
Automation
Work on a repository via code? Use Sparx
Systems Enterprise Architect Automation
Interface, a set of objects, properties and

methods used via a built-in scripting framework
or external scripting environments or to create

Add-Ins in many code languages.

Enterprise Architect

User Guide Series

Author: Sparx Systems
Date: 2020-01-20

Version: 15.1

CREATED WITH

Table of Contents

Automation 15
Hybrid Scripting 18
C# Example 21
Java Example 24

Scripting 27
Scripts Tab 32
Console Tab 37
Script Group Properties 41
Script Editor 45
Session Object 53
Script Debugging 55

Enterprise Architect Object Model 58
Using the Automation Interface 61
Connect to the Interface 62
Set References In Visual Basic 68

Examples and Tips 71
Call from Enterprise Architect 75
Available Resources 78

Reference 81
Interface Overview 83
App Object 86
Enumerations 88
ConstLayoutStyles 91

CreateBaselineFlag 94
CreateModelType 95
DocumentBreak 96
DocumentPageOrientation 97
DocumentType 98
EAEditionTypes 99
EnumRelationSetType 100
ExportPackageXMIFlag 102
MDGMenus 103
MessageFlag 104
ObjectType 106
PropType 110
ReloadType 111
ScenarioDiagramType 112
ScenarioStepType 114
ScenarioTestType 115
XMIType 116

Properties Tab Package 118
PropertiesTab Class 119

Repository Package 122
Author Class 123
Client Class 126
Collection Class 129
The AddNew Function 134

Datatype Class 142
EventProperties Class 147
EventProperty Class 149

ModelWatcher Class 151
Package Class 153
ProjectIssues Class 176
ProjectResource Class 180
ProjectRole Class 183
PropertyType Class 186
Reference Class 189
Repository Class 192
SecurityUser Class 252
Stereotype Class 255
Task Class 259
Term Class 263

Element Package 266
Constraint Class 268
Effort Class 271
Element Class 274
ElementGrid Class 306
File Class 309
Issue (Maintenance) Class 312
Metric Class 316
Requirement Class 319
Resource Class 323
Risk Class 327
Scenario Class 330
ScenarioExtension Class 334
ScenarioStep Class 337
TaggedValue Class 341

Test Class 345
Element Features Package 349
Attribute Class 351
AttributeConstraint Class 361
AttributeTag Class 364
CustomProperties Collection 368
EmbeddedElements Collection 370
Method Class 372
MethodConstraint Class 381
MethodTag Class 384
Parameter Class 388
ParamTag Class 393
Partitions Collection 396
Properties Class 398
TemplateParameter Class 401
Transitions Collection 404

Connector Package 406
Connector Class 408
ConnectorConstraint Class 421
ConnectorEnd Class 424
ConnectorTag Class 430
RoleTag Class 434
TemplateBinding Class 438

Diagram Package 442
Diagram Class 443
DiagramLinks Class 460
DiagramObject Class 465

SwimlaneDef Class 477
Swimlanes Class 480
Swimlane Class 483

Project Interface Package 485
Project Class 486

Document Generator Interface Package 530
DocumentGenerator Class 532

Data Miner Package 545
DataMinerManager Class 547
DataMiner Class 551
DataSet Class 553
DMArray Class 555
DMAction Class 557
DMScript Class 559
DMConnection Class 560

TypeInfoProperties Package 562
TypeInfoProperties Class 564
TypeInfoProperty Class 567

Mail Interface Package 569
MailInterface Class 570

Search Window Package 576
EAContext Class 577
EASelection Class 580
SearchWindow Class 583

Simulation Package 587
Simulation Class 588

Schema Composer Package 591

SchemaProperty Class 592
SchemaProfile Class 596
SchemaComposer Class 598
ModelTypeEnum Class 602
ModelType Class 603
SchemaTypeEnum Class 607
SchemaType Class 608
SchemaPropEnum Class 610
SearchType Enumeration 611
SchemaNamespace Class 612
SchemaNamespaceEnum Class 613

Code Samples 614
Open the Repository 616
Iterate Through a .EAP File 618
Add and Manage Packages 620
Add and Manage Elements 622
Add a Connector 624
Add and Manage Diagrams 627
Add and Delete Features 629
Element Extras 631
Repository Extras 639
Stereotypes 644
Work With Attributes 646
Work With Methods 649

Enterprise Architect Add-In Model 653
The Add-In Manager 656
Add-In Tasks 658

Create Add-Ins 660
Define Menu Items 662
Deploy Add-Ins 666
Tricks and Traps 670

Add-In Search 676
EA_SampleSearch 678
XML Format (Search Data) 680

Add-In Events 683
EA_OnAddinPropertiesTabChanging 685
EA_Connect 687
EA_Disconnect 689
EA_GetMenuItems 690
EA_GetMenuState 693
EA_GetRibbonCategory 696
EA_MenuClick 698
EA_OnOutputItemClicked 701
EA_OnOutputItemDoubleClicked 704
EA_ShowHelp 707

Broadcast Events 709
Custom Table Events 712
EA_OnCustomTableBeginEdit 714
EA_OnCustomTableEndEdit 716
EA_OnCustomTableSelectionChanged 718
EA_OnCustomTableCellUpdated 720

Schema Composer Events 722
EA_GenerateFromSchema 723
EA_GetProfileInfo 725

EA_IsSchemaExporter 727
Add-In License Management Events 729
EA_AddinLicenseValidate 730
EA_AddinLicenseGetDescription 732
EA_GetSharedAddinName 734

Compartment Events 737
EA_QueryAvailableCompartments 738
EA_GetCompartmentData 741

Context Item Events 746
EA_OnContextItemChanged 747
EA_OnContextItemDoubleClicked 750
EA_OnNotifyContextItemModified 753

EA_FileClose 755
EA_FileNew 757
EA_FileOpen 759
EA_OnPostCloseDiagram 761
EA_OnPostInitialized 763
EA_OnPostOpenDiagram 765
EA_OnPostTransform 767
EA_OnPreExitInstance 769
EA_OnRetrieveModelTemplate 770
EA_OnTabChanged 773
Model Validation Events 775
EA_OnInitializeUserRules 777
EA_OnStartValidation 779
EA_OnEndValidation 781
EA_OnRunElementRule 783

EA_OnRunPackageRule 785
EA_OnRunDiagramRule 787
EA_OnRunConnectorRule 789
EA_OnRunAttributeRule 791
EA_OnRunMethodRule 793
EA_OnRunParameterRule 795
Model Validation Example 798

Post-New Events 809
EA_OnPostNewElement 811
EA_OnPostNewConnector 813
EA_OnPostNewDiagram 815
EA_OnPostNewDiagramObject 817
EA_OnPostNewAttribute 819
EA_OnPostNewMethod 821
EA_OnPostNewPackage 823
EA_OnPostNewGlossaryTerm 825

Pre-Deletion Events 827
EA_OnPreDeleteElement 829
EA_OnPreDeleteAttribute 831
EA_OnPreDeleteMethod 833
EA_OnPreDeleteConnector 835
EA_OnPreDeleteDiagram 837
EA_OnPreDeleteDiagramObject 839
EA_OnPreDeletePackage 841
EA_OnPreDeleteGlossaryTerm 843

Pre New-Object Events 845
EA_OnPreNewElement 847

EA_OnPreNewConnector 849
EA_OnPreNewDiagram 852
EA_OnPreNewDiagramObject 854
EA_OnPreDropFromTree 856
EA_OnPreNewAttribute 858
EA_OnPreNewMethod 860
EA_OnPreNewPackage 862
EA_OnPreNewGlossaryTerm 864

Tagged Value Events 866
EA_OnAttributeTagEdit 867
EA_OnConnectorTagEdit 869
EA_OnElementTagEdit 871
EA_OnMethodTagEdit 873

Technology Events 875
EA_OnInitializeTechnologies 876
EA_OnPreActivateTechnology 878
EA_OnPostActivateTechnology 880
EA_OnPreDeleteTechnology 882
EA_OnDeleteTechnology 885
EA_OnImportTechnology 888

Custom Views 891
Create a Custom View 892

Add a Portal 894
Custom Docked Window 896
MDG Add-Ins 899
MDG Events 900
MDG_BuildProject 902

MDG_Connect 904
MDG_Disconnect 907
MDG_GetConnectedPackages 909
MDG_GetProperty 911
MDG_Merge 914
MDG_NewClass 920
MDG_PostGenerate 922
MDG_PostMerge 925
MDG_PreGenerate 927
MDG_PreMerge 929
MDG_PreReverse 931
MDG_RunExe 933
MDG_View 935

Workflow Add-In Events 938
EA_AllowPropertyUpdate 940
EA_AllowTagUpdate 942
EA_CanEditProperty 944
EA_CanEditTag 946

Model Add-Ins 948
Create an Add-In 951
Responding to Events 955
Edit Add-In Code 957

Model Add-In Management 959
Signal Reference Library 961
Sample Add-Ins 962

Workflow Scripts 963
Workflow Script Functions 967

Functions - Validate and Control User Input 969
Functions - Create a Search With User Tasks 974
Filled Workflow Data Structures 975
Workflow Data Structures You Fill 979
Functions You Call 982

User Guide - Automation 20 January, 2020

Automation

Enterprise Architect has a formidable set of built-in features
for working with models, but it also provides a range of
environments for accessing and manipulating the contents of
a repository programmatically. This is an extremely
powerfully facility that gives you unlimited ability to query
and manipulate models, add to the Enterprise Architect user
interface, generate reports, and even create support for new
modeling languages. The Automation Interface gives you
access to the Object Model, which is an easy to use and well
defined set of objects with properties and methods that can
be used to query and manipulate the repository and its
contents, shielding the programmer from having to know the
underlying repository data structures.

The automation interface is available from a scripting
framework built into the Enterprise Architect user interface,
through external scripting environments, or through Add-Ins
that can be built in a wide range of programming languages.

Facilities

(c) Sparx Systems 2019 Page 15 of 985

User Guide - Automation 20 January, 2020

Facility Description

Scripting Learn about the flexible and easy-to-use
scripting capability to programmatically
inspect and/or modify elements within
your currently open model.

Object Model Discover the Enterprise Architect Object
model. Write your own custom programs
that access the information stored in
Enterprise Architect.

Add-In
Model

The Enterprise Architect Add-In model
helps you build on the features provided
by the Automation Interface to enable
you to extend the Enterprise Architect
user interface.

MDG
Add-Ins

MDG Add-Ins are specialized types of
Add-In that have additional features and
extra requirements. MDG Add-Ins are
focused on generation, synchronization
and general processes concerned with
converting models to code and code to
models.

Code
Samples and

Reference

Access the wealth of knowledge and
samples to help you complete your
Add-In.

(c) Sparx Systems 2019 Page 16 of 985

User Guide - Automation 20 January, 2020

(c) Sparx Systems 2019 Page 17 of 985

User Guide - Automation 20 January, 2020

Hybrid Scripting

Hybrid scripting extends the capabilities of the standard
scripting environment to high level languages such as Java
and C#. Hybrid scripting provides a speed advantage over
conventional scripting, and also allows script authors to
leverage existing skills in popular programming languages.

Access

(c) Sparx Systems 2019 Page 18 of 985

User Guide - Automation 20 January, 2020

Ribbon Design > Model > Add > Insert > Model
Wizard > Application Patterns

Context
Menu

Right-click on Package | Add a Model
using Wizard | Application Patterns

Keyboard Ctrl+Shift+M | Application Patterns

(c) Sparx Systems 2019 Page 19 of 985

User Guide - Automation 20 January, 2020

Shortcuts

Other Browser window header bar menu | New
Model from Pattern | Application Patterns

Features

Superior execution speed·

Enhanced interoperability·

Full Visual Execution Analyzer support·

(c) Sparx Systems 2019 Page 20 of 985

User Guide - Automation 20 January, 2020

C# Example

This sample program demonstrates how easy it is to
navigate, query and report on the current model using any
Microsoft .NET language. This example is written in C#.

When run, it will print the names of every Package in the
model you are currently using.

Create the project

In the Browser window, select the Package in which to
create the template and then use the ribbon or context menu
to display the Model Wizard; select the 'Application
Patterns' tab.

On the 'Application Patterns' tab, select the Microsoft C# >
RepositoryInterface template. (You can choose from either
the 3.5 or the 4.0 framework versions.) Specify the
destination folder on the file system where the project
template will be created, and click on the OK button.

Open the project

A Package structure similar to this will be created for you.

(c) Sparx Systems 2019 Page 21 of 985

User Guide - Automation 20 January, 2020

Expand the structure until you locate the Repository
Interface n.n diagram and open it.

O v e r v i e w :

T h i s s a m p l e p r o g r a m d e m o n s t r a t e s h o w e a s y i t i s t o n a v i g a t e ,

q u e r y a n d r e p o r t o n t h e c u r r e n t m o d e l u s i n g a n y M i c r o s o f t . N E T

l a n g u a g e . T h i s e x a m p l e i s w r i t t e n i n C # .

W h e n r u n , i t w i l l p r i n t t h e n a m e s o f e v e r y P a c k a g e i n t h e m o d e l

y o u a r e c u r r e n t l y u s i n g .

F r a m e w o r k :

T h e b u i l d u s e s t h e C # c o m p i l e r f r o m t h e M i c r o s o f t . N E T

f r a m e w o r k .

V e r s i o n :

4 . 0

N o t e :

T h e l i n k s o n t h e r i g h t o p e r a t e o n t h e a c t i v e A n a l y z e r S c r i p t

T o u s e t h e s e l i n k s m a k e s u r e y o u h a v e s e l e c t e d t h e ' R e p o s i t o r y

I n t e r f a c e 4 . 0 ' s c r i p t . Y o u c a n u s e t h i s A n a l y z e r S c r i p t s l i n k t o d o

t h i s .

BuildBuild the project

Run
Run your program

Debug the program *DebugRun

Analyzer Scripts

Program

- m_ProcessID: int = 0
- Repository: EA.Repository = null

- Main(string[]): void
+ PrintModel(): bool
- PrintPackage(EA.Package): void
+ Program(int)

Build the script

The commands on this diagram will operate on the active
build configuration. Before executing them, double-click on
the Analyzer Scripts link and select the checkbox next to the
'Repository Interface' build configuration.

(c) Sparx Systems 2019 Page 22 of 985

User Guide - Automation 20 January, 2020

Run the script

Double-click on the Run link to open the Console. The
Console will pause after completion so you can read the
output from the program; this output will also be sent to the
'Script' tab of the System Output window. You can alter this
by changing the code.

Debug the script

Select the 'Program' Class from the Browser window and
press Ctrl+E to open the source code.

Place a breakpoint in one of the functions and then
double-click on the DebugRun link. When the breakpoint is
encountered, the line of code will become highlighted in the
editor, as shown:

(c) Sparx Systems 2019 Page 23 of 985

User Guide - Automation 20 January, 2020

Java Example

This sample program demonstrates how easy it is to
navigate, query and report on the current model using a
high-level language such as Java.

When run, it will print the names of every Package in the
currently-loaded model.

Create the project

In the Browser window, select the Package in which to
create the template, then use the ribbon or context menu to
display the Model Wizard; click on the 'Application
Patterns' tab.

From this tab, select the Java > RepositoryInterface
template. Specify the destination folder on the file system in
which the project template will be created, and click on the
OK button.

Open the project

A Package structure similar to this will be created for you.

(c) Sparx Systems 2019 Page 24 of 985

User Guide - Automation 20 January, 2020

Expand the structure until you locate the 'Repository
Interface' diagram and open it.

O v e r v i e w :

T h i s s a m p l e p r o g r a m d e m o n s t r a t e s h o w e a s y i t i s t o n a v i g a t e ,

q u e r y a n d r e p o r t o n t h e c u r r e n t m o d e l u s i n g a h i g h l e v e l

l a n g u a g e s u c h a s J a v a . W h e n r u n , i t w i l l p r i n t t h e n a m e s o f e v e r y

P a c k a g e i n t h e c u r r e n t l y l o a d e d m o d e l .

F r a m e w o r k :

T h e b u i l d u s e s t h e c o m p i l e r f r o m t h e J a v a J D K 1 . 7 x 8 6

f r a m e w o r k .

V e r s i o n :

1 . 7

N o t e :

I n o r d e r t o u s e t h e B u i l d , R u n a n d D e b u g l i n k s , y o u m u s t f i r s t

l o c a t e t h e ' R e p o s i t o r y I n t e r f a c e ' A n a l y z e r S c r i p t g e n e r a t e d b y t h e

w i z a r d , a n d m a k e i t t h e a c t i v e s c r i p t f o r t h e m o d e l .

Y o u c a n u s e t h e ' A n a l y z e r S c r i p t s ' l i n k t o d o t h i s .

BuildBuild the project

Run
Run your program

Debug the program *DebugRun

Analyzer Scripts

RepositoryInterface

- m_eapid: int = 0
- m_repository: org.sparx.Repository = null

+ Demo(): void
+ finalize(): void
~ main(String[]): void
+ RepositoryInterface()
+ RepositoryInterface(int)

Build the script

The commands on the diagram will operate on the active
build configuration. Before executing them, double-click on
the Analyzer Scripts link and select the checkbox next to the
'Repository Interface' build configuration.

(c) Sparx Systems 2019 Page 25 of 985

User Guide - Automation 20 January, 2020

Run the script

Double-click on the Run link; a Console will open. The
Console will pause after completion so you can read the
output. The output from the program will also be output to
the 'Script' tab of the System Output window. You can alter
this by changing the code.

Debug the script

Select the 'Program' Class from the Browser window and
press Ctrl+E to open the source code.

Place a breakpoint in one of the functions and then
double-click on the DebugRun link. When the breakpoint is
encountered the line of code will become highlighted in the
editor, as shown.

(c) Sparx Systems 2019 Page 26 of 985

User Guide - Automation 20 January, 2020

Scripting

Enterprise Architect's scripting environment is a flexible and
easy to use facility that supports both JavaScript and the
Microsoft scripting languages JScript and VBScript. When
any script runs, it has access to a built-in 'Repository' object.
Using this script object you can programmatically inspect
and/or modify elements within your currently open model.
Enterprise Architect also provides feature rich editors, and
tools to run, debug and manage your scripts. Scripts are
modular and can include other scripts by name using the
!include directive. They can be used for a broad range of
purposes, from documentation to validation and refactoring,
and they can be of enormous help with automating time
consuming tasks.

Script Engine Support

Mozilla SpiderMonkey [version 1.8]·

Microsoft Scripting Engine·

(c) Sparx Systems 2019 Page 27 of 985

User Guide - Automation 20 January, 2020

Script Languages

JavaScript·

JScript·

VBScript·

Benefits

Inspecting and reporting on model and element·

composition

Modifying and updating element properties·

Running queries to obtain extended model information·

Modifying diagram layouts·

Being called from report document templates to populate·

reports

Creating and implementing process workflows·

Being included in MDG Technologies to augment domain·

specific languages

Extensive UI access to scripts through context menus·

Automation Server role for in-process and out-of-process·

COM clients (Scripting is itself an example of an
in-process client; Add-Ins are another)

Element access governance through Workflow security·

Model Search integration·

(c) Sparx Systems 2019 Page 28 of 985

User Guide - Automation 20 January, 2020

Script Groups

Scripts are managed and contained in groups. Each group
has an attribute called 'Type'. This attribute is used to help
Enterprise Architect decide how and where the script can be
used and from which features it should be made available.
The properties of a script group can be viewed from its
shortcut menu.

Script Storage

Built in scripts are file based and are installed with
Enterprise Architect. They appear under the Local Scripts
group.

You cannot edit or delete Local scripts, but you can copy the
contents easily enough.

User defined scripts are model based and as such, can be
shared by a community. They are listed in the group to
which they belong..

