list as well.

(c) Sparx Systems 2019 Page 139 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Input/Output Entries of a Decision Table

Take the 'Strategy' ItemDefinition as an example:

We can quickly fill the 'Allowed Values' field for a Decision
table by selection:

Then we can quickly fill the Decision table rules by
selection:

(c) Sparx Systems 2019 Page 140 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Information Requirement

On a decision hierarchy, a decision might access required
decisions and input data; these required elements form a list
of variables that can be used by the decision.

In this example, Decision 'Eligibility' requires two decisions
- 'Pre-bureau risk category' and 'Pre-bureau affordability' -
and one Input Data item 'Applicant data'.

(c) Sparx Systems 2019 Page 141 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

When setting the binding values for the invoked
BusinessKnowledgeModel 'Eligibility rules', an Auto
Completion list will prompt for selection.

In this list, there are sub-decision names - leaf components
of the input data.

With this feature, you can easily set up an invocation.

(c) Sparx Systems 2019 Page 142 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

DMN Expression Validation

DMN defines many expressions, such as
FunctionDefinition, DecisionTable, Boxed Context,
Invocation and Literal Expression. The parameters,
arguments and logic of expressions are implemented largely
by 'text'.

To make modeling easy and reliable, Enterprise Architect
provides two features: Auto Completion and Validation.

Auto Completion: You can select a text string from a list·

of enumerations rather than type the text in

Validation: This identifies modeling errors caused by·

typos, logic incompleteness, inconsistency, and so on

In this topic, we will show you how to validate a DMN
Expression.

Access

DMN
Expression
Window

Simulate > Decision Analysis > DMN >
DMN Expression : Validate button

DMN
Simulation
Window

Simulate > Decision Analysis > DMN >
Open DMN Simulation > Simulate :
Validate icon

(c) Sparx Systems 2019 Page 143 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Common validations

Variable Name Validation

In this example, BusinessKnowledgeModel BKM1 defines
two parameters, 'Input 1' and 'Input 2', and two local
variables, 'Local Variable 1' and 'Local Variable 2'.

Context Entry #1 failed because there is a typo: it should·

be operator '-', but the user typed in '–' instead

Context Entry #2 failed because there is no space between·

'Input' and the number 2; note that the function 'ceiling()'
is defined in the DMN Library so it can be successfully
parsed

Context Entry #3 failed because there is no space between·

'Local' and 'Variable'

(c) Sparx Systems 2019 Page 144 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

It is hard to identify these kinds of errors by eyesight,
running validation can help identify errors and then you can
perform an easy fix.

Dependency Validation

A decision might require other decisions, input data and
business knowledge models; these relationships are
identified by InformationRequirement and
KnowledgeRequirement connectors.

When the graph is getting complex, it is quite possible that
some connectors are missing or the wrong connector type is
being used.

In this example, click on the Validate button, Enterprise
Architect will show that:

'Decision3' is used by 'Decision1' by binding to a·

parameter of the called BKM2; however, it is not defined
- an InformationRequirement connector is missing

The Invocation defined in 'Decision1' is not valid; the·

connector type from 'BKM2' to 'Decision1' should be a
KnowledgeRequirement

After fixing these problems, run the validation again:

(c) Sparx Systems 2019 Page 145 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

(c) Sparx Systems 2019 Page 146 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Decision Service

Portions of this topic have been used verbatim or are freely
adapted from the DMN Specification, which is available at:
https://www.omg.org/spec/DMN. This site contains a full
description of the DMN and its capabilities.

A Decision Service exposes one or more decisions from a
Decision model as a reusable element, which might be
invoked internally by another decision in the Decision
model, or externally by a task in a BPMN process model.

When the Decision Service is called with the necessary
input data and input decisions, it returns the outputs of the
exposed decisions.

The Interface of a Decision Service

The interface to the Decision Service consists of:

Input data - instances of all the input data required by the·

encapsulated decisions

Input decisions - instances of the results of all the input·

decisions

Output decisions - the results of evaluating (at least) all·

the output decisions, using the provided input decisions
and input data

When the Decision Service is called with the necessary
input data and input decisions, it returns the outputs of the
exposed decisions.

(c) Sparx Systems 2019 Page 147 of 209

https://www.omg.org/spec/DMN

User Guide - DMN Modeling and Simulation 20 January, 2020

This figure shows a Decision model that includes six
decisions and three items of input data.

For DecisionService1, the:

Output decision is {Decision1}·

Input decision is {Decision5}, and·

Input data is {InputData1}·

As Decision1 requires Decision2, which is not provided to
the service as input, the service must also encapsulate
Decision2; therefore the encapsulated decisions are
{Decision1, Decision2}.

It is obvious from the figure that Decision6, Decision3,
Decision4, InputData3 are not required by any decisions
from DecisionService1. What about InputData2? Although
it is required by Decision5, which is required by
DecisionService1, InputData2 is actually not required by

(c) Sparx Systems 2019 Page 148 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

DecisionService1. This is because Decision5 is defined as
Input Decision. From a decision service's point of view, we
ignore any decisions or input data required by an input
decision.

For DecisionService2, the:

Output decision is {Decision3}·

Input decision is {Decision5}, and·

Input data is {InputData3}·

As Decision3 requires Decision4, which is not provided to
the service as input, the service must also encapsulate
Decision4; therefore the encapsulated decisions are
{Decision3, Decision4}.