(c) Sparx Systems 2019 Page 29 of 985

User Guide - Automation 20 January, 2020

Using Scripts

The management interface for Scripting is the Scripting
window, which contains the:

Script Tree View ('Scripts' tab), which you use to review,·

create and edit scripts

Script Console ('Console' tab), which you use to operate·

on an executing script

Other than the Local Scripts, which are file based and
installed with Enterprise Architect, all other scripts are
stored as model assets and can be shared with its users.
Script debuggers can help you with script development and
script editors can provide you with information on the
automation interfaces available to you. Analyze the
execution; for example, by recording a Sequence diagram of
the script execution, and halting execution to view local
variables.

Notes

This facility is available in the Corporate, Unified and·

Ultimate editions

If you intend to use the Scripting facility under·

Crossover/WINE, you must also install Internet Explorer
version 6.0 or above

(c) Sparx Systems 2019 Page 30 of 985

User Guide - Automation 20 January, 2020

(c) Sparx Systems 2019 Page 31 of 985

User Guide - Automation 20 January, 2020

Scripts Tab

The 'Scripts' tab is composed of a toolbar and a view of all
scripts according to group. The script groups and their
scripts also have context menus that provide some or all of
these options:

Group Properties - to display or edit script group·

properties in the 'Script Group Properties' dialog

Run Script - to execute the selected script (or press Ctrl·

while you double-click on the script name)

Edit Script - to update the selected script (or double-click·

on the script name to display the 'Script Editor', which
usually displays a script template, determined by the user
group type as assigned on creation or on the 'Script Group
Properties' dialog)

Rename Script - to change the name of the selected group·

or script

New VBScript/JScript/JavaScript - add a new script to the·

selected user group

Import Workflow Script - to display the 'Browser' dialog·

through which you locate and select a workflow script
source (.vbs) file to import into the Workflow script folder

Delete Group/Script - to delete the selected user group or·

script

You can also move or copy a script from one user scripts
folder to another; to:

Move a script, highlight it in the 'Scripts' tab and drag it·

(c) Sparx Systems 2019 Page 32 of 985

User Guide - Automation 20 January, 2020

into the user scripts folder it now belongs to

Copy a script, highlight it in the 'Scripts' tab and press Ctrl·

while you drag it into the user scripts folder in which to
duplicate it

Access

Ribbon Specialize > Tools > Scripting > Scripts

Script Toolbar

Icon Action

Create a new script group; this option
displays a short menu of the types of
script group you can create, namely:

Normal Group ()·

Browser window Group ()·

Diagram Group ()·

Workflow Group ()·

Search Group ()·

Model Search Group·

The new group is added to the end of the

(c) Sparx Systems 2019 Page 33 of 985

User Guide - Automation 20 January, 2020

list in the Scripting window, with the
'New group' text highlighted so that you
can type in the group name.

Create a new script file in the selected
script group; displays a short menu of the
types of script you can create, namely:

VBScript ()·

JScript ()·

JavaScript ()·

The new script is added to the end of the
list in the selected group, with the 'New
script' text highlighted so that you can
type in the script name.

Refresh the script tree in the Scripting
window; this icon also reloads any
changes made to a workflow script.

Compile and execute the selected script.
The output from the script is written to
the 'Script' tab of the System Output
window, which you display using the
View Script Output button.

Stop an executing script; the icon is
disabled if no script is executing.

(c) Sparx Systems 2019 Page 34 of 985

User Guide - Automation 20 January, 2020

Delete a script from the model; you
cannot use this icon to delete a script
group (see the earlier 'Context Menu'
item), scripts in the 'Local Scripts' group,
or a script that is executing.
The system prompts you to confirm the
deletion only if the 'Confirm Deletes'
checkbox is selected in the 'Project
Browser' panel of the 'General' page of
the 'Preferences' dialog; if this option is
not selected, no prompt is displayed.
Script deletion is permanent - scripts
cannot be recovered.

Display the System Output window with
the results of the most recently executed
script displayed in the 'Script' tab.

Notes

This facility is available in the Corporate, Unified and·

Ultimate editions

If you add, delete or change a script, you might have to·

reload the model in order for the changes to take effect

If you select to delete a script group that contains scripts,·

the system always prompts you to confirm the action

(c) Sparx Systems 2019 Page 35 of 985

User Guide - Automation 20 January, 2020

regardless of any system settings for delete operations; be
certain that you intend to delete the group and its scripts
before confirming the deletion - deletion of script groups
and scripts is permanent

(c) Sparx Systems 2019 Page 36 of 985

User Guide - Automation 20 January, 2020

Console Tab

The script console is a tab of the Scripting window; it is a
command line interpreter through which you can quickly
enable a script engine and enter commands to act on the
script.

You type the commands in the field at the bottom of the tab;
when you press the Enter key, the script console executes
the commands and displays any output immediately.

You can input two types of command:

Console commands·

Script commands·

Access

Ribbon Specialize > Tools > Scripting > Console

Console Commands

Console commands are preceded by the ! character and
instruct the console to perform an action.

The available console commands are provided here; to list
these commands on the 'Console' tab itself, type ? in the

(c) Sparx Systems 2019 Page 37 of 985

User Guide - Automation 20 January, 2020

console field (without the preceding ! character) and press
the Enter key.

c(lear) - clears the console display·

sa(ve) - saves the console display to a file·

h(elp) - prints a list of commands, as for ?·

VB - opens a VBScript console·

JA - opens a JavaScript console·

JS - opens a JScript console·

st(op) - closes any script running console·

i(nclude) name - executes the named script item; name is·

of the format GroupName.ScriptName (spaces are
allowed in names)

? - (without the !) lists commands·

?name - Outputs the value of a variable name (only if a·

script console is opened).

Script Commands

A script command is script code that depends on the script
engine. Script commands can be executed only once a script
console has been created.

Examples:

These lines, entered into the console, create a VBScript
console and then execute the script 'MyScript' in the user
group 'MyGroup':

(c) Sparx Systems 2019 Page 38 of 985

User Guide - Automation 20 January, 2020

 >!VB

 >!i MyGroup.MyScript

These lines, entered into the console, create a JScript
console and then create a variable called x with the value 1:

 >!JS

 >var x = 1

This image shows the result of entering this JScript
example; remember that you can use ?<variable name> to
get the current value of any item you have created during
the console session.

Console Tab Toolbar

The 'Console' tab has two operations available through the
toolbar:

Open Console () - click on the down-arrow and select to·

open a VBScript console, JScript console or JavaScript
console

Stop Script () - click to stop an executing script and·

close the current console

Notes

(c) Sparx Systems 2019 Page 39 of 985

User Guide - Automation 20 January, 2020

This facility is available in the Corporate, Unified and·

Ultimate editions

You can save the output of the console to an external .txt·

file; right-click on the console window, select the 'Save
As' option, browse for an appropriate file location and
specify the file name

(c) Sparx Systems 2019 Page 40 of 985

User Guide - Automation 20 January, 2020

Script Group Properties

When you create a script you develop it within a script
group, the properties of which determine how that script is
to be made available to the user - through the Browser
window context menu to operate on objects of a specific
type, or through a diagram context menu. You create a
Script Group using the first icon on the 'Scripts' tab toolbar.

Access

Ribbon Specialize > Tools > Scripting > Scripts >
right-click on [Group name] > Group
Properties

(c) Sparx Systems 2019 Page 41 of 985

User Guide - Automation 20 January, 2020

Define the Script Group Properties

Field/Button Action

Name Type in the name of the script group.

Group UID (Read only) The automatically assigned
GUID for the group.

Source (Read only) The location of the template
used to create the script.

Group Type Click on the drop-down arrow and select
the type of script contained in the group;
this can be one of:

Normal - () General model scripts·

Browser window - () Scripts that are·

listed in and can be executed from the
Browser window 'Scripts' context menu
option
Workflow - () Scripts executed by·

Enterprise Architect's workflow
engine; you can create only VB scripts
of this type
Search - () Scripts that can be·

(c) Sparx Systems 2019 Page 42 of 985

User Guide - Automation 20 January, 2020

executed as model searches; these
scripts are listed in the 'Search' field of
the Model Search window, in the last
category in the list
Diagram - () Scripts that can be·

executed from the 'Scripts' submenu of
the diagram context menu
Find in Project - () Scripts that can be·

executed from the 'Scripts' submenu of
a context menu within the Model
Search view, on the results of a
successfully-executed SQL search that
includes CLASSGUID and
CLASSTYPE, or a Query-built search
Element - Scripts that can be executed·

from the 'Scripts' submenu of element
context menus; accessible from the
Browser window, Diagram, Model
Search, Element List, Package Browser
and Gantt views
Package - Scripts that can be executed·

from the 'Scripts' submenu of Package
context menus; accessible from the
Browser window
Diagram - Scripts that can be executed·

from the 'Scripts' context menu option
for diagrams; accessible from the
Browser window and diagrams
Link - Scripts that can be executed·

(c) Sparx Systems 2019 Page 43 of 985

User Guide - Automation 20 January, 2020

from the 'Scripts' context menu option
for connectors; accessible from
diagrams

Notes Type in any comments you need
regarding this script group.

(c) Sparx Systems 2019 Page 44 of 985

User Guide - Automation 20 January, 2020

Script Editor

Using the Script Editor you can perform a number of
operations on an open script file, such as:

Save changes to the current script·

Save the current script under a different name·

Run the script·

Debug the script·

Stop the executing script·

View the script output in the 'Scripts' tab of the System·

Output window

The editor is based on, and provides the facilities of, the
common Code Editor in the application work area.

Access

Ribbon Specialize > Tools > Scripting > Scripts >
right-click on [script name] > Edit Script
or
Specialize > Tools > Scripting > Scripts >
double-click on [script name]

(c) Sparx Systems 2019 Page 45 of 985

User Guide - Automation 20 January, 2020

Facilities

Facility Detail

Scripting
Objects

Enterprise Architect adds to the available
functionality and features of the editor
script language by providing inbuilt
objects; these are either Type Libraries
providing Intelli-sense for editing
purposes, or Runtime objects providing
access to objects of the types described in
the Type Libraries.
The available Intelli-sense scripting
objects are:

EA·

MathLib·

System·

The runtime scripting objects are:
Repository (Type: IDualRepository, an·

instance of EA.Repository, the
Enterprise Architect Automation
Interface)
Maths (Type: IMath, an instance of·

MathLib; this exposes functions from
the Cephes mathematical library for
use in scripts)
Session (Type: ISession, an instance of·

(c) Sparx Systems 2019 Page 46 of 985

User Guide - Automation 20 January, 2020

System)

Script
Editing
Intelli-sense
(Required
Syntax)

Intelli-sense is available not only in the
'Script Editor', but also in the 'Script
Console'; Intelli-sense at its most basic is
presented for the inbuilt functionality of
the script engine.
For Intelli-sense on the additional
Enterprise Architect scripting objects (as
listed) you must declare variables
according to syntax that specifies a type;
it is not necessary to use this syntax to
execute a script properly, it is only
present so that the correct Intelli-sense
can be displayed for an item.
The syntax can be seen in, for example:
 Dim e as EA.Element
Then when you type, in this case, e., the
editor displays a list of member functions
and properties of e's type.
You select one of these to complete the
line of script; you might, therefore, type:
 VBTrace(e.
As you type the period, the editor
presents the appropriate list and you
might double-click on, for example,
Abstract; this is inserted in the line, and
you continue to type or select the rest of

(c) Sparx Systems 2019 Page 47 of 985

User Guide - Automation 20 January, 2020

the statement, in this case adding the end
space and parenthesis:
 VBTrace(e.Abstract)

Keystrokes In the Script Editor or Console,
Intelli-sense is presented on these
keystrokes.

Press . (period) after an item to list any·

members for that item's type
Press Ctrl+Space on a word to list any·

Intelli-sense items with a name starting
with the string at the point the keys
were pressed
Press Ctrl+Space when not on a word·

to display any available top level
Intelli-sense items - these are the
Intelli-sense objects already described
plus any built-in methods and
properties of the current scripting
language

Include script
libraries

An Include statement (!INC) allows a
script to reference constants, functions
and variables defined by another script
accessible within the Scripting Window.
Include statements are typically used at
the beginning of a script.
To include a script library, use this
syntax:

(c) Sparx Systems 2019 Page 48 of 985

User Guide - Automation 20 January, 2020

 !INC [Script Group Name].[Script
Name]
For example:
 !INC Local
Scripts.EAConstants-VBScript

Using Inbuilt
Math
Functions

Various mathematical functions are
available within the Script Editor,
through the use of the inbuilt Maths
object.
You can access the Maths object within
the Script Editor by typing 'Maths'
followed by a period. The Intelli-sense
feature displays a list of the available
mathematical functions provided by the
Cephes Mathematical Library. For
example:
 Session.Output "The square root of 9
is " & Maths.sqrt(9)
 Session.Output "2^10 = " &
Maths.pow(2,10)
The Maths object is available in the
Unified and Ultimate editions of
Enterprise Architect.

Using COM /
ActiveX
Objects

VBScript, JScript and JavaScript can
each create and work with ActiveX /
COM objects. This can help you to work
with external libraries, or to interact with

(c) Sparx Systems 2019 Page 49 of 985

User Guide - Automation 20 January, 2020

other applications external to Enterprise
Architect. For example, the
Scripting.FileSystemObject Class can be
used to read and write files on the local
machine. The syntax for creating a new
object varies slightly for each language,
as illustrated by these examples:
VBScript:
 set fsObject =
CreateObject("Scripting.FileSystemObjec
t")
JScript:
 fsObject = new
ActiveXObject("Scripting.FileSystemObj
ect");
JavaScript:
 fsObject = new
COMObject("Scripting.FileSystemObject
");

Using
JavaScript
with
out-of-proces
s COM
servers

Users of JavaScript in Enterprise
Architect can access out-of-process COM
servers. The application must be
registered on the machine as providing
local server support. The syntax for
creating or obtaining a reference to an
out-of-process server is:
 var server = new COMObject(progID,

(c) Sparx Systems 2019 Page 50 of 985

User Guide - Automation 20 January, 2020

true);
where progID is the registered program
ID for the COM component
('Excel.Application', for example).

System
Script
Library

When Enterprise Architect is installed on
your system, it includes a default script
library that provides a number of helpful
scripting functions, varying from simple
string functions to functions for defining
your own CSV or XMI import and
export.
To use the script library you must enable
it in the 'MDG Technologies' dialog
('Specialize > Technologies >
Manage-Tech' ribbon option).
Scroll through the list of technologies,
and select the 'Enabled' checkbox against
'EAScriptLib'.

Notes

The Script Editor is available in the Corporate, Unified·

and Ultimate editions

Enterprise Architect scripting supports declaring variables·

to match the Enterprise Architect types; this enables the

(c) Sparx Systems 2019 Page 51 of 985

User Guide - Automation 20 January, 2020

editor to present Intelli-sense, but is not necessary for
executing the script

(c) Sparx Systems 2019 Page 52 of 985

User Guide - Automation 20 January, 2020

Session Object

The Session runtime object provides a common
input/feedback mechanism across all script languages,
giving access to objects of the types described in the System
Type library. It is available through both the 'Scripts' tab and
the script 'Console' tab to any script run within Enterprise
Architect.

Properties

Properties Detail

Attributes UserName - Returns the current·

windows username (read only)
Version - Returns the version of this·

object (read only)

Methods Input(string Prompt) - displays a dialog·

box prompting the user to input a
value; returns the string value that was
entered by the user
Output(string Output) - writes text to·

the current default output location;
during:
 - Normal script execution, output is
written to the 'Script' tab of the System

(c) Sparx Systems 2019 Page 53 of 985

User Guide - Automation 20 January, 2020

Output window
 - Script Debugging, output is
written to the Debug window
 - Use of the Script Console, output
is written to the Console
Prompt(string Prompt, long·

PromptType) - displays a modal dialog
containing the specified prompt text
and button types; returns the
'PromptResult' value corresponding to
the button that the user clicked

PromptType
values

promptOK = 1·

promptYESNO = 2·

promptYESNOCANCEL = 3·

promptOKCANCEL = 4·

PromptResult
values

resultOK = 1·

resultCancel = 2·

resultYes = 3·

resultNo = 4·

Session.Prom
pt Example

(VBScript)
If (Session.Prompt("Continue?",
promptYESNO) = resultYes) Then...

(c) Sparx Systems 2019 Page 54 of 985

User Guide - Automation 20 January, 2020

Script Debugging

Script debugging aids in the development and maintenance
of model scripts, and monitoring their activity at the time of
execution. While debugging a script, you can:

Control execution flow using the 'Debug', 'Step Over',·

'Step Into', 'Step Out' and 'Stop Script' buttons on the
Script Editor toolbar

Set Breakpoints, Recording Markers and Tracepoint·

Markers

Use the Debug window to view output generated by the·

script

Use the Locals window to inspect values of variables,·

including objects from the Automation Interface

Use the Record & Analyze window to record a Sequence·

diagram of the script execution

Access

Ribbon Specialize > Tools > Scripting > Scripts >
right-click on [script name] > Debug
Script

Other Script Editor window toolbar : Click on
the toolbar icon

(c) Sparx Systems 2019 Page 55 of 985

User Guide - Automation 20 January, 2020

Begin debugging a model script

Ste
p

Action

1 Open a model script in the Script Editor.

2 Set any Breakpoints on the appropriate line(s) of
code.

3 Click on the toolbar icon (Debug).

Notes

Script debugging is supported for VBScript, JScript and·

JavaScript

VBScript and JScript require the Microsoft Process·

Debug Manager to be installed on the local machine; this
is available through various Microsoft products including
the free 'Microsoft Script Debugger'

Breakpoints are not saved for scripts and will not persist·

when the script is next opened

(c) Sparx Systems 2019 Page 56 of 985

User Guide - Automation 20 January, 2020

While debugging, script output is redirected to the Debug·

window

(c) Sparx Systems 2019 Page 57 of 985

User Guide - Automation 20 January, 2020

Enterprise Architect Object Model

The Enterprise Architect Object Model gives the scripter or
programmer access to the underlying objects that you can
use to query or manipulate the repository. The Object Model
is accessible either from internal or external scripting
environments or through Add-Ins. This is a powerful feature
that ensures that a programmer is insulated from the
underlying database where the repository is stored,
protecting them from changes to the database structure or
content. The objects are grouped into Packages and contain
a useful, extensive and well documented set of properties
and methods that are intuitive to use and allow access to
elements, features, diagrams and project metadata.

Automation provides a way for other applications to access
the information in an Enterprise Architect model using
Windows OLE Automation (ActiveX). Typically this
involves scripting clients such as MS Word or Visual Basic,
or using scripts created within Enterprise Architect using the
Scripting window.

The Automation Interface provides a way of accessing the
internals of Enterprise Architect models. Examples of things
you can do using the Automation Interface include:

Perform repetitive tasks, such as update the version·

number for all elements in a model

(c) Sparx Systems 2019 Page 58 of 985

User Guide - Automation 20 January, 2020

Generate code from a StateMachine diagram·

Produce custom reports·

Perform ad hoc queries·

Features

Feature Description

Connecting
to the
Automation
Interface

All development environments capable of
generating ActiveX COM clients should
be able to connect to the Enterprise
Architect Automation Interface. This
guide provides detailed instructions on
connecting to the interface using
Microsoft Visual Basic 6.0, Borland
Delphi 7.0, Microsoft C# and Java. There
are also more detailed steps on how to
set-up Visual Basic; the principles are
applicable to other languages.

Examples
and Tips

Instruction on how to use the Automation
Interface is provided by means of sample
code. See pointers to the samples and
other available resources. Also, consult
the extensive Reference Section.

Calling
Executables

Enterprise Architect can be set up to call
an external application. You can pass

(c) Sparx Systems 2019 Page 59 of 985

User Guide - Automation 20 January, 2020

from
Enterprise
Architect

parameters on the current position
selected in the Browser window to the
application being called. For instructions,
go to the Call from Enterprise Architect
topic. A more sophisticated method is to
create Add-Ins, which are discussed in a
separate section.

(c) Sparx Systems 2019 Page 60 of 985

User Guide - Automation 20 January, 2020

Using the Automation Interface

This section provides instructions on how to connect to and
use the Automation Interface, including:

Connecting to the interface·

Setting references in Visual Basic·

Examples and Tips·

(c) Sparx Systems 2019 Page 61 of 985

User Guide - Automation 20 January, 2020

Connect to the Interface

All development environments capable of generating
ActiveX Com clients can connect to the Enterprise Architect
Automation Interface.

By way of example, these sections describe how to connect
using several such tools. The procedure might vary slightly
with different versions of these products.

Microsoft Visual Basic 6.0

Ste
p

Action

1 Create a new project.

2 Select the 'Project | References' menu option.

3 Select Enterprise Architect Object Model 2.0 from
the list.
If this does not appear, go to the command line and
re-register Enterprise Architect using:
 EA.exe /unregister
then
 EA.exe /register

(c) Sparx Systems 2019 Page 62 of 985

User Guide - Automation 20 January, 2020

4 See the general library documentation on the use of
Classes. This example creates and opens a repository
object:
 Public Sub ShowRepository()
 Dim MyRep As New EA.Repository
 MyRep.OpenFile "c:\eatest.eap"
 End Sub

Borland Delphi 7.0

Ste
p

Action

1 Create a new project.

2 Select the 'Project | Import Type Library' menu
option.

3 Select Enterprise Architect Object Model 2.0 from
the list.
If this does not appear, go to the command line and
re-register Enterprise Architect using:
 EA.exe /unregister
then
 EA.exe /register

(c) Sparx Systems 2019 Page 63 of 985

User Guide - Automation 20 January, 2020

4 Click on the Create Unit button.

5 Include EA_TLB in Project1's Uses clause.

6 See the general library documentation on the use of
Classes. This example creates and opens a repository
object:
 procedure TForm1.Button1Click(Sender:
TObject);
 var
 r: TRepository;
 b: boolean;
 begin
 r:= TRepository.Create(nil);
 b:= r.OpenFile('c:\eatest.eap');
 end;

Microsoft C#

Ste
p

Action

1 Select the 'Visual Studio Project | Add Reference'
menu option.

(c) Sparx Systems 2019 Page 64 of 985

User Guide - Automation 20 January, 2020

2 Click on the 'Browse' tab.

3 Navigate to the folder in which you installed
Enterprise Architect; usually:
 Program Files/Sparx Systems/EA
Select
 Interop.EA.dll

4 See the general library documentation on the use of
Classes. This example creates and opens a repository
object:
 private void button1_Click(object sender,
System.EventArgs e)
 {
 EA.Repository r = new EA.Repository();
 r.OpenFile("c:\\eatest.eap");
 }

Java

Ste
p

Action

1 Copy the file:

(c) Sparx Systems 2019 Page 65 of 985

User Guide - Automation 20 January, 2020

 SSJavaCOM.dll
from the Java API subdirectory of your installed
directory, usually:
 Program Files/Sparx Systems/EA
into any location within the Windows PATH
 windows\system32 directory.

Note: Under 64-bit operating systems, the
SSJavaCOM.dll file must be copied into
C:\Windows\SysWOW64.
Under 64-bit versions of Windows, the 'System32'
directory is for 64-bit applications, and 'SysWOW64'
is for 32-bit applications.

2 Copy the file
 eaapi.jar
from the Java API subdirectory of your installed
directory, usually:
 Program Files/Sparx Systems/EA
to a location in the Java CLASSPATH or where the
Java class loader can find it at run time.

3 All of the Classes described in the documentation are
in the Package org.sparx. See the general library
documentation for their use. This example creates
and opens a repository object:
 public void OpenRepository()

(c) Sparx Systems 2019 Page 66 of 985

User Guide - Automation 20 January, 2020

 {
 org.sparx.Repository r = new
org.sparx.Repository();
 r.OpenFile("c:\\eatest.eap");
 }

(c) Sparx Systems 2019 Page 67 of 985

User Guide - Automation 20 January, 2020

Set References In Visual Basic

It is possible to use the Enterprise Architect ActiveX
interface with Visual Basic (VB). Use is ensured for Visual
Basic version 6, but might vary slightly with versions other
than version 6.

It is assumed that you have accessed VB through a
Microsoft Application such as VB 6.0, MS Word or MS
Access. If the code is not called from within Word, the
Word VB reference must also be set.

On creating a new VB project, you set a reference to an
Enterprise Architect Type Library and a Word Type Library.

Set References

Ste
p

Action

1 Select the 'Tools | References' menu option.

2 Select the 'Enterprise Architect Object Model 2.10'
checkbox from the list.

3 Do the same for VB or VB Word: select the
checkbox for the 'Microsoft Word 10.0 Object
Library'.

(c) Sparx Systems 2019 Page 68 of 985

User Guide - Automation 20 January, 2020

4 Click on the OK button.

Notes

If 'Enterprise Architect Object Model 2.10' does not·
appear in the list, go to the command line and manually
re-enter Enterprise Architect using:
 - (To unregister Enterprise Architect) ea.exe
/unregister
 - (To register Enterprise Architect) ea.exe /register

Visual Basic 5/6 users should also note that the version·
number of the Enterprise Architect interface is stored in
the VBP project file in a form similar to this:

Reference=*\G{64FB2BF4-9EFA-11D2-8307-C4558600
0000}#2.2#0#..\..\..\..\Program Files\
 Sparx Systems\EA\EA.TLB#Enterprise Architect
Object Model 2.02
If you experience problems moving from one version of
Enterprise Architect to another, open the VBP file in a
text editor and remove this line, then open the project in
Visual Basic and use Project-References to create a new
reference to the Enterprise Architect Object model
Reference to objects in Enterprise Architect and Word
should now be available in the Object Browser, which can
be accessed from the main menu by pressing F2
The drop-down list on the top-left of the window should

(c) Sparx Systems 2019 Page 69 of 985

User Guide - Automation 20 January, 2020

now include Enterprise Architect and Word; if
MS-Project is installed, also set this up

(c) Sparx Systems 2019 Page 70 of 985

User Guide - Automation 20 January, 2020

Examples and Tips

Points to consider

Subject Points

Examples Instructions for using the interface are
provided through sample code. There are
several sets of examples:

VB 6 and C# examples are available in·

the Code Samples folder under your
Enterprise Architect installation
(default: C:\Program Files\Sparx
Systems\EA\Code Samples)
Enterprise Architect can be set up to·

call an external application
Several VB.NET code snippets are·

provided in the reference section
A comprehensive example of using·

Visual Basic to create MS Word
documentation is available from the
internet at
sparxsystems.com/resources/develop
ers/autint_vb.html
Additional samples are available from·

the Sparx Systems website; see the
Available Resources topic

(c) Sparx Systems 2019 Page 71 of 985

User Guide - Automation 20 January, 2020

Tips and
Tricks

Also note these tips and tricks:
An instance of the Enterprise Architect·

(EA.exe) process is executed when you
initialize a new repository object - this
process must remain running in order
to perform automation tasks; if the
main window is visible, you can safely
minimize it, but it must remain running
The Enterprise Architect ActiveX·

Interface is a functional interface rather
than a data interface; when you load
data through the interface there is a
noticeable delay as Enterprise Architect
user interface elements (such as
Windows and menus) are loaded and
the specified database connection is
established
Collections use a zero-based index; for·

example, Repository.Models(0)
represents the first model in the
repository
During the development of your client·

software your program might terminate
unexpectedly and leave EA.exe
running in such a state that it is unable
to support further interface calls; if
your program terminates abnormally,
ensure that Enterprise Architect is not

(c) Sparx Systems 2019 Page 72 of 985

User Guide - Automation 20 January, 2020

left running in the background (see the
Windows 'Task Manager / Process' tab)
A handle to a currently running·

instance of Enterprise Architect can be
obtained through the use of a
GetObject() call (see the reference page
for the App object); accessing your
Enterprise Architect model via the App
object enables querying the current
User Interface status, such as using
GetContextItem() on the Repository
object to detect the current selection by
the user, allowing for rapid prototyping
and testing

Enterprise
Architect Not
Closing

After all processing by an automation
controller is complete, it is recommended
to call CloseFile() and Exit() on the
Repository object, then set all references
to the repository object to null.
 repository.CloseFile();
 repository.Exit();
 repository = null;
If your automation controller was written
using the .NET framework, Enterprise
Architect does not close even after you
release all your references to it. To force
the release of the COM pointers, call the
memory management functions:

(c) Sparx Systems 2019 Page 73 of 985

User Guide - Automation 20 January, 2020

 GC.Collect();
 GC.WaitForPendingFinalizers();
There are additional concerns when
controlling a running instance of
Enterprise Architect that loads Add-Ins -
see the Tricks and Traps topic for details.

(c) Sparx Systems 2019 Page 74 of 985

User Guide - Automation 20 January, 2020

Call from Enterprise Architect

Enterprise Architect can be set up to call an external
application. You can pass parameters on the current position
selected in the Browser window to the application being
called. This helps you to:

Add a command line for an application·

Define parameters to pass to this application·

The parameters required for running the AutInt executable
are:

The Enterprise Architect file parameter $f and·

The current PackageID $p·

Hence the arguments should simply contain: $f,$p.

Once this has been set up, the application can be called from
the 'Extend' ribbon in Enterprise Architect using the 'Extend
> <YourApplication>' option.

Access

Ribbon Start > Desktop > Preferences > Other
Options > Tools

Parameters to pass information to external

(c) Sparx Systems 2019 Page 75 of 985

User Guide - Automation 20 January, 2020

applications

Parameter Description

$d Diagram ID
Notes: ID for accessing associated
diagram.

$D Diagram GUID
Notes: GUID for accessing the associated
diagram.

$e Comma separated list of element IDs
Notes: All elements selected in the
current diagram.

$E Comma separated list of element GUIDs
Notes: All elements selected in the
current diagram.

$f Project Name
Notes: For example:
C:\projects\EAexample.eap.

$F Calling Application (Enterprise
Architect)
Notes: 'Enterprise Architect'.

(c) Sparx Systems 2019 Page 76 of 985

User Guide - Automation 20 January, 2020

$p Current Package ID
Notes: For example: 144.

$P Package GUID
Notes: GUID for accessing this Package.

(c) Sparx Systems 2019 Page 77 of 985

User Guide - Automation 20 January, 2020

Available Resources

Resources

Available resources include:

Resource Download Link

VB 6 Add-In
for
generating
MS Word
documentatio
n.

sparxsystems.com/resources/developers/a
utint_vb.html

VB 6 Add-In
to display a
custom
ActiveX
graph control
within the
Enterprise
Architect
window as a
new view.

sparxsystems.com/resources/developers/a
utint_vb_custom_view.html

A basic
Add-In
framework

sparxsystems.com/bin/CS_AddinFramew
ork.zip

(c) Sparx Systems 2019 Page 78 of 985

https://sparxsystems.com/resources/developers/autint_vb.html
https://sparxsystems.com/resources/developers/autint_vb.html
https://sparxsystems.com/resources/developers/autint_vb_custom_view.html
https://sparxsystems.com/resources/developers/autint_vb_custom_view.html
https://sparxsystems.com/bin/CS_AddinFramework.zip
https://sparxsystems.com/bin/CS_AddinFramework.zip

User Guide - Automation 20 January, 2020

written in C#.
Useful as a
starting point
for authoring
your own
custom
Enterprise
Architect
Add-In.

An extension
on the
CS_AddinFra
mework
example
showing how
to export
Tagged
Values to a
.csv file.

sparxsystems.com/bin/CS_AddinTagged
CSV.zip

A basic
Add-In
skeleton
written in
Delphi.

sparxsystems.com/bin/DelphiDemo.zip

A simple
example

sparxsystems.com/bin/CS_Sample.zip

(c) Sparx Systems 2019 Page 79 of 985

https://sparxsystems.com/bin/CS_AddinTaggedCSV.zip
https://sparxsystems.com/bin/CS_AddinTaggedCSV.zip
https://sparxsystems.com/bin/DelphiDemo.zip
https://sparxsystems.com/bin/CS_Sample.zip

User Guide - Automation 20 January, 2020

Add-In
written in C#.

(c) Sparx Systems 2019 Page 80 of 985

User Guide - Automation 20 January, 2020

Reference

This section provides detailed information on all the objects
available in the object model provided by the Automation
Interface, including:

Object Groups

Group

App Object

Enumerations

Repository Package

Element Package

Element Features Package

Connector Package

Diagram Package

Project Interface Package

(c) Sparx Systems 2019 Page 81 of 985

User Guide - Automation 20 January, 2020

Document Generator Interface Package

Mail Interface Package

Code Samples

(c) Sparx Systems 2019 Page 82 of 985

User Guide - Automation 20 January, 2020

Interface Overview

This section provides an overview of the main components
of the Automation Interface.

Main Packages of Automation Interface

Package Detail

Repository
Package

Represents the model as a whole and
provides entry to model Packages and
collections.

Element
Package

Identifies the basic structural units (such
as Class, Use Case and Object).

Element
Features
Package

Identifies the attributes and operations
defined on an element.

Diagram
Package

Describes the visible drawings contained
in the model.

Connector
Package

Defines the relationships between
elements.

(c) Sparx Systems 2019 Page 83 of 985

User Guide - Automation 20 January, 2020

Packages and Contents

This diagram illustrates the main interface Packages and
their associated contents. Each UML element in this User
Guide can be created by Automation and can be accessed
either through the various collections that exist or, in some
cases, directly.

The Repository Class is the starting point for all use of the
Automation Interface. It contains the high level system
objects and entry point into the model itself using the
Models collection and the other system-level collections.

(c) Sparx Systems 2019 Page 84 of 985

User Guide - Automation 20 January, 2020

(c) Sparx Systems 2019 Page 85 of 985

User Guide - Automation 20 January, 2020

App Object

The App object represents a running instance of Enterprise
Architect. Its object provides access to the Automation
Interface.

Attributes

Attribute Type

Project Project
Notes: Read only
Provides a handle to the Project Interface.

Repository Repository
Notes: Read only
Provides a handle to the Repository
object.

Visible Boolean
Notes: Read/Write
Whether or not the application is visible.

(c) Sparx Systems 2019 Page 86 of 985

User Guide - Automation 20 January, 2020

GetObject() Support

The App object is creatable and a handle can be obtained by
creating one. In addition, clients can use the equivalent of
Visual Basic's GetObject() to obtain a reference to a
currently running instance of Enterprise Architect.

Use this method to more quickly test changes to Add-Ins
and external clients, as the Enterprise Architect application
and data files do not have to be constantly re-loaded.

For example:

 Dim App as EA.App

 Set App = GetObject(,"EA.App")

 MsgBox App.Repository.Models.Count

Another example, which uses the App object without saving
it to a variable:

 Dim Rep as EA.Repository

 Set Rep = GetObject(, "EA.App").Repository

 MsgBox Rep.ConnectionString

(c) Sparx Systems 2019 Page 87 of 985

User Guide - Automation 20 January, 2020

Enumerations

These enumerations are defined by the Automation
Interface:

Automation Interface Enumerations

Enumeration Link

Constant
Layout Styles

Constant Layout Styles

Create
Baseline Flag

Create Baseline Flag

Create Model
Type

Create Model Type

Document
Break

Document Break

Document
Page
Orientation

Document Page Orientation

Document
Type

Document Type

(c) Sparx Systems 2019 Page 88 of 985

User Guide - Automation 20 January, 2020

Enterprise
Architect
Edition
Types

Enterprise Architect Edition Types

Enumeration
Relation Set
Type

Enumeration Relation Set Type

Export
Package XMI
Flag

Export Package XMI Flag

Mail
Interface
Message Flag

Mail Interface Message Flag

MDG Menus MDG Menus

Object Type Object Type

PropType PropType

Reload Type Reload Type

Scenario
Diagram
Type

Scenario Diagram Type

(c) Sparx Systems 2019 Page 89 of 985

User Guide - Automation 20 January, 2020

Scenario Step
Type

Scenario Step Type

Scenario Test
Type

Scenario Test Type

XMI Type XMI Type

(c) Sparx Systems 2019 Page 90 of 985

User Guide - Automation 20 January, 2020

ConstLayoutStyles

The enum values defined here are used exclusively for the
'Lay Out a Diagram' method. You use these values to define
the layout options as provided by the 'Layout > Tools >
Diagram Layout ' ribbon option.

Enum Values

Value Meaning

lsCrossReduc
eAggressive

Perform aggressive Cross-reduction in
the layout process (time consuming).

lsCycleRemo
veDFS

Use the Depth First Cycle Removal
algorithm.

lsCycleRemo
veGreedy

Use the Greedy Cycle Removal
algorithm.

lsDiagramDe
fault

Use existing layout options specified for
this diagram.

lsInitializeDF
SIn

Initialize the layout using the Depth First
Search Inward algorithm.

lsInitializeNa Initialize the layout using the Naïve

(c) Sparx Systems 2019 Page 91 of 985

User Guide - Automation 20 January, 2020

ive Initialize Indices algorithm.

lsInitializeDF
SOut

Initialize the layout using the Depth First
Search Outward algorithm.

lsLayeringLo
ngestPathSin
k

Layer the diagram using the Longest Path
Sink algorithm.

lsLayeringLo
ngestPathSou
rce

Layer the diagram using the Longest Path
Source algorithm.

lsLayeringOp
timalLinkLen
gth

Layer the diagram using the Optimal
Link Length algorithm.

lsLayoutDire
ctionDown

Direct connectors to point down.

lsLayoutDire
ctionLeft

Direct connectors to point left.

lsLayoutDire
ctionRight

Direct connectors to point right.

lsLayoutDire
ctionUp

Direct connectors to point up.

(c) Sparx Systems 2019 Page 92 of 985

User Guide - Automation 20 January, 2020

lsProgramDe
fault

Use factory default layout options as
specified by Enterprise Architect.

(c) Sparx Systems 2019 Page 93 of 985

User Guide - Automation 20 January, 2020

CreateBaselineFlag

The CreateBaselineFlag enumeration is used in Baseline
Management, when creating a Baseline.

Enum Values

Value Meaning

cbSaveToStu
b

Baseline this Package with only
immediate children (child Packages are
included as stubs only).

(c) Sparx Systems 2019 Page 94 of 985

User Guide - Automation 20 January, 2020

CreateModelType

The CreateModelType enumeration is used in the
CreateModel method on the Repository Class.

Enum Values

Value Meaning

cmEAPFrom
Base

Create a copy of the EABase model file
to the specified file path.

cmEAPFrom
SQLReposito
ry

Create a .eap file shortcut to an
SQL-based repository; requires user
interaction to provide SQL connection
details.

(c) Sparx Systems 2019 Page 95 of 985

User Guide - Automation 20 January, 2020

DocumentBreak

The DocumentBreak enumeration is used in the InsertBreak
method on the DocumentGenerator Class.

Enum Values

Value Meaning

breakPage Insert a page break in the document.

breakSection Insert a section break in the document.

(c) Sparx Systems 2019 Page 96 of 985

User Guide - Automation 20 January, 2020

DocumentPageOrientation

The DocumentPageOrientation enumeration is used in the
SetPageOrientation method on the DocumentGenerator
Class.

Enum Values

Value Meaning

pagePortrait Sets the current page orientation to
Portrait.

pageLandscp
ae

Sets the current page orientation to
Landscape.

(c) Sparx Systems 2019 Page 97 of 985

User Guide - Automation 20 January, 2020

DocumentType

The DocumentType enumeration is used in the
SaveDocument method on the DocumentGenerator Class.

Enum Values

Value Meaning

dtRTF Save the document file to disk as an RTF
document.

dtHTML Save the document file to disk as a
HTML document.

dtPDF Save the document file to disk as a PDF
document.

dtDOCX Save the document file to disk as a
DOCX document.

(c) Sparx Systems 2019 Page 98 of 985

User Guide - Automation 20 January, 2020

EAEditionTypes

The EAEditionTypes enumeration identifies the current
level of licensed functionality available.

 EAEditionTypes theEdition =
theRepository.GetEAEdition();

 if (theEdition == EAEditionTypes.piProfessional)

 ...

 else if (theEdition == EAEditionTypes.piCorporate)

 ...