It is good practice to create a separate diagram for each
Decision Service. In this way, the diagram will only contain
the interface elements and encapsulated decisions for the
Decision Service; the elements that are not relevant will not
appear on the diagram.

Modeling a Decision Service

We can create a Decision Service element from the DMN
pages of the Diagram Toolbox, and toggle [output] and
[encapsulated] partitions from the context menu.

(c) Sparx Systems 2019 Page 149 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

You can only show an [encapsulated] partition when an
[output] partition is shown.

Once the decisions and input data are put at the correct
partition(s), you must run the 'Update DecisionService
Interface" command from the context menu to update the
model.

Important: in order for the DMN simulation to work

(c) Sparx Systems 2019 Page 150 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

properly. Please update the Decision Service interface
whenever you:

Show/Hide the decision service partition(s)·

Add a decision to the decision service·

Remove a decision from the decision service·

Move a decision between partitions·

Add/Remove Decision Service Inputs: Input Data or Input·

Decisions

(c) Sparx Systems 2019 Page 151 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Simulating a Decision Service

Decision Service Simulation

You can perform a model simulation on the Decision
Service.

Step Description

1 Drag a DMN Sim Configuration Artifact
element onto a diagram from the 'DMN
Components' page of the Toolbox, and
double-click on it to open it in the DMN
Simulation window.

By default, all Decision Service elements
and each single decision are listed for
selection in the drop-down field in the
dialog toolbar.

(c) Sparx Systems 2019 Page 152 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

2 Select a Decision Service element on
which to run the simulation. In the
example we choose 'Routing Decision
Service', so three input data items and
five encapsulated decisions (including
one output decision) are loaded in the
simulation list.
Important: This list is drawn from the
internal data of the Decision Service;
make sure you run the 'Update
DecisionService Interface' command
from the context menu whenever the
Decision Service model diagram is
changed. You then must reload the
Decision Model by clicking the 'Refresh'
icon (third from the left) on the DMN
Simulation window toolbar.

3 The input data and decisions are in the
correct execution order. For example,
'Application risk score' will be executed
before 'Post-bureau risk category', 'Post
bureau affordability' and 'Routing'.

(c) Sparx Systems 2019 Page 153 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

After providing the input data by
choosing a data set in the combo box,
click on the Save icon and on the
button on the toolbar.

4 The runtime execution result is shown
both in the list and on the diagram. You
can also click on the 'Step-through' icon
on the toolbar to debug the DMN model.
A good practice is to open the DMN
Expression window while debugging.
The run time status of the expression
(such as Decision Table, Boxed Context,
Literal Expression or Invocation) will
show the details of the logic encapsulated
by the decision or invoked business
knowledge model.

(c) Sparx Systems 2019 Page 154 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

(c) Sparx Systems 2019 Page 155 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

DMN Simulation

After a Decision Model is created, you can:

Configure a DMN Simulation Artifact and Validate, Run,·

Step-through or Debug the model

Do what-if analysis to ensure the model meets the·

requirements of the business by switching data sets

Generate code for the DMN Server with any of the·

supported languages: Java, JavaScript, C++ and C#

Simulate BPMN and DMN together.·

This Help topic covers the process of configuring and
running a DMN simulation.

Configure a DMN Simulation

To configure a DMN simulation you need to create a
DMNSimConfiguration element:

Open a Decision Requirements Diagram·

Drag the DMNSimConfiguration element from the·

toolbox onto the diagram

Double-click to open the DMN Simulation window.·

All DMN elements in this Package (Decision,
BusinessKnowledgeModel, InputData ItemDefinition) will

(c) Sparx Systems 2019 Page 156 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

be loaded to the Simulation window. The 'Target Decision'
combo box will be filled with all the Decisions:

Choose a target decision - the dependent InputDatas will·

be filled in the list

Choose a defined dataset by clicking on the Dataset cell in·

the list
For example, choose Dataset 'Income5000' for InputData
'Applicant data'; choose 'default' for InputData 'Requested
product'.

(c) Sparx Systems 2019 Page 157 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Simulate a DMN Model

When a Target Decision is specified, the 'Simulation' page·

will be filled with the decisions, in dependency order

Click on the Run button to evaluate all the decision values·

based on the values for Input Data

Click on the Step button to evaluate a single decision and·

watch the DMN Expression window, which clearly shows
the input value for the decision and output based on the
input; the diagram containing the decision hierarchy will
highlight the executed decisions and show the runtime
results on a label

In this example, the decision 'Eligibility' returns a string
'ELIGIBLE' and invokes BusinessKnowledgeModel
'Eligibility rules' by binding the parameters as shown:

Bind 'Pre-Bureau Affordability' to the dependent decision·

'Pre-bureau affordability' (runtime value: True)

(c) Sparx Systems 2019 Page 158 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Bind 'Pre-Bureau Risk Category' to the dependent·

decision 'Pre-bureau risk category' (runtime value: VERY
LOW)

Bind 'Age' to the field 'Age' in dependent input data·

'Applicant data' (runtime value: 40)

The BusinessKnowledgeModel 'Eligibility rules' has a Hit
Policy P (Priority), meaning that multiple rules can match,
but only one hit should be returned; the ordering of the list
of output values is used to specify the (decreasing) priority.