The enumeration defines these formal values:

piLite·

piProfessional·

piCorporate·

piBusiness·

piSystemEng·

piUltimate·

There is no separate value for the Trial Edition; the
Repository.GetEAEdition() function returns the appropriate
EAEditionTypes value for whichever edition the user has
selected to trial.

(c) Sparx Systems 2019 Page 99 of 985

User Guide - Automation 20 January, 2020

EnumRelationSetType

This enumeration represents values returned from the
GetRelationSet method of the Element object.

Enum Values

Value Meaning

rsDependEnd List of elements that depend on the
current element.

rsDependStar
t

List of elements that the current element
depends on.

rsGeneralize
End

List of elements that are generalized by
the current element.

rsGeneralize
Start

List of elements that the current element
generalizes.

rsParents List of all parent elements of the current
element.

rsRealizeEnd List of elements that are realized by the
current element.

(c) Sparx Systems 2019 Page 100 of 985

User Guide - Automation 20 January, 2020

rsRealizeStar
t

List of elements that the current element
realizes.

(c) Sparx Systems 2019 Page 101 of 985

User Guide - Automation 20 January, 2020

ExportPackageXMIFlag

The ExportPackageXMIFlag enumeration is used in
Package control, when exporting to XMI.

Enum Values

Value Meaning

epExcludeEA
Extensions

Export this Package without any tool
specific information.

epSaveToStu
b

Export this Package with only immediate
children (child Packages are included as
stubs only).

(c) Sparx Systems 2019 Page 102 of 985

User Guide - Automation 20 January, 2020

MDGMenus

Use this enumeration when providing the 'HiddenMenus'
property to MDG_GetProperty.

These options are exclusive of one another and can be read
or added to hide more than one menu.

Enum Values

Value Meaning

mgBuildProj
ect

'Hide Build Project' menu option.

mgMerge 'Hide Merge' menu option.

mgRun 'Hide Run' menu option.

(c) Sparx Systems 2019 Page 103 of 985

User Guide - Automation 20 January, 2020

MessageFlag

The MessageFlag enumeration is used in both the
SendMailMessage and ComposeMailMessage methods of
the MailInterface, to specify a flag to attach to the message.

Enum Values

Value Meaning

mfNone Do not flag the message.

mfComplete Flag the message as 'Complete'.

mfPurple Flag the message with a 'Purple' flag.

mfOrange Flag the message with an 'Orange' flag.

mfGreen Flag the message with a 'Green' flag.

mfYellow Flag the message with a 'Yellow' flag.

mfBlue Flag the message with a 'Blue' flag.

mfRed Flag the message with a 'Red' flag.

(c) Sparx Systems 2019 Page 104 of 985

User Guide - Automation 20 January, 2020

(c) Sparx Systems 2019 Page 105 of 985

User Guide - Automation 20 January, 2020

ObjectType

The ObjectType enumeration identifies Enterprise Architect
object types even when referenced through a Dispatch
interface. For example:

 var treeSelectedType =
Repository.GetTreeSelectedItemType();

 switch (treeSelectedType)

 {

 case otElement :

 {

 // Code for when an element is selected

 var theElement as EA.Element;

 theElement = Repository.GetTreeSelectedObject();

 break;

 }

 case otPackage :

 {

 // Code for when a Package is selected

 var thePackage as EA.Package;

 thePackage = Repository.GetTreeSelectedObject();

 break;

 }

 }

(c) Sparx Systems 2019 Page 106 of 985

User Guide - Automation 20 January, 2020

Valid Enumeration Values

otAttribute

otAttributeConstraint

otAttributeTag

otAuthor

otClient

otCollection

otConnector

otConnectorConstraint

otConnectorEnd

otConnectorTag

otConstraint

otCustomProperty

otDatatype

otDiagram

otDiagramLink

otDiagramObject

otEffort

otElement

otEventProperties

otEventProperty

otFile

otIssue

otMailInterface

(c) Sparx Systems 2019 Page 107 of 985

User Guide - Automation 20 January, 2020

otMethod

otMethodConstraint

otMethodTag

otMetric

otModel

otNone

otPackage

otParameter

otParamTag

otPartition

otProject

otProjectIssues

otProjectResource

otProperties

otProperty

otPropertyType

otReference

otRepository

otRequirement

otResource

otRisk

otRoleTag

otScenario

otScenarioExtension

otScenarioStep

(c) Sparx Systems 2019 Page 108 of 985

User Guide - Automation 20 January, 2020

otStereotype

otSwimlane

otSwimlaneDef

otSwimlanes

otTaggedValue

otTask

otTerm

otTest

otTransition

(c) Sparx Systems 2019 Page 109 of 985

User Guide - Automation 20 January, 2020

PropType

The PropType enumeration gives the automation
programmer an indication of what sort of data is going to be
stored by this property.

Enum Values

Value Meaning

ptArray An array containing values of any type.

ptBoolean True or False.

ptEnum A string being an entry in the semi-colon
separated list specified in the validation
field of the Property.

ptFloatingPoi
nt

4 or 8 byte floating point value.

ptInteger 16-bit or 32-bit signed integer.

ptString Unicode string.

(c) Sparx Systems 2019 Page 110 of 985

User Guide - Automation 20 January, 2020

ReloadType

The ReloadType enumeration represents values returned
from the GetReloadItem and PeekReloadItem methods of
the ModelWatcher Class. It has four possible values, which
define the type of change that was made to a model.

Enum Values

Value Meaning

rtElement The Item parameter represents a
particular element that must be reloaded.

rtEntireMode
l

Entire model must be reloaded to ensure
that all changes are reloaded.

rtNone No change in the model.

rtPackage The Item parameter represents a
particular Package that must be reloaded.

(c) Sparx Systems 2019 Page 111 of 985

User Guide - Automation 20 January, 2020

ScenarioDiagramType

The ScenarioDiagramType enumeration provides these
enumeration values to the
Project.GenerateDiagramFromScenario() method. They
specify the type of diagram to generate.

Enum Values

Value Meaning

sdActivity Generate an Activity diagram.

sdActivityWi
thAction

Generate an Activity diagram with an
Action.

sdActivityWi
thActionPin

Generate an Activity diagram with an
ActionPin.

sdActivityWi
thActivityPar
ameter

Generate an Activity diagram with an
ActivityParameter.

sdRobustness Generate a Robustness diagram.

sdRuleFlow Generate a RuleFlow diagram.

(c) Sparx Systems 2019 Page 112 of 985

User Guide - Automation 20 January, 2020

sdSequence Generate a Sequence diagram.

sdState Generate a StateMachine diagram.

(c) Sparx Systems 2019 Page 113 of 985

User Guide - Automation 20 January, 2020

ScenarioStepType

The ScenarioStepType enumeration is used to identify the
steps of a scenario, and the entity performing the step.

Enum Values

Value Meaning

stActor Identify that the step is an action
performed by an actor.

stSystem Identify that the step is an action
performed by the system.

(c) Sparx Systems 2019 Page 114 of 985

User Guide - Automation 20 January, 2020

ScenarioTestType

The ScenarioTestType enumeration provides these
enumeration values to the
Project.GenerateTestFromScenario() method, to specify the
type of test to generate.

Enum Values

Value Meaning

stHorizontalT
estSuite

Generate a horizontal Test Suite diagram.

stVerticalTes
tSuite

Generate a vertical Test Suite diagram.

stExternal Generate an external Test Case element.

stInternal Generate an internal test.

(c) Sparx Systems 2019 Page 115 of 985

User Guide - Automation 20 January, 2020

XMIType

These enumeration values are used in the
Project.ExportPackageXMI() and
Project.ExportPackageXMIEx() methods, to specify the
XMI export type.

xmiEADefault = 0·

xmiRoseDefault = 1·

xmiEA10 = 2·

xmiEA11 = 3·

xmiEA12 = 4·

xmiRose10 = 5·

xmiRose11 = 6·

xmiRose12 = 7·

xmiMOF13 = 8·

xmiMOF14 = 9·

xmiEA20 = 10·

xmiEA21 = 11·

xmiEA211 = 12·

xmiEA212 = 13·

xmiEA22 = 14·

xmiEA23 = 15·

xmiEA24 = 16·

xmiEA241 = 17·

xmiEA242 = 18·

(c) Sparx Systems 2019 Page 116 of 985

User Guide - Automation 20 January, 2020

xmiEcore = 19·

xmiBPMN20 = 20·

xmiXPDL22 = 21·

xmiEA251 = 22·

xmiARCGIS = 23·

xmiNative = 24·

(c) Sparx Systems 2019 Page 117 of 985

User Guide - Automation 20 January, 2020

Properties Tab Package

The Properties Tab Package contains:

A function to retrieve a pointer to the interface·

Functions to create or find a Properties tab·

Utility functions for modifying Properties values·

You can get a pointer to this interface using the methods
Repository.AddPropertiesTab and
Repository.GetPropertiesTab.

(c) Sparx Systems 2019 Page 118 of 985

User Guide - Automation 20 January, 2020

PropertiesTab Class

PropertiesTab Attributes

Attribute Remarks

PropertiesTab Methods

Method Remarks

AddPropertie
sTab (string
TabName,
string
PropXML)

Adds a Properties tab.
Returns TRUE if the tab was added.
Parameters:

TabName: String - The name of the·

Properties tab
PropXML: String - An XML string·

defining the values in the tab

GetLastError
()

String
Notes: Returns a string value describing
the most recent error that occurred in
relation to this object.

(c) Sparx Systems 2019 Page 119 of 985

User Guide - Automation 20 January, 2020

GetProperties
Tab (string
TabName)

Notes: Locates a Properties tab.
Returns TRUE if the tab is found.
Parameters:

TabName: String - The name of the·

Properties tab

GetProperties
XML ()

Notes: Returns the XML string of the
properties.

GetProperty
(long
PropID)

Notes: Returns a string of the Property
value.
Parameters:

PropID: long - The ID value of the·

property

RemoveProp
ertiesTab ()

Notes: Removes a Properties tab.
Returns TRUE if the tab is removed.

SetProperties
XML (string
PropXML)

Notes: Sets the Properties values in the
tab.
Returns TRUE if the properties were set
successfully.
Parameters:

PropXML: String - An XML string·

defining the values in the tab

SetProperty
(long PropID,

Notes: Returns TRUE if the value was set

(c) Sparx Systems 2019 Page 120 of 985

User Guide - Automation 20 January, 2020

string Value) successfully.
Parameters:

PropID: long - The ID value of the·

property to set
Value: String - The value to set the·

property to

(c) Sparx Systems 2019 Page 121 of 985

User Guide - Automation 20 January, 2020

Repository Package

The Repository Package contains the high level system
objects and the entry point into the model itself, using the
Models collection and the other system level collections.

This diagram shows the collections of the Repository
interface. Association Target roles correspond to member
variable names in the Repository interface. The associated
Classes represent the object type used in each collection.

(c) Sparx Systems 2019 Page 122 of 985

User Guide - Automation 20 January, 2020

Author Class

An Author object represents a named model author. Authors
can be accessed using the Repository Authors collection.

Associated table in .EAP file

 t_authors

Author Attributes

Attribute Remarks

Name String
Notes: Read/Write
The Author name.

Notes String
Notes: Read/Write
Notes about the author.

ObjectType ObjectType
Notes: Read only
Distinguishes objects referenced through

(c) Sparx Systems 2019 Page 123 of 985

User Guide - Automation 20 January, 2020

a Dispatch interface.

Roles String
Notes: Read/Write
Roles the author might play in this
project.

Author Methods

Method Remarks

GetLastError
()

String
Notes: Returns a string value describing
the most recent error that occurred in
relation to this object.

Update () Boolean
Notes: Updates the current Author object
after modification or appending a new
item.
If False is returned, check the
'GetLastError()' function for more
information.

(c) Sparx Systems 2019 Page 124 of 985

User Guide - Automation 20 January, 2020

(c) Sparx Systems 2019 Page 125 of 985

User Guide - Automation 20 January, 2020

Client Class

A Client represents one or more people or organizations
related to the project. Clients can be accessed using the
Repository Clients collection.

Associated table in .EAP file

t_clients

Client Attributes

Attribute Remarks

EMail String
Notes: Read/Write
The client's email address.

Fax String
Notes: Read/Write
The client's fax number.

Mobile String
Notes: Read/Write

(c) Sparx Systems 2019 Page 126 of 985

User Guide - Automation 20 January, 2020

The client's mobile phone number, if
available.

Name String
Notes: Read/Write
The client's name.

Notes String
Notes: Read/Write
Notes about the client.

ObjectType ObjectType
Notes: Read only
Distinguishes objects referenced through
the Dispatch interface.

Organization String
Notes: Read/Write
The client's associated organization.

Phone1 String
Notes: Read/Write
The client's main phone number.

Phone2 String
Notes: Read/Write
The client's second phone number.

(c) Sparx Systems 2019 Page 127 of 985

User Guide - Automation 20 January, 2020

Roles String
Notes: Read/Write
Roles this client might play in the project.

Client Methods

Method Remarks

GetLastError
()

String
Notes: Returns a string value describing
the most recent error that occurred in
relation to this object.

Update() Boolean
Notes: Updates the current Client object
after modification or appending a new
item.
If False is returned, check the
'GetLastError()' function for more
information.

(c) Sparx Systems 2019 Page 128 of 985

User Guide - Automation 20 January, 2020

Collection Class

Collection is the main collection Class used by all elements
within the Automation Interface. It contains methods to
iterate through the collection, refresh the collection and
delete an item from the collection.

It is important to realize that when the 'AddNew' function is
called, the item is not automatically added to the current
collection. The typical steps are:

Call AddNew to add a new item·

Modify the item as required·

Call Update on the item to save it to the database·

Call Refresh on the collection to include it in the current·

set

Delete is the same; until Refresh is called, the collection still
contains a reference to the deleted item, which should not be
called.

Each method can be used to iterate through the collection
for languages that support this type of construct.

Collection Attributes

Attribute Remarks

Count Short
Notes: Read only

(c) Sparx Systems 2019 Page 129 of 985

User Guide - Automation 20 January, 2020

The number of objects referenced by this
list.

ObjectType ObjectType
Notes: Read only
Distinguishes objects referenced through
a Dispatch interface.

Collection Methods

Method Remarks

AddNew(stri
ng Name,
string Type)

Object
Notes: Adds a new item to the current
collection.
The interface is the same for all
collections; you must provide a Name
and Type argument. What these
arguments are used for depends on the
actual collection being accessed. For
example, when adding a new element to
the Elements collection, the Type string
can be either a basic UML element type
or a fully qualified element type
(stereotype) defined by a profile, such as
SysML::Requirement, differentiating it

(c) Sparx Systems 2019 Page 130 of 985

User Guide - Automation 20 January, 2020

from a standard requirement.
Also note that you must call Update() on
the returned object to complete the
AddNew function. If Update() is not
called the object is left in an
indeterminate state.
When an error occurs an exception will
be thrown, including when the user does
not have Security permission to modify
the specify type.
Parameters:

Name: String·

Type: String (up to 30 characters long)·

Delete(short
index)

Void
Notes: Deletes the item at the selected
reference.
Parameters:

index: Short·

DeleteAt(sho
rt index,
boolean
Refresh)

Void
Notes: Deletes the item at the selected
index. The second parameter is currently
unused.
Parameters:

index: Short·

Refresh: Boolean·

(c) Sparx Systems 2019 Page 131 of 985

User Guide - Automation 20 January, 2020

GetAt(short
index)

Object
Notes: Retrieves the array object using a
numerical index. If the index is out of
bounds, an error occurs.
Parameters:

index: Short·

GetByName(
string Name)

Object
Notes: Gets an item in the current
collection by name. Supported for Model,
Package, Element, Diagram and element
TaggedValue collections.
If the collection does not contain any
items (or, for the Tagged Value
collection, if the collection contains items
but the method cannot locate an object
with the specified name) the method
returns a null value. For other collections,
if the method is unable to find an object
with the specified name, it raises an
exception.
Parameters:

Name: String·

GetLastError
()

String
Notes: Returns a string value describing
the most recent error that occurred in

(c) Sparx Systems 2019 Page 132 of 985

User Guide - Automation 20 January, 2020

relation to this object.

Refresh() Void
Notes: Refreshes the collection by
re-querying the model and reloading the
collection. Should be called after adding
a new item or after deleting an item.

Update() Boolean
Notes: Updates the current Collection
object after modification or appending a
new item.
If False is returned, check the
'GetLastError()' function for more
information.

(c) Sparx Systems 2019 Page 133 of 985

User Guide - Automation 20 January, 2020

The AddNew Function

The AddNew() function is used widely across the API to
add new objects to a Collection. In all cases you must
provide a Name and Type argument, but what these
arguments are used for depends on the actual collection
being accessed. For example, when adding a new element to
the Elements collection, the 'Type' string can be either a
basic UML element type or a fully qualified element type
(stereotype) defined by a profile, such as
SysML::Requirement differentiated from a standard
requirement.

AddNew Attribute Arguments

This table provides guidance in specifying the AddNew
arguments for each of the object attributes.

Attribute Arguments

AttributeCon
straints

Name - The name of the constraint.
Type - The constraint type

Attributes Name - The name of the attribute.
Type - The attribute type.

AttributesEx Name - The name of the attribute.
Type - The attribute type.

(c) Sparx Systems 2019 Page 134 of 985

User Guide - Automation 20 January, 2020

AttributeTags Name - The fully-qualified name, or plain
text.
Type - The value of the Tagged Value.

Authors Name - The author name.
Type - The author role.

Clients Name - The client name.
Type - The client role.

ConnectorCo
nstraints

Name - The name of the constraint.
Type - The constraint type.

ConnectorCo
nveyedItems

Name - The GUID of an element.
Type - Not used.
Note: This does not return an object.

Connectors Name - The name of the connector.
Type - The connector type (for example
'Realization').

ConnectorTa
gs

Name - The fully-qualified name, or plain
text.
Type - The value of the Tagged Value.

Constraints Name - The name of the constraint.

(c) Sparx Systems 2019 Page 135 of 985

User Guide - Automation 20 January, 2020

Type - The constraint type.

ConstraintsE
x

Name - The name of the constraint.
Type - The constraint type.

CustomPrope
rties

You cannot create these.

DataTypes Name - The datatype name.
Type - The datatype type.

DiagramLink
s

Name - Not used.
Type - The style string (such as
'l=200;r=400;t=200;b=600;')
(You might prefer to leave the Type
empty and use the Functions on this
interface for size, colors and so on).

DiagramObje
cts

Name - This can either be an empty
string, or it can specify the initial Left,
Right, Top and Bottom values for the
new DiagramObject. For example:

diagram.DiagramObjects.AddNew("l=20
0;r=400;t=200;b=600;", "")
Note: Top and Bottom values should be
specified here as positive numbers, but
will be set in the repository as negative

(c) Sparx Systems 2019 Page 136 of 985

User Guide - Automation 20 January, 2020

values.
Type - Unused.

Diagrams Name - The name of the diagram.
Type - This can be either a standard UML
metaclass type (such as 'Class' or
'UseCase') or a fully-qualified metatype
defined by an MDG Technology (such as
'BPMN2.0::BusinessProcess' or
'SysML1.4::Block').

Efforts Name - The name of the effort.
Type - The effort type.

Elements Name - The name of the new element. If
the repository has an auto-name counter
defined for the element type being
created, pass an empty string to use the
auto-name counter instead.
Type - Can be either a standard UML
metaclass type (such as 'Class' or
'UseCase') or a fully-qualified metatype
defined by an MDG Technology (such as
'BPMN2.0::BusinessProcess' or
'SysML1.4::Block').

Files Name - The full pathname of the file.
Type - The file type (such as 'Local File'

(c) Sparx Systems 2019 Page 137 of 985

User Guide - Automation 20 January, 2020

or 'Web Address').

Issues Name - The name of the issue.
Type - The problem type, (such as 'Issue'
or 'Defect')

MethodPostC
onditions

Name - The name of the constraint.
Type - The constraint type

MethodPreco
nditions

Name - The name of the constraint.
Type - The constraint type.

Methods Name - The name of the method.
Type - The return value of the method.

MethodsEx Name - The name of the method.
Type - The return value of the method.

MethodTags Name - The fully-qualified name, or plain
text.
Type - The value of the Tagged Value.

Metrics Name - The name of the metric.
Type - The metric type.

Models Name - The name of the model.
Type - Unused.

(c) Sparx Systems 2019 Page 138 of 985

User Guide - Automation 20 January, 2020

Packages Name - The name of the Package.
Type - Unused.

Parameters Name - The parameter name.
Type - The parameter type.

ParamTags Name - The fully-qualified name or plain
text.
Type - The value of the Tagged Value.

Partitions Name - The partition name.
Type - The partition note.

ProjectIssues Name - The name of the issue.
Type - The issue type (such as 'Request',
'Defect', or 'Release')

ProjectResou
rces

Name - The resource name.
Type - The resource role.

ProjectRole Name - The role name.
Type - Not used.

PropertyType
s

Name - The tag name.
Type - The description (limited to 50
characters).

(c) Sparx Systems 2019 Page 139 of 985

User Guide - Automation 20 January, 2020

Requirements Name - The name of the requirement.
Type - The requirement type.

Requirements
Ex

Name - The name of the requirement.
Type - The requirement type.

Resources Name - The resource name.
Type - The resource role.

Risks Name - The name of the risk.
Type - The risk type.

ScenarioExte
nsion

Name - The extension name.
Type - The scenario type

ScenarioStep Name - The step name.
Type - The ScenarioStep type value.

Scenarios Name - The name of the scenario.
Type - The scenario type.

Stereotypes Name - The stereotype name.
Type - The element this applies to.
Note: You can only support multiple
elements from within a Profile.

Tasks Name - The task name.

(c) Sparx Systems 2019 Page 140 of 985

User Guide - Automation 20 January, 2020

Type - The task type.

TemplateBin
dings

Name - The formal name of the binding.
Type - The actual name of the binding or
element GUID.

TemplatePara
meters

Name - The parameter name.
Type - The parameter type

Terms Name - The term name.
Type - The term type.

Tests Name - The name of the test.
Type - The test type.

Transitions Name - The transition name.
Type - The transition value.

(c) Sparx Systems 2019 Page 141 of 985

User Guide - Automation 20 January, 2020

Datatype Class

A Datatype is a named type that can be associated with
attribute or method types. It typically is related to either
code engineering or database modeling. Datatypes also
indicate which language or database system they relate to.
Datatypes can be accessed using the Repository Datatypes
collection.

Associated table in .EAP file

t_datatypes

Datatype Attributes

Attribute Remarks

DatatypeID Long
Notes: Read/Write
The instance ID for this datatype within
the current model; this is system
maintained.

DefaultLen Long
Notes: Read/Write

(c) Sparx Systems 2019 Page 142 of 985

User Guide - Automation 20 January, 2020

The default length (DDL only).

DefaultPrec Long
Notes: Read/Write
The default precision (DDL only).

DefaultScale Long
Notes: Read/Write
The default scale (DDL only).

GenericType String
Notes: Read/Write
The associated generic type for this data
type.

HasLength String
Notes: Read/Write
Indicates whether the datatype has a
length component.

MaxLen Long
Notes: Read/Write
The maximum length (DDL only).

MaxPrec Long
Notes: Read/Write
The maximum precision (DDL only).

(c) Sparx Systems 2019 Page 143 of 985

User Guide - Automation 20 January, 2020

MaxScale Long
Notes: Read/Write
The maximum scale (DDL only).

Name String
Notes: Read/Write
The datatype name (such as integer). This
appears in the related drop-down datatype
lists where appropriate.

ObjectType ObjectType
Notes: Read only
Distinguishes objects referenced through
a Dispatch interface.

Product String
Notes: Read/Write
The datatype product, such as Java, C++
or Oracle.

Size Long
Notes: Read/Write
The datatype size.

Type String
Notes: Read/Write

(c) Sparx Systems 2019 Page 144 of 985

User Guide - Automation 20 January, 2020

The type can be DDL for database
datatypes or Code for language datatypes.

UserDefined Long
Notes: Read/Write
Indicates if the datatype is a user defined
type or system generated.
Datatypes distributed with Enterprise
Architect are all system generated.
Datatypes created in the 'Datatype' dialog
are marked 1 (True).

Datatype Methods

Method Remarks

GetLastError
()

String
Notes: Returns a string value describing
the most recent error that occurred in
relation to this object.

Update() Boolean
Notes: Updates the current Datatype
object after modification or appending a
new item.

(c) Sparx Systems 2019 Page 145 of 985

User Guide - Automation 20 January, 2020

If False is returned, check the
'GetLastError()' function for more
information.

(c) Sparx Systems 2019 Page 146 of 985

User Guide - Automation 20 January, 2020

EventProperties Class

An EventProperties object is passed to BroadcastFunctions
to facilitate parameter passing.

EventProperties Attributes

Attribute Remarks

Count Long
Notes: Read only
The number of parameters being passed
to this broadcast event.

ObjectType ObjectType
Notes: Read only
Distinguishes objects referenced through
a Dispatch interface.

EventProperties Methods

Method Remarks

(c) Sparx Systems 2019 Page 147 of 985

User Guide - Automation 20 January, 2020

Get(object
Index)

EventProperty Class
Notes: Read only
Returns an EventProperty in the list,
raising an error if Index is out of range.
Parameters:

Index: Variant - can either be a number·

representing a zero-based index into
the array, or a string representing the
name of the EventProperty: for
example, Props.Get(3) or
Props.Get("ObjectID")

(c) Sparx Systems 2019 Page 148 of 985

http://www.sparxsystems.com/enterprise_architect_user_guide/15.1/automation/eventproperty.html

User Guide - Automation 20 January, 2020

EventProperty Class

EventProperty objects are always part of an EventProperties
collection, and are passed to Add-In methods responding to
broadcast events.

EventProperty Attributes

Attribute Remarks

Description String
Notes: An explanation of what this
property represents.

Name String
Notes: A string distinguishing this
property from others in the list.

ObjectType ObjectType
Notes: Distinguishes objects referenced
through a Dispatch interface.

Value Variant
Notes: A string, number or object
reference representing the property value.

(c) Sparx Systems 2019 Page 149 of 985

User Guide - Automation 20 January, 2020

(c) Sparx Systems 2019 Page 150 of 985

User Guide - Automation 20 January, 2020

ModelWatcher Class

The ModelWatcher object enables an automation client to
track changes in a particular model.

ModelWatcher Attributes

Attribute Remarks

ObjectType ObjectType
Notes: Read only
Distinguishes objects referenced through
a Dispatch interface.

ModelWatcher Methods

Methods Remarks

GetReloadIte
m (object
Item)

ReloadType
Notes: The object that must be reloaded
in order to see all changes is returned
through the Item parameter. If there are
no changes or the entire model must be
reloaded, this value is returned as null

(c) Sparx Systems 2019 Page 151 of 985

http://www.sparxsystems.com/enterprise_architect_user_guide/15.1/automation/reloadtype_enum.html

User Guide - Automation 20 January, 2020

(C#) or Nothing (VB).
Calling this method clears the records so
that the next time it is called the return
values refer only to new changes.
Returns a value from the ReloadType
enumeration that specifies which type of
change, if any, has occurred.
Parameters:

Item: Object·

PeekReloadIt
em

ReloadType
Notes: This method behaves identically
to 'GetReloadItem()' but does not clear
the change record.

Notes

After your model has been loaded, you only create the·

ModelWatcher once; if you reload the model, or load
another model, the created ModelWatcher is still valid

(c) Sparx Systems 2019 Page 152 of 985

http://www.sparxsystems.com/enterprise_architect_user_guide/15.1/automation/reloadtype_enum.html

User Guide - Automation 20 January, 2020

Package Class

A Package object corresponds to a Package element in the
Enterprise Architect Browser window. Packages can be
accessed either through the Repository Models collection (a
Model is a special form of Package) or through the Package
Packages collection.

Note that a Package has an Element object as an attribute;
this corresponds to an Enterprise Architect Package element
in the t_object table and is used to associate additional
information (such as scenarios and constraints) with the
logical Package.

To set additional information for a Package, reference the
Element object directly. Also note that if you add a Package
to a diagram, you should add an instance of the element (not
the Package itself) to the DiagramObject Class for a
diagram.

Associated table in .EAP file

t_package

Package Attributes

Attribute Remarks

(c) Sparx Systems 2019 Page 153 of 985

User Guide - Automation 20 January, 2020

Alias String
Notes: Read only
Alias

BatchLoad Long
Notes: Read/Write
Flag to indicate that the Package is batch
loaded during batch import from
controlled Packages.
Not currently used.

BatchSave Long
Notes: Read/Write
Boolean value to indicate whether the
Package is included in the batch XMI
export list or not.

CodePath String
Notes: Read/Write
The path where associated source code is
found.
Not currently used.

Connectors Collection
Notes: Read only
The collection of connectors.

(c) Sparx Systems 2019 Page 154 of 985

User Guide - Automation 20 January, 2020

Created Date
Notes: Read/Write
Date the Package was created.

Diagrams Collection
Notes: Read only
A collection of diagrams contained in this
Package.

Element Element
Notes: Read only
The associated element object; use to
get/set common information such as
Stereotype, Complexity, Alias, Author,
Constraints, Tagged Values and
Scenarios.

Elements Collection
Notes: Read only
A collection of elements that belong to
this Package.

Flags String
Notes: Read/Write
Extended information about the Package.

(c) Sparx Systems 2019 Page 155 of 985

User Guide - Automation 20 January, 2020

IsControlled Boolean
Notes: Read/Write
Indicates if the Package has been marked
as Controlled.

IsModel Boolean
Notes: Read only
Indicates if the Package is a model or a
Package.

IsNamespace Boolean
Notes: Read/Write
True indicates that 'Package is a
Namespace root'.
Use 0 and 1 to set False and True.

IsProtected Boolean
Notes: Read/Write
Indicates if the Package has been marked
as 'Protected'.

IsVersionCon
trolled

Boolean
Notes: Read only
Indicates whether or not this Package is
under Version Control.

LastLoadDat Date

(c) Sparx Systems 2019 Page 156 of 985

User Guide - Automation 20 January, 2020

e Notes: Read/Write
The date XML was last loaded for the
Package.

LastSaveDate Date
Notes: Read/Write
The date XML was last saved from the
Package.

LogXML Boolean
Notes: Read/Write
Indicates if XMI export information is to
be logged.

Modified Date
Notes: Read/Write
Date the Package was last modified.

Name String
Notes: Read/Write
The name of the Package.

Notes String
Notes: Read/Write
Notes about this Package.

ObjectType ObjectType

(c) Sparx Systems 2019 Page 157 of 985

User Guide - Automation 20 January, 2020

Notes: Read only
Distinguishes objects referenced through
a Dispatch interface.

Owner String
Notes: Read/Write.
The Package owner when using
controlled Packages.

PackageGUI
D

Variant
Notes: Read only
The global Package ID; valid across
models.

PackageID Long
Notes: Read only
The local Package ID number.
Valid only in this model file.

Packages Collection
Notes: Read only
A collection of contained Packages that
can be walked through.

ParentID Long
Notes: Read/Write
The ID of the Package that is the parent

(c) Sparx Systems 2019 Page 158 of 985

User Guide - Automation 20 January, 2020

of this one.
0 indicates that this Package is a model
(that is, it has no parent).

StereotypeEx String
Notes: Read/Write
All the applied stereotypes of the element
in a comma-separated list. Reading the
value will provide the stereotype name
only; assigning the value accepts either
fully-qualified or simple names.
When setting this attribute, LastError
(from the GetLastError method) will be
non-empty on error.

TreePos Long
Notes: Read/Write
The relative position in the tree compared
to other Packages (use to sort Packages).

TypeInfoPro
perties

Notes: Read only
Returns an interface pointer of
TypeInfoProperties.

UMLVersion String
Notes: Read/Write
The UML version for XMI export
purposes.

(c) Sparx Systems 2019 Page 159 of 985

User Guide - Automation 20 January, 2020

UseDTD Boolean
Notes: Read/Write
Indicates if a DTD is to be used when
exporting XMI.

Version String
Notes: Read/Write
The version of the Package.

XMLPath String
Notes: Read/Write
The path to which the XML is saved
when using controlled Packages.

Package Methods

Method Remarks

ApplyGroup
Lock (string
aGroupName
)

Boolean
Notes: Applies a group lock to the
Package object, for the specified group,
on behalf of the current user. User
Security applies to the use of this
function; if the user does not have

(c) Sparx Systems 2019 Page 160 of 985

User Guide - Automation 20 January, 2020

permission to apply or release locks on
elements, diagrams and Packages, the
operation will fail.
Returns True if the operation is
successful; returns False if the operation
is unsuccessful. Use GetLastError() to
retrieve error information.
Parameters:

aGroupName: String - The name of the·

security group for which to apply the
lock

ApplyGroup
LockRecursi
ve (string
aGroupName
, boolean
IncludeEleme
nts, boolean
IncludeDiagr
ams, boolean
IncludeSubPa
ckages)

Boolean
Notes: Applies a group lock to the
Package object, object, and all of the
Package, diagrams and elements
contained within that Package, for the
specified group, on behalf of the current
user. User Security applies to the use of
this function; if the user does not have
permission to apply or release locks on
elements, diagrams and Packages, the
operation will fail.
Returns True if the operation is
successful; returns False if the operation
is unsuccessful. Use 'GetLastError()' to
retrieve error information.
Parameters

(c) Sparx Systems 2019 Page 161 of 985

User Guide - Automation 20 January, 2020

aGroupName: String - The name of the·

security group for which to apply the
lock
IncludeElements: Boolean -·

Recursively apply group lock to child
elements
IncludeDiagrams: Boolean -·

Recursively apply group lock to child
diagrams
IncludeSubPackages: Boolean -·

Recursively apply group lock to child
Packages

ApplyUserLo
ck ()

Boolean
Notes: Applies a user lock to the Package
object for the current user. User Security
applies to the use of this function; if the
user does not have permission to apply or
release locks on elements, diagrams and
Packages, the operation will fail.
Returns True if the operation is
successful; returns False if the operation
is unsuccessful. Use 'GetLastError()' to
retrieve error information.

ApplyUserLo
ckRecursive
(boolean
IncludeEleme

Boolean
Notes: Applies user locks to the Package
object, and all of the Packages, diagrams
and elements contained within that

(c) Sparx Systems 2019 Page 162 of 985

User Guide - Automation 20 January, 2020

nts,
boolean
IncludeDiagr
ams,
boolean
IncludeSubPa
ckages)

Package. User Security applies to the use
of this function; if the user does not have
permission to apply or release locks on
elements, diagrams and Packages, the
operation will fail.
Returns True if the operation is
successful; returns False if the operation
is unsuccessful. Use GetLastError() to
retrieve error information.
Parameters

IncludeElements: Boolean -·

Recursively apply user lock to child
elements
IncludeDiagrams: Boolean -·

Recursively apply user lock to child
diagrams
IncludeSubPackages: Boolean -·

Recursively apply user lock to child
Packages

Clone LDISPATCH
Notes: Inserts a copy of the Package into
the same parent as the original Package.
Returns the newly-created Package.

FindObject
(string
DottedID)

LPDISPATCH
Notes: Returns a Package, element,
attribute or operation matching the

(c) Sparx Systems 2019 Page 163 of 985

User Guide - Automation 20 January, 2020

parameter DottedID.
If the DottedID is not found, an error is
returned: Can't find matching object.
Parameters

DottedID: String - Is in the form·

'object.object.object' where object is
replaced by the name of a Package,
element attribute or operation;
examples include
MyNamespace.Class1,
CStudent.m_Name,
MathClass.DoubleIt(int)

GetLastError
()

String
Notes: Returns a string value describing
the most recent error that occurred in
relation to this object.

ReleaseUser
Lock ()

Boolean
Notes: Releases user locks and group
locks from the Package object, and all of
the Packages, diagrams and elements
contained within that Package. User
Security applies to the use of this
function; if the user does not have
permission to apply or release locks on
elements, diagrams and Packages, the
operation will fail.
Returns True if the operation is

(c) Sparx Systems 2019 Page 164 of 985

User Guide - Automation 20 January, 2020

successful; returns False if the operation
is unsuccessful. Use GetLastError() to
retrieve error information.

ReleaseUser
LockRecursi
ve (boolean
IncludeEleme
nts,
boolean
IncludeDiagr
ams,
boolean
IncludeSubPa
ckages)

Boolean
Notes: Releases user locks from the
Package object, and all of the Packages,
diagrams and elements contained within
that Package. User Security applies to the
use of this function; if the user does not
have permission to apply or release locks
on elements, diagrams and Packages, the
operation will fail.
Returns True if the operation is
successful; returns False if the operation
is unsuccessful. Use GetLastError() to
retrieve error information.
Parameters
IncludeElements: Boolean - Recursively
release user locks from child elements
IncludeDiagrams: Boolean - Recursively
release user locks from child diagrams
IncludeSubPackages: Boolean -
Recursively release user locks from child
Packages

SetReadOnly
(boolean
ReadOnly,

Void
Notes: Sets a Package Flag to mark a

(c) Sparx Systems 2019 Page 165 of 985

User Guide - Automation 20 January, 2020

boolean
IncludeSubP
kgs)

Package as ReadOnly=1.
If Project Security is enabled, the user
must have 'Configure Packages'
permission to use this method.
Throws an exception if the operation fails
due to the user not having 'Configure
Packages' permission; use
'GetLastError()' to retrieve error
information.
Parameters

ReadOnly: Boolean - Sets or clears the·

Read Only flag on the Package(s); if:
 False, any Read Only
flag is removed from the Package
 True, a Read Only flag
is applied to the Package

IncludeSubPkgs: Boolean - Indicates·

whether to set/reset the Read Only flag
on just the object Package, or on the
object Package and all of the nested
sub-Packages that it contains; if:

 False, only the flag on
the object Package is set or cleared
 True, flags are set (or
cleared, according to the ReadOnly
parameter) for the object Package plus all
of the nested sub-Packages that it
contains

(c) Sparx Systems 2019 Page 166 of 985

User Guide - Automation 20 January, 2020

When working with Version Controlled
Packages, the Read Only flag can be
applied to Packages whether they are
checked-in or checked-out.
User Security applies to setting this flag -
if you are prevented from editing the
Package, you are also prevented from
setting the flag.

Update () Boolean
Notes: Updates the current Package
object after modification or appending a
new item.
If False is returned, check the
'GetLastError()' function for more
information.
Note that a Package object also has an
element component that must be taken
into account; the Package object contains
information about the Package attributes
such as hierarchy or contents.
The element attribute contains
information about, for example,
Stereotypes, Constraints or Files - all the
attributes of a typical element.

VersionContr
olAdd (string
ConfigGuid,

Void
Notes: Places the Package under Version
Control, using the specified Version

(c) Sparx Systems 2019 Page 167 of 985

User Guide - Automation 20 January, 2020

string
XMLFile,
string
Comment,
boolean
KeepChecke
dOut)

Control Configuration and the specified
XMI filename.
Throws an exception if the operation
fails; use GetLastError() to retrieve error
information.
It is recommended that the Package be
saved using Update() before calling
VersionControlAdd(), so that any
outstanding changes are not lost.
Parameters

ConfigGuid: String - Name·

corresponding to the Unique ID of the
Version Control configuration to use
XMLFile: String - Name of the XML·

file to use for this Package; this
filename is relative to the Working
Copy folder specified for the Config
Comment: String - Log message that is·

added to the Version Controlled file's
history (where applicable)
KeepCheckedOut: Boolean - Specify·

True to add to Version Control and
keep the Package checked-out

VersionContr
olCheckin
(string
Comment)

Void
Notes: Perform checkin of the Version
Controlled Package (also see
VersionControlCheckinEx).