In this run time case ('Pre-Bureau Affordability' = true,
'Pre-Bureau Risk Category' = VERY LOW, 'Age' = 40),
only one rule with output 'ELIGIBLE' matches.

(c) Sparx Systems 2019 Page 159 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

DMN Simulation Toolbar

A DMNSimConfiguration Artifact contains information to
simulate a DMN model depicted by Decision Requirements
diagrams.

Access

Ribbon Simulate > Decision Analysis > DMN >
Open DMN Simulation > Simulate page

Other Double-click on a
DMNSimConfiguration element

Toolbar Options

Option Description

Sets a Package for the
DMNSimConfiguration Artifact. All
DMN elements under this Package or its
sub-Packages will be loaded.

(c) Sparx Systems 2019 Page 160 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Saves the information specified in the
DMN Simulation window to the
DMNSimConfiguration element,
including the:

Target Decision·

Selected Dataset for each dependent·

InputData

Reloads the DMN elements from the
configured Packages. For example, when
any DMN elements are modified, this
command should be run to reload the
Package so that the changes will be taken
into account for the next DMN
Simulation.

Validates all the dependent DMN
elements based on the Target Decision.
Note: A
Decision/BusinessKnowledgeModel/Inpu
tData/ItemDefinition that is not on the
Target Decision hierarchy will not be
considered. For example, if you have
some unfinished Decision elements in the
Package, that have no relationship to the
Target Decision, they will not impact the
simulation.

Opens the dialog for editing data sets for

(c) Sparx Systems 2019 Page 161 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

the selected Input Data.

Combo for selecting a target Decision for
the simulation.

Simulation options

dmnsim_tool
bar_execute

Click on this button to execute the
decision hierarchy in order. The results
will be represented on the diagram and
shown in the 'Runtime values' column.

dmnsim_tool
bar_step

Click on this button to step through the
decision hierarchy in order. One click
will evaluate one decision element. With
this feature, you will be able to see the
decision-making process; the decision
logic and runtime values will be
displayed clearly in the DMN Expression
window.

dmnsim_tool
bar_stop

Click on this button to exit the simulation
mode.

dmnsim_tool Exports the InputData elements DataSets

(c) Sparx Systems 2019 Page 162 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

bar_export_al
l_to_dataobje
ct

to a BPMN 2.0 DataObject. This appends
the InputData 'name = value' records to
the DataObject.Notes. The combo options
include:

Export All Inputs to the BPMN·

DataObject
Export Selected Inputs to the BPMN·

DataObject
Export Runtime Results to CSV·

Report.

(c) Sparx Systems 2019 Page 163 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Simulate DMN Model

A DMNSimConfiguration Artifact contains information to
simulate a DMN model depicted by Decision Requirements
diagrams.

Access

Ribbon Simulate > Decision Analysis > DMN >
Open DMN Simulation | Simulate Page

Other Double-click on a
DMNSimConfiguration element
|Simulate Page

DMNSimConfiguration Artifact

To create a DMNSimConfiguration element:

Open a Decision Requirements Diagram·

Drag the DMNSimConfiguration element from the·

toolbox onto the diagram

(c) Sparx Systems 2019 Page 164 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

By default, all DMN elements in the current Package
(Decision, BusinessKnowledgeModel, InputData
ItemDefinition) will be loaded to the Simulation window.

Simulation Overview

When a Target Decision is specified, the 'Simulation' page
will be filled with the decisions, in dependency order.

When Executing or Stepping Through the Decision
Hierarchy, the decisions will be evaluated in order:

The runtime result will be showing in the Decision row·

The runtime result will be displayed on the diagram·

The decision logic and input/output data will be presented·

in the DMN Expression window

(c) Sparx Systems 2019 Page 165 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Simulation run and stepping through

You can perform a full run of the simulation using the
icon. You can step into each Decision to see the invocation
sequence using the icon.

For example in the above diagram:

Decision 'Pre-bureau affordability' invokes·

BusinessKnowledgeModel 'Affordability calculation'

BusinessKnowledgeModel 'Affordability calculation'·

further invokes another BusinessKnowledgeModel 'Credit
contingency factor table'

Decision List

(c) Sparx Systems 2019 Page 166 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

When a Package is loaded, a Decision Requirements Graph
(DRG) and decision dependency list is created. The DMN
InformationRequirement connectors determine the List
order.

All the decisions will be listed in the 'Target Decision'·

combo box

DataSet & Input Data

When the Target Decision is selected, all the dependent
InputDatas are added to the list. You can then choose a
dataset for simulation from the list of datasets defined in an
InputData Element:

(c) Sparx Systems 2019 Page 167 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Advanced Debugging

Although Enterprise Architect provides a validation feature
to help you locate many modeling issues and DMN
expression issues, the simulation might still fail (rarely but
possible) due to uncaught issues.

However, Enterprise Architect provides the ability to debug
the code that is running behind the simulation. You can also
modify the code and run it in cycles until the issue is found
and fixed.