(c) Sparx Systems 2019 Page 168 of 985

User Guide - Automation 20 January, 2020

Throws an exception if the operation
fails; use GetLastError() to retrieve error
information.
Parameters

Comment: String - Log message that is·

added to the Version Controlled file's
history (where applicable)

VersionContr
olCheckinEx
(string
Comment,
boolean
PreserveCros
sPkgRefs)

Void
Notes: Perform check-in of the Version
Controlled Package.
Throws an exception if the operation
fails; use GetLastError() to retrieve error
information.
Parameters

Comment: String - Log message that is·

added to the Version Controlled file's
history (where applicable)
PreserveCrossPkgRefs: Boolean - Flag·

to indicate whether to preserve or
discard pre-existing Cross Package
References when checking-in; this
parameter overrides the setting in the
'Preferences' dialog, 'XML
Specifications' page
Unsatisfied cross-Package references
are preserved or discarded according to
this setting, without prompting the

(c) Sparx Systems 2019 Page 169 of 985

User Guide - Automation 20 January, 2020

user; see Learn more

VersionContr
olCheckout
(string
Comment)

Void
Notes: Perform checkout of the Version
Controlled Package.
Throws an exception if the operation
fails; use GetLastError() to retrieve error
information.
Parameters:

Comment: String - Log message that is·

added to the Version Controlled file's
history (where applicable)

When working in an environment that
uses a Private Model deployment and
your model contains a significant number
of cross-Package references, it is
recommended that you invoke the
Repository.ScanXMIAndReconcile()
method from time to time, following the
re-importation of controlled Packages -
for example, after using
Package.VersionControlGetLatest() to
update a number of Packages, or after
performing a number of Package
check-outs.

VersionContr
olGetLatest
(boolean

Void
Notes: Updates the local working copy of
the Package file associated with the

(c) Sparx Systems 2019 Page 170 of 985

User Guide - Automation 20 January, 2020

ForceImport) object Package, before re-importing the
Package data from the Package file.
Parameters:

ForceImport: Boolean - Used if the·

Package data in the model is found to
be up-to-date with respect to the
Version Controlled Package file; if:
 - False, the Package data that exists
in the model is accepted as being
up-to-date and no
 attempt is made to re-import data
from the Package file
 - True, the system re-imports the
Package from the Package file
regardless

See also the menu option 'Version
Control | Get Latest'.
When working in an environment that
uses a Private Model deployment and
your model contains a significant number
of cross-Package references, it is
recommended that you invoke the
'Repository.ScanXMIAndReconcile()'
method from time to time, following the
re-importation of controlled Packages -
for example, after using
'Package.VersionControlGetLatest()' to
update a number of Packages, or after
performing a number of Package

(c) Sparx Systems 2019 Page 171 of 985

User Guide - Automation 20 January, 2020

check-outs.

VersionContr
olGetStatus
()

Long
Notes: Returns the Version Control status
of the Package, as recorded in the current
project database.
Throws an exception if the operation
fails; use GetLastError() to retrieve error
information.
Return value maps to this enumerated
type:
 enum EnumCheckOutStatus
 {
 csUncontrolled = 0,
 csCheckedIn,
 csCheckedOutToThisUser,
 csReadOnlyVersion,
 csCheckedOutToAnotherUser,
 csOfflineCheckedIn,
 csCheckedOutOfflineByUser,
 csCheckedOutOfflineByOther,
 csDeleted,
 };

csUncontrolled - Either unable to·

communicate with the Version Control
provider associated with the Package,
or the Package file is unknown to the

(c) Sparx Systems 2019 Page 172 of 985

User Guide - Automation 20 January, 2020

provider
csCheckedIn - The Package is not·

checked-out to anybody in the current
project database
csCheckedOutToThisUser - The·

Package is marked as checked-out to
the current user, in the current project
database
csReadOnlyVersion - The Package is·

marked as read-only; an earlier revision
of the Packagehas been retrieved from
Version Control
csCheckedOutToAnotherUser - The·

Package is marked as checked-out in
the current project database, by a user
other than the current user
csOfflineCheckedIn - The Package is·

not checked-out to anybody in the
current project database; however, the
Version Control configuration
associated with the Package was unable
to connect to the VC server
csCheckedOutOfflineByUser - The·

Package was 'checked out' in this
database, by this user, whilst
disconnected from Version Control
csCheckedOutOfflineByOther - The·

Package was checked out in this project
database, by another user, whilst

(c) Sparx Systems 2019 Page 173 of 985

User Guide - Automation 20 January, 2020

disconnected from Version Control
csDeleted - The Package file has been·

deleted from Version Control

VersionContr
olPutLatest
(string
CheckInCom
ment)

Void
Notes: Perform a checkin of the Version
Controlled Package, whilst keeping the
Package checked-out.
Throws an exception if the operation
fails; use GetLastError() to retrieve error
information.
When a Package that was previously
marked as Checked Out Offline, is
successfully 'Put' (checkedin) to Version
Control, that Package's flags are updated
to clear the Checked Out Offline
indicator.
Parameters:

Comment: String - Log message added·

to the Version Controlled file's history
(where applicable)

VersionContr
olRemove ()

Void
Notes: Removes Version Control from
the Package.
Throws an exception if the operation
fails; use 'GetLastError()' to retrieve error
information.

(c) Sparx Systems 2019 Page 174 of 985

User Guide - Automation 20 January, 2020

VersionContr
olResynchPk
gStatus
(boolean
ClearSettings
)

Notes: Synchronizes the Version Control
status of the single object Package
recorded in your current model with the
Package status reported by your Version
Control provider.
Parameters:

ClearSettings: Boolean - used if the·

Package file associated with the
specified Package is reported by the
Version Control provider as
uncontrolled; if ClearSettings is:

 True, the Version
Control settings are cleared from the
Package
 False, the Version
Control settings remain unchanged

(c) Sparx Systems 2019 Page 175 of 985

User Guide - Automation 20 January, 2020

ProjectIssues Class

A ProjectIssue is a system-level Issue that indicates a
problem or risk associated with the system as a whole.
ProjectIssues can be accessed using the Repository Issues
collection.

Associated table in .EAP file

t_issues

ProjectIssues Attributes

Attribute Remarks

Category String
Notes: Read/Write
The category this issue belongs to.

Date Date
Notes: Read/Write
The date the issue item was created.

DateResolve
d

Date

(c) Sparx Systems 2019 Page 176 of 985

User Guide - Automation 20 January, 2020

Notes: Read/Write
The date the issue was resolved.

Name String
Notes: Read/Write
The issue name (that is, the issue itself).

IssueID Long
Notes: Read only
The ID of this issue.

Notes String
Notes: Read/Write
The associated description of the issue.

ObjectType ObjectType
Notes: Read only
Distinguishes objects referenced through
a Dispatch interface.

Owner String
Notes: Read/Write
The owner of the issue.

Priority String
Notes: Read/Write
The issue priority - Low, Medium or

(c) Sparx Systems 2019 Page 177 of 985

User Guide - Automation 20 January, 2020

High.

Resolution String
Notes: Read/Write
A description of the resolution.

Resolver String
Notes: Read/Write
The name of the person resolving the
issue.

Severity String
Notes: Read/Write
The issue severity - Low, Medium or
High.

Status String
Notes: Read/Write
The current status of the issue.

ProjectIssues Methods

Method Remarks

(c) Sparx Systems 2019 Page 178 of 985

User Guide - Automation 20 January, 2020

GetLastError
()

String
Notes: Returns a string value describing
the most recent error that occurred in
relation to this object.

Update() Boolean
Notes: Updates the current Issue object
after modification or appending a new
item.
If False is returned, check the
'GetLastError()' function for more
information.

(c) Sparx Systems 2019 Page 179 of 985

User Guide - Automation 20 January, 2020

ProjectResource Class

A Project Resource is a named person who is available to
work on the current project in any capacity.
ProjectResources can be accessed using the Repository
Resources collection.

Associated table in .EAP file

t_resources

ProjectResource Attributes

Attribute Remarks

Email String
Notes: The resource's email address.

Fax String
Notes: The resource's fax number.

Mobile Variant
Notes: The resource's mobile number, if
available.

(c) Sparx Systems 2019 Page 180 of 985

User Guide - Automation 20 January, 2020

Name String
Notes: The name of the resource.

Notes String
Notes: A description of the resource, if
appropriate.

ObjectType ObjectType
Notes: Read only
Distinguishes objects referenced through
a Dispatch interface.

Organization Package Class: String
Notes: The organization the resource is
associated with.

Phone1 Variant
Notes: The resource's main telephone
number.

Phone2 Variant
Notes: The resource's alternative
telephone number.

Roles String
Notes: The roles this resource can play in
the current project.

(c) Sparx Systems 2019 Page 181 of 985

http://www.sparxsystems.com/enterprise_architect_user_guide/15.1/automation/package_2.html

User Guide - Automation 20 January, 2020

ProjectResource Methods

Method Remarks

GetLastError
()

String
Notes: Returns a string value describing
the most recent error that occurred in
relation to this object.

Update() Boolean
Notes: Updates the current Resource
object after modification or appending a
new item.
If False is returned, check the
'GetLastError()' function for more
information.

(c) Sparx Systems 2019 Page 182 of 985

User Guide - Automation 20 January, 2020

ProjectRole Class

A ProjectRole object represents a named project role.
ProjectRoles can be accessed using the Repository
ProjectRole collection.

Associated table in .EAP file

t_projectroles

ProjectRole Attributes

Attribute Remarks

Description String
Notes: Read/Write
The project role item description.

Notes String
Notes: Read/Write
Notes about the project role item.

ObjectType ObjectType
Notes: Read only

(c) Sparx Systems 2019 Page 183 of 985

User Guide - Automation 20 January, 2020

Distinguishes objects referenced through
a Dispatch interface.

Role String
Notes: Read/Write
The project role item name.

ProjectRole Methods

Method Remarks

GetLastError
()

String
Notes: Returns a string value describing
the most recent error that occurred in
relation to this object.

Update() Boolean
Notes: Updates the current ProjectRole
object after modification or appending a
new item.
If False is returned, check the
'GetLastError()' function for more
information.

(c) Sparx Systems 2019 Page 184 of 985

User Guide - Automation 20 January, 2020

(c) Sparx Systems 2019 Page 185 of 985

User Guide - Automation 20 January, 2020

PropertyType Class

A PropertyType object represents a defined property that
can be applied to UML elements as a Tagged Value.
PropertyTypes can be accessed using the Repository
PropertyTypes collection.

Each PropertyType corresponds to one of the predefined
Tagged Values for the model.

Associated table in .EAP file

t_propertytypes

PropertyType Attributes

Attribute Remarks

Description String
Notes: Read/Write
A short description of the property.

Detail String
Notes: Read/Write
Configuration information for the
property.

(c) Sparx Systems 2019 Page 186 of 985

User Guide - Automation 20 January, 2020

ObjectType ObjectType
Notes: Read only
Distinguishes objects referenced through
a Dispatch interface.

Tag String
Notes: Read/Write
The name of the property (Tag Name).

PropertyType Methods:

Method Remarks

GetLastError
()

String
Notes: Returns a string value describing
the most recent error that occurred in
relation to this object.

Update() Boolean
Notes: Updates the current PropertyType
object after modification or appending a
new item.
If False is returned, check the
'GetLastError()' function for more

(c) Sparx Systems 2019 Page 187 of 985

User Guide - Automation 20 January, 2020

information.

(c) Sparx Systems 2019 Page 188 of 985

User Guide - Automation 20 January, 2020

Reference Class

This Interface provides access to the various lookup tables
within Enterprise Architect. Use the Repository
GetReferenceList() method to get a handle to a list.

Valid lists are:

Diagram·

Element·

Constraint·

Requirement·

Connector·

Status·

Cardinality·

Effort·

Metric·

Scenario·

Status·

Test·

List:DifficultyType·

List:PriorityType·

List:TestStatusType·

List:ConstStatusType·

Reference Attributes

(c) Sparx Systems 2019 Page 189 of 985

User Guide - Automation 20 January, 2020

Attribute Remarks

Count Short
Notes: A count of items in the list.

ObjectType ObjectType
Notes: Read only
Distinguishes objects referenced through
a Dispatch interface.

Type String
Notes: The list type (for example,
DiagramTypes).

Reference Methods

Method Remarks

GetAt(short
Index)

String
Notes: Get the item at the specified index.
Parameters:

Index: Short - The index of the item to·

retrieve from the list

(c) Sparx Systems 2019 Page 190 of 985

User Guide - Automation 20 January, 2020

GetLastError
()

String
Notes: Returns a string value describing
the most recent error that occurred in
relation to this object.

Refresh() Short
Notes: Refresh the current list and return
the count of items.

(c) Sparx Systems 2019 Page 191 of 985

User Guide - Automation 20 January, 2020

Repository Class

The Repository is the main container of all structures such
as models, Packages and elements. You can begin accessing
the model iteratively using the Models collection. The
Repository also has some convenient methods to directly
access the structures without having to locate them in the
hierarchy first.

Associated table in .EAP file

<none>

Repository Attributes

Attribute Remarks

Authors Collection
Notes: Read only
This is the system Authors collection
containing 0 or more Author objects,
each of which can be associated with, for
example, elements or diagrams as the
item author or owner.
Use AddNew(), Delete() and GetAt() to

(c) Sparx Systems 2019 Page 192 of 985

User Guide - Automation 20 January, 2020

manage Authors.

BatchAppend Boolean
Notes: Read/Write
Set this property to True when your
automation client has to rapidly insert
many elements, operations, attributes
and/or operation parameters.
Set to False when work is complete.
This can result in 10- to 20-fold
improvement in adding new elements in
bulk.

Clients Collection
Notes: Read only
A list of Clients associated with the
project. You can modify, delete and add
new Client objects using this collection.

ConnectionSt
ring

String
Notes: Read only
The filename/connection string of the
current Repository.
For a connection string, the DBMS
repository type is identified by
"DBType=n;" where n is a number
corresponding to the DBMS type, as
shown:

(c) Sparx Systems 2019 Page 193 of 985

User Guide - Automation 20 January, 2020

0 - MYSQL
1 - SQLSVR
2 - ADOJET
3 - ORACLE
4 - POSTGRES
5 - ASA
8 - ACCESS2007
9 - FIREBIRD

CurrentSelect
ion

Notes: Read only
Provides information on what is selected,
and in what location without making any
requests to the database.

DataMinerM
anager

Data Miner object

Notes: Returns a pointer to the
EA.DataMinerManager interface.

Datatypes Collection
Notes: Read only
The Datatypes collection. This contains a
list of Datatype objects, each representing
a data type definition for either data
modeling or code generation purposes.

EAEdition EAEditionTypes

(c) Sparx Systems 2019 Page 194 of 985

User Guide - Automation 20 January, 2020

Notes: Read only
Returns the current level of core licensed
functionality available.
This property returns Corporate when
the edition is Unified or Ultimate.
Use 'EAEditionEx' to identify which of
these extended editions is available.

EAEditionEx EAEditionTypes
Notes: Read only
Returns the current level of extended
licensed functionality available (Unified
or Ultimate).

EnableCache Boolean
Notes: Read/Write
An optimization for pre-loading Package
objects when dealing with large sets of
automation objects.

EnableUIUpd
ates

Boolean
Notes: Read/Write
Set this property to False to improve the
performance of changes to the model; for
example, bulk addition of elements to a
Package. To reveal changes to the user,
call 'Repository.RefreshModelView()'.

(c) Sparx Systems 2019 Page 195 of 985

User Guide - Automation 20 January, 2020

FlagUpdate Boolean
Notes: Read/Write
Instructs Enterprise Architect to update
the Repository with the LastUpdate
value.

InstanceGUI
D

String
Notes: Read only
The identifier string identifying the
Enterprise Architect runtime session.

IsSecurityEn
abled

Boolean
Notes: Read only
Indicates whether User Security is
enabled for the current repository.

Issues Collection
Notes: Read only
The System Issues list. Contains
ProjectIssues objects, each detailing a
particular issue as it relates to the project
as a whole.

LastUpdate String
Notes: Read only
The identifier string identifying the
Enterprise Architect runtime session and

(c) Sparx Systems 2019 Page 196 of 985

User Guide - Automation 20 January, 2020

the timestamp for when it was set.

LibraryVersi
on

Long
Notes: Read only
The build number of the Enterprise
Architect runtime.

Models Collection of type Package
Notes: Read only
Models are of type Package and belong to
a collection of Packages. This is the top
level entry point to an Enterprise
Architect project file. Each model is a
root node in the Browser window and can
contain items such as Views and
Packages.
A model is a special form of a Package; it
has a ParentID of 0. By iterating through
all models, you can access all the
elements within the project hierarchy.
You can also use the AddNew() function
to create a new model. A model can be
deleted, but remember that everything
contained in the model is deleted as well.

ObjectType ObjectType
Notes: Read only
Distinguishes objects referenced through

(c) Sparx Systems 2019 Page 197 of 985

User Guide - Automation 20 January, 2020

the Dispatch interface.

ProjectGUID String
Notes: Read only
Returns the unique ID for the project.

ProjectRoles Collection
Notes: Read only
The system Roles collection containing 0
or more Role objects, each of which can
be associated with, for example, elements
or diagrams as the item author or owner.
Use AddNew(), Delete() and GetAt() to
manage Roles.

PropertyType
s

Collection
Notes: Read only
Collection of Property Types available to
the Repository.

Resources Collection
Notes: Read only
Contains available ProjectResource
objects to assign to work items within the
project.
Use the 'Add New()', 'Modify()' and
'Delete()' functions to manage resources.

(c) Sparx Systems 2019 Page 198 of 985

User Guide - Automation 20 January, 2020

SearchWindo
w

Notes: Read only
Returns a reference to the Enterprise
Architect Search Window.

SecurityUser Notes: Read only
Provides information about the currently
logged in security user.

Stereotypes Collection
Notes: Read only
The Stereotype collection. A list of
Stereotype objects that contain
information on a stereotype and the
elements it can be applied to.

SuppressEA
Dialogs

Boolean
Notes: Read/Write
Set this property in the
EA_OnPostNewElement broadcast event
to control whether Enterprise Architect
should suppress showing the default
'Properties' dialog to the user when an
element is created.

SuppressSecu
rityDialog

Boolean
Notes: Read/Write
Suppress the login prompt dialog that
appears by default when username and

(c) Sparx Systems 2019 Page 199 of 985

User Guide - Automation 20 January, 2020

password parameters passed to OpenFile2
are invalid. For use by external
automation clients only.

Tasks Collection
Notes: Read only
A list of system tasks (to do list). Each
entry is a Task Item; you can modify,
delete and add new tasks.

Terms Collection
Notes: Read only
The Project Glossary Terms. Each Term
object is an entry in the Glossary. Add,
modify and delete Terms to maintain the
Glossary.

Repository Methods

Method Remarks

ActivateDiag
ram (long
DiagramID)

Notes: Activates an already open diagram
(that is, makes it the active tab) in the
main Enterprise Architect user interface.
Parameters:

(c) Sparx Systems 2019 Page 200 of 985

User Guide - Automation 20 January, 2020

DiagramID: Long - the ID of the·

diagram to make active

ActivatePers
pective
(string long)

Boolean
Notes: Deprecated - no longer in use.

ActivateTab
(string
Name)

Notes: Activates an open Enterprise
Architect tabbed view.
Parameters:

Name: String - the name of the view to·

activate

ActivateTech
nology
(string
TechnologyI
D)

Notes: Activates an enabled MDG
Technology.
Parameters:

TechnologyID: String - the ID of the·

Technology to activate, as assigned in
the MDG Technology Wizard

ActivateTool
box (string
Toolbox,
long Options)

Boolean
Notes: Activates a Toolbox page in the
GUI.
The returned value is reserved for future
use.
Parameters:

Toolbox: String - the name of the·

Toolbox page to activate

(c) Sparx Systems 2019 Page 201 of 985

User Guide - Automation 20 January, 2020

Options: Long - reserved for future use·

AddDefinedS
earches
(string
sXML)

Notes: Used to enter a set of defined
searches that last in Enterprise Architect
for the life of the application; when
Enterprise Architect loads again they
must be inserted again by your Add-In.
Parameters:

sXML: String - the XML of the defined·

searches; you can get this XML by
performing an export of the searches
from the 'Manage Searches' dialog in
Enterprise Architect

AddDocume
ntationPath
(string Name,
string Path,
long Type)

Notes: Provides an Add-In with the
ability to insert a book path into the
Enterprise Architect installation
directory, to display Learning Center
pages on user-authored subjects (such as
use of the Add-In).
Parameters:

Name: String - the top-level (root)·

name for the Learning Center
documentation hierarchy for the
Add-In (for example, Enterprise
Architect)
Path: String - the directory path to the·

folder to contain the Learning Center
documentation structure (for example,

(c) Sparx Systems 2019 Page 202 of 985

User Guide - Automation 20 January, 2020

C:\Program Files (86)\Sparx
Systems\EA\Books
Type: Long - reserved for future use;·

set to 0

AddPerspecti
ve (string
Perspective,
long Options)

Boolean
Notes: Deprecated - no longer in use.

AddPropertie
sTab (string
TabName,
string
PropXML)

Notes: Create a Properties tab.
Returns a PropertiesTab interface if a tab
was created successfully, otherwise
NULL.
Parameters:

TabName: String - Name of the·

Properties tab
PropXML: String - An XML string·

defining the values in the tab

Example XML string.
<?xml version='1.0'?>
<properties>
 <group name='theGroup1'>
 <property id='1' type='text' default=''
readonly='false' >
 <name>TestText</name>

(c) Sparx Systems 2019 Page 203 of 985

User Guide - Automation 20 January, 2020

 <description>this has
id=1</description>
 </property>
 <property id='2' type='combobox'
default='' readonly='false' >
 <name>TestCombo</name>
 <value>Two</value>
 <description>this has
id=2</description>
 <valuelist>
 <item>One</item>
 <item>Two</item>
 <item>Three</item>
 </valuelist>
 </property>
 <property id='3' type='date'
default='currentdate'
showcheckbox='false' readonly='false' >
 <name>TestDate</name>
 <value></value>
 <description>this has
id=3</description>
 </property>
 <property id='4' type='checkbox'
default='true' readonly='false' >
 <name>TestCheckbox</name>

(c) Sparx Systems 2019 Page 204 of 985

User Guide - Automation 20 January, 2020

 <description>this has
id=4</description>
 </property>
 <property id='5' type='spin' default='1'
min='0' max='100' readonly='false' >
 <name>TestSpin</name>
 <value>7</value>
 <description>this has
id=5</description>
 </property>
 <property id='6' type='int' default='1'
readonly='false' >
 <name>TestInt</name>
 <value>100</value>
 <description>this has
id=6</description>
 </property>
 <property id='7' type='double'
default='1' readonly='false' >
 <name>TestDouble</name>
 <value>3.333</value>
 <description>this has
id=7</description>
 </property>
 <property id='8' type='memo' default=''
readonly='false' >

(c) Sparx Systems 2019 Page 205 of 985

User Guide - Automation 20 January, 2020

 <name>TestMemo</name>
 <value></value>
 <description>this has
id=8</description>
 </property>
 </group>
 <group name='theGroup2'>
 <property id='22' type='text' default=''
readonly='false' >
 <name>Test1</name>
 <value></value>
 <description>this has
id=22</description>
 <valuelist>
 <item></item>
 </valuelist>
 </property>
 </group>
</properties>

AddTab
(string
TabName,
string
ControlID)

activeX custom control
Notes: Adds an ActiveX custom control
as a tabbed window. Enterprise Architect
creates a control and, if successful,
returns its Unknown pointer, which can
be used by the caller to manipulate the
control.

(c) Sparx Systems 2019 Page 206 of 985

User Guide - Automation 20 January, 2020

Parameters:
TabName: String - used as the tab·

caption
ControlID: String - the ProgID of the·

control; for example,
"CS_AddinFramework.UserControl1"

AddWindow
(string
WindowNam
e, string
ControlID)

activeX custom control
Notes: Adds an ActiveX custom control
as a window to the Add-Ins docked
window. Enterprise Architect creates a
control and, if successful, returns its
Unknown pointer, which can be used by
the caller to manipulate the control.
Parameters:

WindowName: String - used as the·

window title
ControlID: String - the ProgID of the·

control; for example,
"CS_AddinFramework.UserControl1"

AdviseConne
ctorChange
(long
ConnectorID)

Notes: Provides an Add-In or automation
client with the ability to advise the
Enterprise Architect user interface that a
particular connector has changed and, if it
is visible in any open diagram, to reload
and refresh that connector for the user.
Parameters:

(c) Sparx Systems 2019 Page 207 of 985

User Guide - Automation 20 January, 2020

ConnectorID: Long - the ID of the·

connector

AdviseEleme
ntChange
(long
ObjectID)

Notes: Provides an Add-In or automation
client with the ability to advise the
Enterprise Architect user interface that a
particular element has changed and, if it
is visible in any open diagram, to reload
and refresh that element for the user.
Parameters:

ObjectID: Long - the ID of the element·

CallSBPI
(string
sbpiPrefix,
string
Method,
string
packedParam
eters)

Notes: Returns a JSON string with the
result from the external server.
Parameters:

sbpiPrefix: String - Prefix value of the·

external server
Method: String - Name of the function·

to call on the external server
packedParameters: String - The JOSN·

string to append the Name/Value to;
cannot be empty

ChangeLogin
User (string
Name, string
Password)

Boolean
Notes: Sets the currently logged on user
to be the one specified by a name and
password; this logs the user into the
repository when security is enabled.

(c) Sparx Systems 2019 Page 208 of 985

User Guide - Automation 20 January, 2020

If security is not enabled an exception
(Security not enabled) is thrown.
Parameters:

Name: String - the name of the user·

Password: String - the password of the·

user

ClearAuditLo
gs (Object
StartDateTim
e, Object
EndDateTim
e)

Boolean
Notes: Clears all Audit Logs from the
model.
If StartDateTime and EndDateTime are
not null then only log items that fall into
this period are cleared.
Returns True for success, False for
failure.

This method cannot be undone; it is·

strongly advised that you call
'SaveAuditLogs' first to backup the
logs
This method might fail if the user·

logged into the model does not have
the correct access permission

Parameters:
StartDateTime: Variant (DateTime) -·

the earliest date and time of log entries
to clear
EndDateTime: Variant (DateTime) -·

the latest date and time of log entries to

(c) Sparx Systems 2019 Page 209 of 985

User Guide - Automation 20 January, 2020

clear

ClearOutput
(string
Name)

Notes: Removes all the text from a tab in
the System Output window.
Parameters:

Name: String - the name of the tab to·

remove text from

CloseAddins
()

Notes: Called by automation controllers
to ensure that Add-Ins created in .NET do
not linger after all controller references to
Enterprise Architect have been cleared.

CloseDiagra
m (long
DiagramID)

Notes: Closes a diagram in the current list
of diagrams that Enterprise Architect has
open.
Parameters:

DiagramID: Long - the ID of the·

diagram to close

CloseFile () Notes: Closes any open file.

CreateDocum
entGenerator(
)

Document Generator
Notes: Returns a pointer to the
EA.DocumentGenerator interface.

CreateModel
(CreateModel

Boolean
Notes: Creates a new .eap model file

(c) Sparx Systems 2019 Page 210 of 985

User Guide - Automation 20 January, 2020

Type
CreateType,
string
FilePath,
long
ParentWnd)

based on the standard Enterprise
Architect Base model, or a shortcut .eap
based on a provided SQL connection.
Returns True when the new file is
created, otherwise returns False.
Parameters:

CreateType: CreateModelType -·

Specify whether to make a new copy of
the EABase.eap model, or create a .eap
file shortcut to a DBMS repository; the
latter option requires a dialog to be
opened for the user to provide SQL
connection details
FilePath: String - Destination for new·

.eap file
ParentWnd: Long - Window handle to·

act as the parent for the 'SQL
connection' dialog; only required when
using cmEAPFromSQLRepository

CreateOutput
Tab (string
Name)

Notes: Creates a tab in the System Output
window.
Parameters:

Name: String - the name of the tab to·

create

DeletePerspe
ctive (string

Boolean
Notes: Deprecated - no longer in use.

(c) Sparx Systems 2019 Page 211 of 985

User Guide - Automation 20 January, 2020

Perspective,
long Options)

DeleteTechn
ology (string
ID)

Boolean
Notes: Removes a specified MDG
Technology resource from the repository.
Returns True if the technology is
successfully removed from the model.
Returns False otherwise.

This applies to technologies imported·

into pre-7.0 versions of Enterprise
Architect (imported technologies), not
to technologies referenced in version
7.0 and later (referenced technologies)

Parameters:
ID: String - the ID of the technology·

EnsureOutput
Visible
(string
Name)

Notes: Checks that a specified tab in the
System Output window is visible to the
user. The System Output window is made
visible if it is hidden.
Parameters:

Name: String - the name of the tab to·

make visible

ExecutePack
ageBuildScri
pt (long

Notes: Helps you to run the active
Package build script based on your
current selection in the Browser window.

(c) Sparx Systems 2019 Page 212 of 985

User Guide - Automation 20 January, 2020

ScriptOptions
, string
PackageGuid
)

You can also run a script by passing in
the Package GUID.
Parameters:

ScriptOptions: Long - the script type;·

can be any one of these numerical
values:

 1 = Build
 2 = Test
 3 = Run
 4 = Create Workbench Instance
 5 = Debug

PackageGuid: String - the ID of the·

Package for which to run the script

Exit Notes: Shuts down Enterprise Architect
immediately. Used by .NET programmers
where the garbage collector does not
immediately release all referenced COM
objects.

ExtractImage
sFromNote
(string Notes,
string
WriteImageP
ath, string
RelativeImag
ePath)

String
Notes: Writes any Image Manager links
to the WriteImagePath directory.
Returns a modified notes text, which
contains links to the images using the
RelativeImagePath parameter.
Parameters:

(c) Sparx Systems 2019 Page 213 of 985

User Guide - Automation 20 January, 2020

Notes: String - the notes of the selected·

Package, diagram or element
WriteImagePath: String - the path·

where the image file links will be
stored; this path must exist
RelativeImagePath: String - the path to·

be inserted into the modified string
indicating where the images can be
found (for example, "..\images\")

ExtractSBPIP
arameter
(string
packedParam
eters, string
name)

Notes: Returns the value of the parameter
name as a string.
Parameters:

packedParameters: String - The JOSN·

string to append the Name/Value to;
cannot be empty
name: String - The name of the·

parameter

GenerateMD
GTechnology
(string
Filename)

Boolean
Notes: Generates an MDG Technology
file using the settings in the given MTS
file.
The returned value indicates success or
failure.
Parameters:

Filename: String - the name and path of·

the MTS file to use

(c) Sparx Systems 2019 Page 214 of 985

User Guide - Automation 20 January, 2020

GetActivePer
spective ()

String
Notes: Deprecated - no longer in use.

GetAllDiagra
mImagesAnd
Map (string
Directory)

Boolean
Notes : Saves the image and image-map
for every diagram in the model, in the
specified directory location.
The image files will be saved in PNG
format and each will have the diagram
GUID as the image name. The
image-map files will be saved as TXT
files and each will have the diagram
GUID as the image map name.
The 'Auto Create Diagram Image and
Image Map' option must be selected in
the model options for this function to
save the images and image-maps.
Parameters:

Directory – the location of the directory·

into which the images and image-maps
are to be saved

GetAttribute
ByGuid
(string Guid)

Attribute
Notes: Returns a pointer to an attribute in
the repository, located by its GUID. This
is usually found using the AttributeGUID
property of an attribute.

(c) Sparx Systems 2019 Page 215 of 985

User Guide - Automation 20 January, 2020

Parameters:
Guid: String - the GUID of the attribute·

to locate

GetAttribute
ByID (string
Id)

Attribute
Notes: Returns a pointer to an attribute in
the repository, located by its ID. This is
usually found using the AttributeID
property of an attribute.
Parameters:

Id: String - the ID of the attribute to·

locate

GetConnecto
rByGuid
(string Guid)

Connector
Notes: Returns a pointer to a connector in
the repository, located by its GUID. This
is usually found using the
ConnectorGUID property of a connector.
Parameters:

Guid: String - the GUID of the·

connector to locate

GetConnecto
rByID (long
ConnectorID)

Connector
Notes: Searches the repository for a
connector with a specific ID.
Parameters:

ConnectorID: Long - the ID of the·

connector to locate

(c) Sparx Systems 2019 Page 216 of 985

User Guide - Automation 20 January, 2020

GetContextIt
em (object
Item)

ObjectType
Notes: Sets a pointer to an item in context
within Enterprise Architect.
Also returns the corresponding
ObjectType.
For additional information about
ContextItems and the supported
ObjectTypes see the
'GetContextItemType' method.
Parameters:

Item: Object - the item to point to·

GetContextIt
emType ()

ObjectType
Notes: Returns the ObjectType of an item
in context within Enterprise Architect. A
ContextItem is defined as an item
selected anywhere within the Enterprise
Architect GUI including:

An item selected in the Browser·

window
An item selected in an open diagram·

An item selected in certain dialogs,·

such as the attribute 'Properties' dialog
The supported ObjectTypes can be any
one of these values:

otElement·

otPackage·

(c) Sparx Systems 2019 Page 217 of 985

User Guide - Automation 20 January, 2020

otDiagram·

otAttribute·

otMethod·

otConnector·

GetContextO
bject ()

Object
Notes: Returns the current context
Object.

GetCounts () String
Notes: Returns a set of counts from a
number of tables within the base
Enterprise Architect repository. These
can be used to determine whether records
have been added or deleted from the
tables for which information is retrieved.

GetCurrentDi
agram ()

Diagram
Notes: Returns a selected diagram.

GetCurrentL
oginUser
(boolean
GetGuid)

String
Notes: If security is not enabled in the
repository, an error is generated.
If 'GetGuid' is True, a GUID generated by
Enterprise Architect representing the user
is returned; otherwise the text as entered
in System Users/User Details/Login is
returned.

(c) Sparx Systems 2019 Page 218 of 985

User Guide - Automation 20 January, 2020

GetDiagram
ByGuid
(string Guid)

Diagram
Notes: Returns a pointer to a diagram
using the global reference ID (global ID).
This is usually found using the diagram
GUID property of an element, and stored
for later use to open a diagram without
using the collection GetAt() function.
Parameters:

Guid: String - the GUID of the diagram·

to locate

GetDiagram
ByID (long
DiagramID)

Diagram
Notes: Gets a pointer to a diagram using
an absolute reference number (local ID).
This is usually found using the
DiagramID property of an element, and
stored for later use to open a diagram
without using the collection GetAt()
function.
Parameters:

DiagramID: Long - the ID of the·

diagram to locate

GetDiagramI
mageAndMa
p (string
DiagramGUI
D, string

Boolean
Notes: Saves the image and image-map
for the diagram with the specified GUID,
in the specified directory location.

(c) Sparx Systems 2019 Page 219 of 985

User Guide - Automation 20 January, 2020

Directory) The image will be saved in PNG format
and will have the DiagramGUID as the
image name. The image-map will be
saved as a TXT file and will have the
DiagramGUID as the image-map name.
The 'Auto Create Diagram Image and
Image Map' option must be selected in
the model-specific options for this
function to save the image and
image-map.
Parameters:

DiagramGUID – the GUID of the·

diagram for which the image and
image-map are to be saved
Directory – the directory into which the·

image and image-map are to be saved

GetElementB
yGuid (string
Guid)

Element
Notes: Returns a pointer to an element in
the repository, using the element's GUID
reference number (global ID). This is
usually found using the ElementGUID
property of an element, and stored for
later use to open an element without
using the collection 'GetAt ()' function.
Parameters:

Guid: String - the GUID of the element·

to locate

(c) Sparx Systems 2019 Page 220 of 985

User Guide - Automation 20 January, 2020

GetElementB
yID (long
ElementID)

Element
Notes: Gets a pointer to an element using
an absolute reference number (local ID).
This is usually found using the
ElementID property of an element, and
stored for later use to open an element
without using the collection GetAt ()
function.
Parameters:

ElementID: Long - the ID of the·

element to locate

GetElements
ByQuery
(string
QueryName,
string
SearchTerm)

Collection (of type Element)
Notes: Helps you to run a search in
Enterprise Architect, returning the result
as a collection.
For example:
GetElementsByQuery('Simple','Class1'),
where the results list elements with
'Class1' in the 'Name' and 'Notes' fields.
Parameters:

QueryName: String - the name of the·

search to run, for example 'Simple'
SearchTerm: String - the term to search·

for

GetElementS Collection (of type Element)

(c) Sparx Systems 2019 Page 221 of 985

User Guide - Automation 20 January, 2020

et (string
IDList, long
Options)

Notes: Returns a set of elements as a
collection based on a comma-separated
list of ElementID values. By default, if no
values are provided in the IDList
parameter, all objects for the entire
project are returned.
Parameters

IDList: String - a comma-separated list·

of ElementID values
Options: Long - modifies default·

behavior of this method
Returns empty collection when empty1.
IDList parameter is given.
Use IDList string as an SQL query to2.
populate this collection.

GetFieldFro
mFormat
(string
Format,
string Text)

String
Notes: Converts a field from your
preferred format to Enterprise Architect's
internal format; returns the field in that
format.
Parameters:

Format: String - The format to convert·

the field from; valid formats are:
 - HTML - Full HTML
 - RTF - Rich Text Format
 - TXT - Plain text
Text: String - The field to be converted·

(c) Sparx Systems 2019 Page 222 of 985

User Guide - Automation 20 January, 2020

GetFormatFr
omField
(string
Format,
string Text)

String
Notes: After accessing a field that
contains formatting, use this method to
convert it to your preferred format;
returns the field in the format specified.
Parameters:

Format: String - The format to convert·

the field to; valid formats are:
 - HTML - Full HTML
 - RTF - Rich Text Format
 - TXT - Plain text
Text: String - The field to be converted·

GetFormatted
Name (string
Guid, long
FlagInclude,
string
Separator,
long
FlagFormat)

String
Notes: Provides special formatting for the
name of the specified object; for
example, the fully qualified name of a
specific element or feature.
Parameters:

Guid: String - The GUID of the object·

to be formatted
FlagInclude: Long - Items to be·

included in the formatted name:
 - fiFeature = &H01
 - fiClass = &H02
 - fiParents = &H04
 - fiPackage = &H08

(c) Sparx Systems 2019 Page 223 of 985

User Guide - Automation 20 January, 2020

 - fiRootNS = &H10
 - fiHiddenNS = &H20
 - fiDiagram = &H40
 - fiElemAlias = &H80
Separator: String - The string to use for·

separating each included item (such as
Packages or elements)
FlagFormat: Long - Additional·

formatting options:
 - ffReplaceSpaces = &H01
 - ffLowercase = &H02
 - ffURLEncode = &H04

Example:
FormattedName =
Repository.GetFormattedName
(Element.ElementGUID, fiFeature Or
fiClass Or fiParents Or fiPackage Or
fiDiagram, "::", 0)

GetGapAnaly
sisMatrix ()

String
Notes: Read Only
Returns all Gap Analyses as an XML
document.

GetLastError
()

String
Notes: Returns a string value describing
the most recent error that occurred in
relation to this object.

(c) Sparx Systems 2019 Page 224 of 985

User Guide - Automation 20 January, 2020

GetLocalPath
(string Type,
string Path)

String
Notes: Returns the expanded local file
path for code generated from an element,
with reference to the Type and Path
defined in the 'Local Paths' dialog.
Parameters:

Type: String - the coding language for·

the element, such as Java, C or C++
Path: String - the local path to be·

expanded; for example:
%Desk%\Javacode\Motor.java

For example:
 Repository.GetLocalPath (Java,
%Desk%\Javacode\Motor.java)
This could return:

C:\Users\fbloggs\Desktop\Javacode\Moto
r.java.