The Execute button on the toolbar displays a menu with
these options:

Generate New Script (Scripting Window)·

Update Selected Script (Scripting Window)·

Run Selected Script (Scripting Window)·

Edit DMN Template·

If you select 'Generate New Script (Scripting Window), the
Scripting window displays showing a script created in a
Package named 'DMN'.

(c) Sparx Systems 2019 Page 168 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

The default script name is composed of these parameters:·

'ArtifactName - TargetDecision - InputData1(DataSet)_
InputData2(DataSet)_...'

Double-click on this file to open it in the Enterprise
Architect Script editor, set a breakpoint, and debug the file.

By selecting the script in the Scripting Window, and if the
script matches the model (by the 'Simulation Script

(c) Sparx Systems 2019 Page 169 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Identifier' in the script), you enable the menu option 'Run
Selected Script'.

You can customize the DMN Template to generate the
correct script for simulation.

(c) Sparx Systems 2019 Page 170 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Example DMN Simulation

This topic runs over the simulation of an example model
supplied with the EAExample.eap model located in the
package:

Example Model . Analysis and Business Modeling . DMN·

Examples . A Complete Example.Strategy

The package has a "DMNSimConfiguration" artifact which
contains the simulation settings for a DMN model.
Double-click on this to open the DMN Simulation window.

In the "DMN Simulation" window, all the decision service
elements and decision elements are listed in the combo box.
By selecting a decision service in the list, the related input
data, input decisions, encapsulated decisions and output
decisions will be loaded in execution order.

(c) Sparx Systems 2019 Page 171 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

After selecting data sets for the input data and input
decisions, the model is ready to run as a simulation. To run
the simulation, click on the Run button. Once the
simulation completes, the results will appear as shown
below.

(c) Sparx Systems 2019 Page 172 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

The list items changed from "static" to "runtime". Note:·

the invoked business knowledge model is loaded in the
list.

"Step Over" debugging is supported for the DMN model,·

the diagram will highlight the elements that were already
evaluated; the Expression window shows the run time
status of the current step.

In this example,

Decision "Routing" is in the state of "Evaluating" (refer to·

the diagram text), which means the decision is invoking
the business knowledge model "Routing rules" by binding
the input values to the parameters.

Given arguments (Post-bureau risk Category : "VERY·

LOW", Post-bureau affordability : true, Bankrupt : false,
Credit score : 600), the output is "ACCEPT".

After the business knowledge model "Routing rules"·

(c) Sparx Systems 2019 Page 173 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

executes, the value will be carried back to the decision
"Routing".

(c) Sparx Systems 2019 Page 174 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

DMN Module Code Generation and
Test Module

After a Decision Model is created and simulated, you can
generate a DMN Module in Java, JavaScript, C++ or C#.
The DMN Module can be used with the Enterprise Architect
BPSim Execution Engine, Executable StateMachine, or your
own project.

Enterprise Architect also provides a 'Test Module' page,
which is a preprocess for integrating DMN with BPMN. The
concept is to provide one or more BPMN2.0::DataObject
elements, then test if a specified target decision can be
evaluated correctly or not.

If any error or exception occurs, you can create an Analyzer
Script to debug the code of the DMN Module and Test
Client.

After this 'Test Module' process, Enterprise Architect
guarantees that the BPMN2.0::DataObject elements will
work well with the DMN Module.

You then configure BPSim by loading DataObjects and
assigning DMN Module decisions to BPSim Properties,
which will be further used as conditions on the Sequence
Flows outgoing from a Gateway.

DMN Module: Code Generation

Activate the 'Generate Module' tab of the DMN Simulation

(c) Sparx Systems 2019 Page 175 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

window, select the DMN elements you want to generate to
the server, specify the file path and language, then click on
the Generate button.

(Note: For Java, the path has to match the Package
structure.)

Add the elements to the module, then click on the Add·

button on the toolbar to open the 'DMN Element
Selection' dialog

Click on the decision you want to generate to the server;·

in this example we select the decision 'Application risk
score'

Note: All the dependencies will be selected automatically.

(c) Sparx Systems 2019 Page 176 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Generate the DMN Module; give the Java file a Package·

name, then click on the Generate button

Note: In this example, the Module Path ends with
'\com\sparxsystems\dmn', which matches the Package
'com.sparxsystems.dmn'.

(c) Sparx Systems 2019 Page 177 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Click on the Test button to access the 'Test Server' page·

DMN Server: Test client

If this page was activated from the 'Generate Server' page,
the 'DMN Module' field will be filled automatically with the
generated DMN Server's path. Otherwise, click the
button to browse for a DMN Server file.

Click the Add DataObject button to add one or more
BPMN2.0 DataObject(s) to the list, choose a decision from
the combo box, then click the Run button on the toolbar.

In the System Output window, this message indicates the
DMN Server and BPMN2.0 DataObject can work well with
each other to evaluate the selected decision.

Running Test Client for DMN Server...

 dmnServer.Application_risk_score: 133.0

Result : 133.0

(c) Sparx Systems 2019 Page 178 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

The Running completed successfully.

If there are errors, create an Analyzer script by clicking the
toolbar button and fix the issue.

Important: This 'Test Module' step is recommended before
integrating DMNServer.java to the Enterprise Architect
BPSim Execution Engine.

Code Generation & Connect to BPMN

Generate the DMN Server in Java, JavaScript, C++, or C#·

Run/Debug testing of the Java version of the DMN Server·

Connect the DMN Server with the Enterprise Architect·

BPSim Execution Engine

Common Errors & Solutions

Variable Types: as DMN models use the FEEL language·

(Simulate with JavaScript), typing variables is not
compulsory; however, when generating code to languages
that are compiled, you do have to type a variable - there
are context menu options and tag values for setting the
type of a variable

Since a DMN expression allows for spaces, in order to·

clarify the composite Input Data there must be a space

(c) Sparx Systems 2019 Page 179 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

before and after the '.' in the expression; for example,
'Applicant data . Age' is valid, whereas 'Applicant
data.Age' is not valid
Note that when using the Auto Completion feature this
issue will not arise

'Run validation' will help you locate most of the modeling·

issues; run this before simulation and code generation

Notes

Compiling with Java requires full read-write access to the·

target directory. Compilation will fail if the module path
is set to 'C:' or 'C:\Progam Files (x86)'

(c) Sparx Systems 2019 Page 180 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Integrate a DMN Module Into BPSim
for Simulation

The strength of DMN is its ability to describe business
requirements through the Decision Requirement diagram
and to encapsulate the complicated logic in versatile
expressions such as the Decision Table and Boxed Context.

Equally, the strength of BPMN is its ability to describe
business processes with a Sequence Flow of tasks and
events, or to describe collaborations of processes with
Message Flows.

The Decision Requirements diagram forms a bridge
between business process models and decision logic models:

Business process models define tasks within business·

processes, where decision-making is required

Decision Requirements diagrams define the decisions to·

be made in those tasks, their interrelationships, and their
requirements for decision logic

Decision logic defines the required decisions in sufficient·

detail to allow validation and/or automation

DMN provides a complete decision model that complements
a business process model by specifying in detail the
decision-making carried out in process tasks.

The two examples demonstrated in this topic can be
accessed from:

EA Example Model | Model Simulation | BPSim Models·

(c) Sparx Systems 2019 Page 181 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Perspectives | Business Modeling | BPSim | BPSim Case·

Studies

There are two ways in which BPSim expressions use a
DMN model:

DMN's Decision Service - demonstrated by the Loan·

Application Process

DMN's BusinessKnowledgeModel - demonstrated by the·

Delivery Cost Calculation

The process of integrating a DMN model with a BPSim
model includes:

DMN Model Validation, Simulation, Code Generation·

and Testing on the generated module

Set up a usage dependency from the BPSim Artifact to the·

DMN Artifact

Generate or update the BPMN DataObject from the DMN·

DataSet

Create Property Parameters in BPSim to be used on tasks·

and Sequence Flows out going from Gateways

Bind the DMN interface to BPSim Property Parameters·

DMN Model Validation for Compiled
languages such as Java

When you create a DMN model and simulate it in Enterprise
Architect, the code driving the simulation is JavaScript; this
means that the variables do not need to be explicitly typed
(the variable type is inferred from the value assigned to it).

(c) Sparx Systems 2019 Page 182 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

However, for languages such as C++, C# and Java, the
compiler will report an error that a variable does not have a
type.

For generation to these languages you must run validation
on the model and use the results to find variables that need
their type set. For example:

Business Knowledge Model parameter - select the BKM·

element to view in the DMN Expression window, click on
the second button to open the 'Parameter' dialog, specify a
type for the parameter

Decision's type - select the Decision element, open the·

Properties window, for the property 'variableType' select
from the value combobox

Decision Table's Input/Output clauses: On the Decision·

Table's Input/Output clause, right-click to display the
context menu and choose the type

Boxed Context's variables: Refer to this page: Boxed ·

Context

DMN Code Generation In Java

After using validation to fix any variable type issues, we can
proceed on to the 'Generate Module' page in the DMN
Simulation window.

(c) Sparx Systems 2019 Page 183 of 209

http://www.sparxsystems.com/enterprise_architect_user_guide/15.1/dmn_expression_boxedcontext.html
http://www.sparxsystems.com/enterprise_architect_user_guide/15.1/dmn_expression_boxedcontext.html

User Guide - DMN Modeling and Simulation 20 January, 2020

Select DecisionService1 in the top combo box; all the·

elements involved in DecisionService1 will now be
included in the list

Item Definition and Business Knowledge Model are·

global elements

Input Data and Decisions are encapsulated in the Decision·

Service element

The supported languages are C++, C#, Java and·

JavaScript; note that for JavaScript the generated .js file is
the same as the simulation script ('Simulation' page | Run
button drop down menu | Generate New Script) except
that the simulation-related codes are omitted

For Java, the Module Path must match the Package·

structure; in this example, the DMNModule.java must be
generated to a directory to form a file path that ends with
"\com\sparxsystems\dmn\DMNModule.java" - you have

(c) Sparx Systems 2019 Page 184 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

to manually create the directory structures for now

Click on the Generate Code button on the toolbar (next to
the 'Language' combo box). This example will use Java;
however, C++ and C# are the same. These actions are
performed:

The .java file is generated to the path specified·

An Analyzer Script (Build script) for this Artifact is·

created

The Build Script for this Analyzer Script is executed·

The message is reported in the System Output window·

If the model is valid, this process will return the message:

If there are compiling errors, you can open the generated
.java file by clicking the button next to the Generate button
on the toolbar, manually fix the issue, and compile with the
generated script until you are successful.

One common reason for a compile failure is that languages
can have different grammars for an expression. You might
need to provide a value for a language to overwrite the
default (right-click on a DMN Literal Expression | Edit
Expression).

(c) Sparx Systems 2019 Page 185 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Testing DMN Modules before external Use

Having generated the model to java code and successfully
compiled it we now want to:

Test this module's correctness·

Provide it with inputs·

Get the output decision values·

Generate BPMN DataObject

(c) Sparx Systems 2019 Page 186 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

The data carried by the selected data set will be generated to
the BPMN DataObject's 'Notes' field.

Click the Test Run button (2nd to the right on the toolbar·

of the 'Generate Module' page) to open the 'Test Module'
page

Click the first button on the toolbar to select the inputs -·

BPMN DataObject elements

(c) Sparx Systems 2019 Page 187 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Select the available outputs from the 'Decision' combo·

box, such as Get_Routing(), and click on the Run button
on the toolbar

The execution result will be displayed in the Debug
window. You can also open the test module file, set a
breakpoint on the line and debug in the DMN Module to do
line-level-debugging.

We highly recommend you test your DMN Module with this
window to guarantee that the DMN Module is functional
with the given inputs (from BPMN DataObject) and that it
will successfully compute the result of the output.

Note: The DMN Module path is saved in the
DMNSimConfiguration Artifact's 'Filepath' property.

Now, it is time to integrate the DMN module with the
BPSim model.

The first step is to set up the usage dependency between the
BPSim Artifact and the DMN Artifact.

Note: A BPSim Artifact can use multiple DMN modules if
necessary. This is supported by simply putting all DMN

(c) Sparx Systems 2019 Page 188 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Artifacts on this diagram and drawing a Dependency
connector from the BPSim Artifact to each DMN Artifact.

These Help topics provide two examples of using the above
methods. See:

Example: Integrate DMN Decision Service into BPSim·

Data Object and Property Parameter

Example: Integrate DMN Business Knowledge Model into·

BPSim Property Parameter

Learn More

Example: Integrate DMN Decision Service into BPSim ·

Data Object and Property Parameter

Example: Integrate DMN Business Knowledge Model ·

into BPSim Property Parameter

Exchange Data Sets using DataObjects·

Business Process Simulation (BPSim)·

(c) Sparx Systems 2019 Page 189 of 209

http://www.sparxsystems.com/enterprise_architect_user_guide/15.1/dmn_bpsim_integrate_dservice.html
http://www.sparxsystems.com/enterprise_architect_user_guide/15.1/dmn_bpsim_integrate_dservice.html
http://www.sparxsystems.com/enterprise_architect_user_guide/15.1/dmn_bpsim_integrate_bkm.html
http://www.sparxsystems.com/enterprise_architect_user_guide/15.1/dmn_bpsim_integrate_bkm.html
http://www.sparxsystems.com/enterprise_architect_user_guide/15.1/dmn_exchange_datasets.html
http://www.sparxsystems.com/enterprise_architect_user_guide/15.1/model_simulation/bpsim_introduction.html
http://www.sparxsystems.com/enterprise_architect_user_guide/15.1/dmn_bpsim_integrate_dservice.html

User Guide - DMN Modeling and Simulation 20 January, 2020

Example: Integrate DMN Decision
Service into BPSim Data Object and
Property Parameter

An example of integrating a DMN Decision service into the
BPSim model is provided in the Model Wizard for BPSim.

To access this:

Set the Perspective to Business Modeling > BPSim·

Open the Model Wizard (Ctrl+Shift+M)·

Select BPMN Integrate with DMN Complete Example·

Click on the Create Patterns button.·

This will create BPMN and DMN models configured to
simulate a call to a DMN model from the BPMN model.

Note: In order to integrate the DMN Module, the Expression
Language must use Java and the JRE and JDK must be
configured correctly (the minimum version of java is 1.7).
See Install the BPSim Execution Engine in the Help topic
Business Process Simulation (BPSim).

In this BPMN diagram there are three DataObjects (aqua)
connected to BPMN Activities. These DataObject elements
carry input data, generated from the DMN Simulation
window.

(c) Sparx Systems 2019 Page 190 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

When the simulation is running it will automatically load·

all DataObjects connecting to the task when the
simulation token passes through

The second business rules task "Decide bureau strategy"·

is configured to set the property "Strategy" to the value
"DMNSimArtifact.Get_Strategy()"; you don't need to type
this in, press Ctrl+Space to help you edit the expression

When these are set, click on the 'Execute' tab and simulate
the model. You can then view the report or go to the 'Step'
page to do step debugging of the BPSim model.

(c) Sparx Systems 2019 Page 191 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Example: Integrate DMN Business
Knowledge Model into BPSim Property
Parameter

In some cases, you might want just to design a Decision
Table to use in a BPMN model. If so, there is no need to go
through the processes of creating a Decision Service,
Decision, Input Data or even Item Definition, as a Business
Knowledge Model (BKM) can be directly interfaced.

An example of integrating a DMN BKM into the BPSim
model is provided in the Model Wizard for BPSim.

To access this:

Set the Perspective to Business Modeling > BPSim·

Open the Model Wizard (Ctrl+Shift+M)·

Select BPMN Integrate with DMN - Delivery Cost·

Calculation

Click on the Create Patterns button·

Create a simple Business Knowledge Model as a Decision1.
Table (you can also create other expressions such as
boxed context or literal expressions) with parameters, then
model the logic (input clause, output clause, rules) and
test it (the 'Input Parameter Values for Simulation' tab on
the DMN Expression window).

(c) Sparx Systems 2019 Page 192 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Connect the BKM to a Decision with a Knowledge2.
Requirement connector. This Decision serves as a group
name for a number of BKM functions; you can simply
input a number such as '10' to the expression. For
example, if you want to generate Java code with only five
BKMs (considering your model might have over one
hundred BKMs), you can connect these five BKMs to a
Decision and select this Decision in the DMN Simulation
window, then all five BKMs will be included
automatically.

Generate Java code and (assuming everything is correct)3.
the compile will be successful.

In the BPSim configuration, we simply use Intelli-sense4.
to construct the expression for task 'Compute Delivery
cost'.

In this example, the 'Generate furniture picture and weight'
task will generate random values to the properties 'Weight'
and 'Price', then the 'Compute Delivery cost' task will pass
the value to the Business Knowledge Model and the result
will be carried back to the property 'DeliveryCost'.

You can now execute the simulation, and step through the

(c) Sparx Systems 2019 Page 193 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

debug process to observe, for example, the attribute value
changes.

(c) Sparx Systems 2019 Page 194 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Integrate DMN Module Into UML Class
Element

After a Decision Model is created and simulated, you can
generate a DMN Module in Java, JavaScript, C++ or C# and
test it.

The DMN Module can be integrated with a UML Class
element, so the code generated from that Class element can
reuse the DMN Module and be well-structured. Since a
Class element can define a StateMachine, after integration
with the DMN module the Executable StateMachine
simulation will generically be able to use the power of the
DMN Module.

In this topic, we will explain the process of integrating a
DMN Model with a UML Class element:

Class element·

DMN Model(s)·

DMN Binding to Class & Intelli-sense·

Code Generation on Class Element·

Class Element's Requirement

Suppose we have a Class Applicant with an operation
AffordabilityForProduct that evaluates whether the
applicant can afford a loan product.

A simplified model resembles this:

(c) Sparx Systems 2019 Page 195 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

The Class Applicant contains two attributes, which are
actually calculated from more basic data such as the
applicant's monthly income, expenses, existing repayments,
age and employment status.

In this example, however, we simplify the model by
skipping these steps and providing disposable income and
risk score directly. In the 'DMN Complete Example' (Model
Patterns), you can see all the more detailed steps.

DMN Model(s)

In this example, we have two disjoint DMN Models to show
that a UML Class can integrate multiple DMN Models.

Installment Calculator·

This DMN Model computes the monthly repayment based
on amount, rate and terms. It is composed of an InputData, a
Decision and a Business Knowledge Model.

(c) Sparx Systems 2019 Page 196 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Credit Contingency Factor Calculator·

This DMN Model computes the credit contingency factor
based on the applicant's risk score. It is composed of an
InputData, two Decisions and two Business Knowledge
Models.

Note: In this example, we focus on how to integrate DMN
Modules into a Class Element; the DMN element's detail is
not described here. The full example is available in Model
Patterns and the EAExample model.

Generate code for both DMN Models·

(c) Sparx Systems 2019 Page 197 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Click on the Generate button, and check that you can see
this string in the System Output window, 'DMN' page:

DMN Module is successfully compiled.

Note: Since this model uses a built-in function PMT, the
DMN Library has to be included:

(c) Sparx Systems 2019 Page 198 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Click on the Generate button, and check that you can see
this string in the System Output window, 'DMN' page:

DMN Module is successfully compiled.

DMN Binding to Class & Intelli-sense

Put the two DMNSimConfiguration Artifacts on the Class
diagram.

Use the Quick Linker to create a Dependency connector
from the Class Applicant to the DMN Artifact.

(c) Sparx Systems 2019 Page 199 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

On creation of the connector, the dialog will prompt you to
choose the operation to be bound to the DMN module.

Here is what has happened after the DMN Binding:

The operation takes a stereotype <<dmnBinding>>·

The Dependency connector is linked to the operation·

Multiple DMN Artifacts can be bound to the same·

operation

After DMN Bindings, Intelli-sense for the operation's code
editor will support DMN Modules. To trigger the
Intelli-sense, use these key combinations:

Ctrl+Space - in most of the cases·

Ctrl+Shift+Space - when Ctrl+Space does not work after·

(c) Sparx Systems 2019 Page 200 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

a parenthesis '('; for example, a function's arguments, or
inside an 'If' condition's parentheses

Class attributes will be listed - m_RiskScore,·

m_DisposibleIncome

Operation parameters will be listed - Amount, Rate, Term·

Operations will be listed - AffordabilityForProduct·

All bound DMN Modules will be listed -·

Contingency_Factor_Calculator, Installment_Calculator

It is quite easy to compose the code with Intelli-sense
support. On accessing the DMN Module, all the Input Datas,
Decisions and Business Knowledge Models will be listed
for selection.

(c) Sparx Systems 2019 Page 201 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

This illustration shows that we are selecting
Get_Required_monthly_installment() from the
Installment_Calculator.

This is the final implementation for the operation.

Code Generation for Class (With DMN
Integration)

'Generate Code on Class Applicant' produces this code:

(c) Sparx Systems 2019 Page 202 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

The DMN Module(s) are generated as attributes of the·

Class

The dmnBinding operation's code is updated·

Note: Regardless of whether the generation option is
'Overwrite' or' Synchronize', the operation's code will be
updated if it has the stereotype 'dmnBinding'.

(c) Sparx Systems 2019 Page 203 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

Importing DMN XML

Enterprise Architect supports the import of a DMN 1.1 or
1.2 XML file into a project, with both model semantics and
diagram-interchange information.

Access

In the Browser window, select the Package into which to
import the XML file. Then use one of the methods outlined
here to open the 'Import Package from DMN 1.1 XML'
dialog.

Ribbon Publish > Technologies > Import > DMN
1.1

Keyboard
Shortcuts

Ctrl+Alt+I : Other XML Formats > DMN
1.1

Import DMN 1.1 XML

Step, Step Action, Action

1 Open the Import Package from DMN

(c) Sparx Systems 2019 Page 204 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

dialog:
 Publish > Technologies > Import >
DMN 1.1

2 In the 'Filename' field, type in the source
file path and name, or click on the icon
to locate and select the file.

3 Click on the Import button to import the
file into the Package.

Import the example from OMG

Download the zip file at this link and extract it to your file1.
manager.

Browse for the folder examples/Chapter 11/.2.

Click on the file Chapter 11 Example.dmn and import it3.
as a DMN 1.1 format file.

These diagrams are imported to show different perspectives
of the model:

DRD of all automated decision-making·

DRD for the Review Application decision point·

DRD for the Decide Routing decision point·

DRD for the Decide Bureau Strategy decision point·

These diagrams are imported to define the Decision

(c) Sparx Systems 2019 Page 205 of 209

https://www.omg.org/spec/DMN/20180505/examples.zip

User Guide - DMN Modeling and Simulation 20 January, 2020

Services:

Bureau Strategy Decision Service·

Routing Decision Service·

The 'Bureau Strategy Decision Service' diagram is shown
here. It has two Input Data elements (Applicant data,
Requested product), two Output Decisions (Bureau call
type, Strategy) and five Encapsulated Decisions. Note that
the invoked Business Knowledge Models are not shown on
the diagram.

(c) Sparx Systems 2019 Page 206 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

In order to generate production code from the model, you
might have to run a validation and simulation to ensure that
the imported model has the correct expressions.

Create a DMN Sim Configuration Artifact on any of the1.
listed diagrams, and double-click on it to open it in the
DMN Simulation window.

The Decision Services and Decisions are listed in the2.
target drop-down field. Once you specify a target, all the

(c) Sparx Systems 2019 Page 207 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

required elements are listed in the window.

Click on the Validate button (4th on the toolbar). If any3.
error or warning messages display, we suggest that you to
fix the problems as directed by the error or warning
descriptions, before performing the simulation.

Provide appropriate values for the inputs, and either run4.
the simulation or step-debug the model.

Note: The 'Bureau Strategy Decision Service' example is
also available in the Model Wizard. Select 'Perspective |
Requirements | Decision Modeling | DMN Decision | A
Complete Example'.

(c) Sparx Systems 2019 Page 208 of 209

User Guide - DMN Modeling and Simulation 20 January, 2020

(c) Sparx Systems 2019 Page 209 of 209

	DMN Modeling and Simulation
	An Example of Decision Modeling
	Building a Decision Model in Enterprise Architect
	Components of Decision Requirements Diagrams
	Decision
	Business Knowledge Model
	BKM Parameters
	Input Parameter Values for Simulation
	Decision Table simulation example
	Literal Expression Simulaton Example

	Input Data
	InputData DMN Expression

	Item Definition
	Item Definition Toolbar
	Item Definitions and Data Sets
	Types of Components
	Allowed Value Enumerations

	Data Sets
	Exchange Data Sets using DataObjects

	DMN Expression Editor
	Decision Table
	Toolbar for Decision Table Editor
	Decision Table Hit Policy
	Decision Table Validation

	Literal Expression
	Toolbar for Literal Expression Editor
	Example - Loan Repayment

	Boxed Context
	Toolbar for Boxed Context Editor
	Example - Loan Installment Calculation

	Invocation
	Toolbar for Invocation Editor
	Example 1 - Bind Input Data to Business Knowledge Model
	Example 2 - Bind Context Entry variables to Business Knowledge Model

	Expression Editor Dialog
	DMN Expression Auto Completion
	DMN Expression Validation

	Decision Service
	Simulating a Decision Service

	DMN Simulation
	DMN Simulation Toolbar
	Simulate DMN Model
	Example DMN Simulation

	DMN Module Code Generation and Test Module
	Integrate a DMN Module Into BPSim for Simulation
	Example: Integrate DMN Decision Service into BPSim Data Object and Property Parameter
	Example: Integrate DMN Business Knowledge Model into BPSim Property Parameter

	Integrate DMN Module Into UML Class Element
	Importing DMN XML