GetMailInterf
ace ()

MailInterface
Notes: Returns an instance of the
EA.MailInterface; use this interface to
automate the process of creating and
sending Model Mail messages.

GetMethodB
yGuid (string

Method
Notes: Returns a pointer to a method in

(c) Sparx Systems 2019 Page 225 of 985

User Guide - Automation 20 January, 2020

Guid) the repository; this is usually found using
the MethodGUID property of a method.
Parameters:

Guid: String - the GUID of the method·

to look for

GetMethodB
yId (string
Id)

Method
Notes: Returns a pointer to a method in
the repository; this is usually found using
the MethodID property of a method.
Parameters:

Id: String - the ID of the method to·

look for

GetPackageB
yGuid (string
Guid)

Package
Notes: Returns a pointer to a Package in
the repository using the Package's GUID
reference number (global ID). This is
usually found using the PackageGUID
property of the Package.
Each Package in the model also has an
associated element with the same GUID,
so if you have an element with
Type="Package" then you can load the
Package by calling:

GetPackageByGuid(Element.ElementGU
ID)

(c) Sparx Systems 2019 Page 226 of 985

User Guide - Automation 20 January, 2020

Parameters:
Guid: String - the GUID of the Package·

to look for

GetPackageB
yID (long
PackageID)

Package
Notes: Get a pointer to a Package using
an absolute reference number (local ID).
This is usually found using the
PackageID property of a Package, and
stored for later use to open a Package
without using the collection GetAt ()
function.
Parameters:

PackageID: Long - the ID of the·

Package to locate

GetProjectInt
erface ()

Project
Notes: Returns a pointer to the
EA.Project interface (the XML-based
automation server for Enterprise
Architect). Use this interface to work
with Enterprise Architect using XML,
and also to access utility functions for
loading diagrams, running reports and so
on.

GetProperties
Tab (string

Notes: Finds an existing Properties tab.
Returns a PropertiesTab interface if the

(c) Sparx Systems 2019 Page 227 of 985

User Guide - Automation 20 January, 2020

TabName) tab exists, otherwise NULL.
Parameters:

TabName: String - The name of the·

'Properties' tab.

GetReference
List (string
Type)

Reference
Notes: Uses the list type to get a pointer
to a Reference List object.
Parameters:

Type: String - specifies the list type to·

get; valid list types are:
 - Diagram
 - Element
 - Constraint
 - Requirement
 - Connector
 - Status
 - Cardinality
 - Effort
 - Metric
 - Scenario
 - Status
 - Test
 - List:DifficultyType
 - List:PriorityType
 - List:TestStatusType
 - List:ConstStatusType

GetRelations String

(c) Sparx Systems 2019 Page 228 of 985

User Guide - Automation 20 January, 2020

hipMatrix () Notes: Returns an XML document (as a
string), containing definitions of all
Relationship Matrix profiles saved in the
current model.

GetTechnolo
gyVersion
(string ID)

String
Notes: Returns the version of a specified
MDG Technology resource.
Parameters:

ID: String - the specified technology ID·

GetTreeSelec
tedElements
()

Collection
Notes: Returns the set of elements
currently selected in the Browser window
as a collection.

GetTreeSelec
tedItem
(object
SelectedItem)

ObjectType
Notes: Gets an object variable and type
corresponding to the currently selected
item in the tree view.
To use this function, create a generic
object variable and pass this as the
parameter. Depending on the return type,
cast it to a more specific type.
The object passed back through the
parameter can be a Package, element,
diagram, attribute or operation object.
Parameters:

(c) Sparx Systems 2019 Page 229 of 985

User Guide - Automation 20 January, 2020

SelectedItem: Object - the object to get·

the variable and type for

GetTreeSelec
tedItemType
()

ObjectType
Notes: Returns the type of the object
currently selected in the tree. One of:

otDiagram·

otElement·

otPackage·

otAttribute·

otMethod·

GetTreeSelec
tedObject ()

Object
Notes: The related method
GetTreeSelectedItem () has an output
parameter that is inaccessible by some
scripting languages. As an alternative,
this method provides the selected item
through the return value.

GetTreeSelec
tedPackage ()

Package
Notes: Returns the Package in which the
currently selected tree view object is
contained.

HasPerspecti
ve (string
Perspective)

String
Notes: Deprecated - no longer in use.

(c) Sparx Systems 2019 Page 230 of 985

User Guide - Automation 20 January, 2020

HideAddinW
indow ()

Notes: Hides the docked Add-In window.

ImportPacka
geBuildScript
s (string
PackageGuid
, string
BuildScriptX
ML)

Notes: Imports build scripts into a
Package in Enterprise Architect.
Parameters:

PackageGuid: String - the GUID of the·

Package into which to import the build
scripts
BuildScriptXML: String - the build·

script XML data, which you can export
from within Enterprise Architect

ImportRASA
sset (string
PackageGUI
D, string
Protocol,
string
ServerName,
string Model,
string
Storage,
string
RASGUID,
string
Password,
string

Notes: Imports the specified RAS asset.
Returns True on success; check
GetLastError on failure.
Parameters:

PackageGUID: String - the GUID of·

the Package to import the asset to
Protocol: String - the protocol the·

server is using
ServerName: String - the name of the·

RAS server
Model: String - the name of the RAS·

model to use
Storage: String - the storage name of·

the RAS asset

(c) Sparx Systems 2019 Page 231 of 985

User Guide - Automation 20 January, 2020

Version) RASGUID: String - the GUID of the·

RAS asset
Password: String - the password to·

access the RAS asset
Version: String - the version of the·

RAS asset to import

ImportTechn
ology (string
Technology)

Boolean
Notes: Installs a given MDG Technology
resource into the repository.
Returns True if the technology is
successfully loaded into the model.
Otherwise returns False.
This applies to technologies imported
into pre-7.0 versions of Enterprise
Architect (imported technologies), not to
technologies referenced in version 7.0
and later (referenced technologies).
Parameters:

Technology: String - the contents of the·

technology resource file

InsertSBPIPa
rameter
(string
packedParam
eters, string
name, string

Notes: Returns a JSON string.
Parameters:

packedParameters: String - The JOSN·

string to append the Name/Value to;
cannot be empty
name: String - The name of the·

(c) Sparx Systems 2019 Page 232 of 985

User Guide - Automation 20 January, 2020

value) parameter
value: String - The value of the·

parameter

InvokeConstr
uctPicker
(string
ElementFilter
)

String
Notes: Invokes the 'Select <Item>' dialog
with filters on the object type and,
optionally, stereotype. Returns the
ElementID of the selected object, or 0 if
no object was selected when the dialog
was closed.
For example:
elementid=Repository.InvokeConstructPi
cker
("IncludedTypes=Class,Component;Stere
oType=foo,bar")
In this example, the 'Select <item>' dialog
will allow the user to select any Class or
Component element in the model that has
a stereotype of 'foo' or 'bar'. The
'IncludedTypes' and 'StereoType' filters
are separated by a semi-colon.
Parameters:

ElementFilter: String - specifies which·

elements or Packages are to be made
available for selection, based on
element types and stereotypes
identified by the IncludedTypes and

(c) Sparx Systems 2019 Page 233 of 985

User Guide - Automation 20 January, 2020

StereoType filters
 - IncludedTypes - (mandatory)
comma separated list of
 element types that can be selected
in the dialog; for
 example:
 Package,Class,Component
 - MultiSelect - (optional) when set
to True
 ("MultiSelect=True;") allows the
Construct picker to select
 multiple elements
 - Selection (optional) - list of
comma-separated element
 GUIDs that will be selected by
default
 - GetNext (optional) - returns the
next ID in the list of
 selected elements, or 0 when no
more are available; this
 option will not display a dialog
and assumes the first call
 was made with MultiSelect=True;
 - StereoType - (optional) comma
separated list of
 stereotypes that can be selected in
this dialog

Do not use leading or trailing spaces
between element type or stereotype
values. Parameter values must be written

(c) Sparx Systems 2019 Page 234 of 985

User Guide - Automation 20 January, 2020

with the correct case; element type names
are also case sensitive.
Example:
 val =
Repository.InvokeConstructPicker
("IncludedTypes=Class;
MultiSelect=True;");
 while(val != 0)
 {
 val =
Repository.InvokeConstructPicker("GetN
ext=True;");
 }

InvokeFileDi
alog (string
FilterString,
long
Filterindex,
long Flags)

String
Notes: Opens a standard 'Open File'
dialog and returns a string containing the
full path to the selected file on success.
Returns an empty string if the dialog was
canceled.
Parameters:

FilterString: String - list of file type·

filters.
Filterindex: Long - one-based index of·

the filter to be used by default
Flags: Long - additional bit flags used·

to initialize the file dialog; see
OPENFILENAME structure in MSDN

(c) Sparx Systems 2019 Page 235 of 985

User Guide - Automation 20 January, 2020

documentation for accepted values

IsTabOpen
(string
TabName)

String
Notes: Checks whether a named
Enterprise Architect tabbed view is open
and active. This includes open diagram
windows or custom controls added using
'Repository.AddTab ()'.
Returns:

2 to indicate that a tab is open and·

active (top-most)
1 to indicate that it is open but not·

top-most, or
0 to indicate that it is not visible at all·

Parameters:
TabName: String - the name of the tab·

to check for; TabName is case sensitive

IsTechnology
Enabled
(string ID)

Boolean
Notes: Checks whether the specified
string matches the ID of an enabled MDG
Technology in Enterprise Architect.
Returns True if the string matches the ID
of an enabled Technology. Otherwise
returns False.
Parameters:
ID: String - the technology ID to check

(c) Sparx Systems 2019 Page 236 of 985

User Guide - Automation 20 January, 2020

for; built-in technology IDs include:
ArcGIS ArcGIS·

BABOK BABOK·

BIZBOK BIZBOK·

Guide
BPSim BPSim·

BRM Business·

Rule Model
CMMN Case·

Management Model & Notation
CODEENG Code·

Engineering
Database Modeling Database·

Modeling
DMN1.1 DMN1.1·

EAExtended Core·

Extensions
ERD Entity·

Relationship Diagram
GML GML·

MYSQLTECH MySqlTech·

EAReview Review·

SIMF SIMF·

Technology
SOAML SOAML·

SysML1.1 SysML1.1·

(c) Sparx Systems 2019 Page 237 of 985

User Guide - Automation 20 January, 2020

SysML1.2 SysML1.2·

SysML1.3 SysML1.3·

SysML1.4 SysML1.5·

UML2 Basic UML2·

Technology
SYSENG System·

Engineering
262139 MDG·

Technology Builder
TOGAF TOGAF·

UAF UAF·

UPDM2 UPDM 2.0·

Win32UI Win 32 User·

Interface Modeling
ZF Zachman·

Framework
Technically, any combination of
technologies integrated with or added to
Enterprise Architect - including
user-developed technologies - could
appear in this list. In practice you would
only check for one or two technologies at
a time.

IsTechnology
Loaded
(string ID)

Boolean
Notes: Checks whether a specified
technology is loaded into the repository.

(c) Sparx Systems 2019 Page 238 of 985

User Guide - Automation 20 January, 2020

Returns True if the MDG Technology
resource is loaded into the repository.
Otherwise returns False.
Parameters:

ID: String - the technology ID to check·

for

LoadAddins
()

Notes: Loads all Add-Ins from a
repository when Enterprise Architect is
opened from automation.

MarkupNotes
(string Notes,
string
GlossaryTyp
e, string
replacement)

String
Notes:
Returns a string containing the translation
of the term.
Parameters

Notes: String - a value to perform a·

translation markup on
GlossaryType: String - a·

comma-separated list of glossary types;
for example, 'tx-french,tx-global'
replacement: String - the value to·

replace the TERM when found; "#TERM#,/span>"

OpenDiagra
m (long
DiagramID)

Notes: Provides a method for an
automation client or Add-In to open a
diagram. The diagram is added to the

(c) Sparx Systems 2019 Page 239 of 985

User Guide - Automation 20 January, 2020

tabbed list of open diagrams in the main
Enterprise Architect view.
Parameters:

DiagramID: Long - the ID of the·

diagram to open

OpenFile
(string
Filename)

Boolean
Notes: This is the main point for opening
an Enterprise Architect project file from
an automation client, and working with
the contained objects.
If the required project is a DBMS or
Cloud based repository, you will require
a valid Enterprise Architect connection
string. This can be obtained in one of
two ways; both methods require you to
first make and open a connection to the
model in question with Enterprise
Architect:
1) Using the 'Save as Shortcut' menu
item, create a shortcut .eap file containing
the database connection string; you can
call this shortcut file to access the
repository.
2) Alternatively, you can right-click on
the model's connection entry in the 'Open
Project' screen and select 'Edit connection
string', this connection string can then be

(c) Sparx Systems 2019 Page 240 of 985

User Guide - Automation 20 January, 2020

used direct by OpenFile.
Parameters:

Filename: String - the filename (or·

connection string) of the Enterprise
Architect project to open

OpenFile2
(string
FilePath,
string
Username,
string
Password)

Boolean
Notes: As for 'OpenFile ()' except this
provides for the specification of a
password.
Parameters:

Filepath: String - the file path of the·

Enterprise Architect project to open
Username: String - the user login ID·

Password: String - the user password·

RefreshMode
lView (long
PackageID)

Notes: Reloads a Package or the entire
model, updating the user interface.
Parameters:

PackageID: Long - the ID of the·

Package to reload: if 0, the entire
model is reloaded; if a valid Package
ID, only that Package is reloaded

RefreshOpen
Diagrams
(boolean
FullReload)

Notes: Reloads the diagram contents for
all open diagrams from the repository.
Parameters:

FullReload: Boolean - if False only the·

(c) Sparx Systems 2019 Page 241 of 985

User Guide - Automation 20 January, 2020

contents of element compartments are
reloaded; if True the full content of
each diagram is reloaded

ReloadDiagra
m (long
DiagramID)

Notes: Reloads a specified diagram. This
would commonly be used to refresh a
visible diagram after code import/export
or other batch process where the diagram
requires complete refreshing.
Calling this method within a call to
EA_OnNotifyContextItemModified is not
supported
Parameters:

DiagramID: Long - the ID of the·

diagram to be reloaded

ReloadPacka
ge (long
PackageID)

Notes: Reloads a Package and its open
child diagrams.
Parameters:
PackageID: Long - The ID of the Package
to reload; if a valid Package ID, only that
Package is reloaded.

RemoveOutp
utTab (string
Name)

Notes: Removes a specified tab from the
System Output window.
Parameters:

Name: String - the name of the tab to·

be removed

(c) Sparx Systems 2019 Page 242 of 985

User Guide - Automation 20 January, 2020

RemoveWind
ow (string
WindowNam
e)

Boolean
Notes: Removes an Add-In window that
matches the specified WindowName.
Parameters:

WindowName: String - the name of the·

window to remove

RepositoryTy
pe ()

String
Notes: Returns the currently open
database/repository type.
Can return one of these values:

JET (.EAP file, MS Access 97 to 2013·

format)
FIREBIRD·

ACCESS2007 (.accdb file, MS Access·

2007+ format)
ASA (Sybase SQL Anywhere)·

SQLSVR (Microsoft SQL Server)·

MYSQL (MySQL)·

ORACLE (Oracle)·

POSTGRES (PostgreSQL)·

RunModelSe
arch (string
sQueryName,
string

Notes: Runs a search, displaying the
results in Enterprise Architect's Model
Search window.
Parameters:

(c) Sparx Systems 2019 Page 243 of 985

User Guide - Automation 20 January, 2020

sSearchTerm,
string
sSearchOptio
ns, string
sSearchData)

sQueryName: String - the name of the·

search to run, for example Simple
sSearchTerm: String - the term to·

search for
sSearchOptions: String - currently not·

being used
sSearchData: String - a list of results in·

the form of XML, which is appended
onto the result list in Enterprise
Architect - see the XML Format topic;
this parameter is not mandatory so pass
in an empty string to run the search as
per normal

SaveAllDiagr
ams ()

Notes: Saves all open diagrams.

SaveAuditLo
gs (string
FilePath,
object
StartDateTim
e, object
EndDateTim
e)

Boolean
Notes: Saves the Audit Logs contained
within a model to a specified file.
If 'StartDateTime' and 'EndDateTime' are
not null then only log items that fall into
this period are saved.
Returns True for success, False for
failure.

This might fail if the user logged into·

the model does not have the correct
access permission

(c) Sparx Systems 2019 Page 244 of 985

User Guide - Automation 20 January, 2020

Parameters:
FilePath: String - the file to save the·

Audit Logs to
StartDateTime: Variant (DateTime) -·

the earliest date and time of log entries
to save
EndDateTime; Variant (DateTime) -·

the latest date and time of log entries to
save

SaveDiagram
(long
DiagramID)

Notes: Saves an open diagram; assumes
the diagram is open in the main user
interface Tab list.
Parameters:

DiagramID: Long - the ID of the·

diagram to save

SaveDiagram
AsUMLProfi
le (string
DiagramGUI
D, string
Filename)

Boolean
Notes: Saves a given diagram as a UML
Profile, using the settings from the
previous time that the specific diagram
was saved manually.
The returned value indicates success or
failure.
Parameters:

DiagramGUID: String - the GUID of·

the Profile diagram to save
Filename: String - the name and path of·

(c) Sparx Systems 2019 Page 245 of 985

User Guide - Automation 20 January, 2020

the file to create; if left blank, the
method will use the filename from the
previous time the specified diagram
was saved

SavePackage
AsUMLProfi
le (string
PackageGUI
D, string
Filename)

Boolean
Notes: Saves a given Package as a UML
Profile, using the settings from the
previous time that the specific Package
was saved manually.
The returned value indicates success or
failure.
Parameters:

PackageGUID: String - the GUID of·

the Profile Package to save
Filename: String - the name and path of·

the file to create; if left blank, the
method will use the filename from the
previous time the specified Package
was saved

ScanXMIAn
dReconcile ()

Notes: Scans the Package XMI files
associated with each of the project's
controlled Packages and restores any
diagram objects or cross-references that
are detected as missing from the project.
This function is useful in team
environments where each user maintains
their own private copy of the model

(c) Sparx Systems 2019 Page 246 of 985

User Guide - Automation 20 January, 2020

database (that is, multiple private EAP
files) and model updates are propagated
through the use of controlled Packages; it
provides no benefit when the model is
hosted in a single shared database that is
accessed by all team members.
Each controlled Package is compared
with its associated XMI file and, if the
cross-reference information in the model
does not match the XMI, Enterprise
Architect updates the model with the
information from the XMI and records
the update in the System Output window.
You can roll back such updates by
right-clicking on the entry in the System
Output window and selecting the
'Rollback Update' option (or 'Rollback
Selected Updates' if multiple entries are
selected).
Closing the model clears the entries in the
System Output window; an entry in this
window is also cleared as and when you
roll-back the update for it.
This functionality is invoked
automatically as part of the 'Get All
Latest' operation.
When working in an environment that
uses a Private Model deployment and
your model contains a significant number

(c) Sparx Systems 2019 Page 247 of 985

User Guide - Automation 20 January, 2020

of cross-Package references, it is
recommended that you invoke this
function from time to time, following the
re-importation of controlled Packages -
for example, after using 'Get Latest' to
update a number of Packages, or after
performing a number of Package
check-outs.
As a general rule, avoid running this
function while you have uncommitted
changes in your model. Generally, you:

Check-out a number of Packages·

Invoke 'ScanXMIAndReconcile'·

Make your modifications·

Commit any outstanding changes·

before you check-out more Packages
and run 'ScanXMIAndReconcile' again

ShowAddin
Window
(string
TabName)

Boolean
Notes: Shows the docked Add-In window
on the specified page. Returns True if a
tab of the specified name is now
displayed.
Parameters

TabName: String - specifies the tab·

ShowDynami
cHelp (string

Notes: Shows a Help topic as a view.
Parameters:

(c) Sparx Systems 2019 Page 248 of 985

User Guide - Automation 20 January, 2020

Topic) Topic: String - specifies the Help topic·

ShowInProje
ctView
(object Item)

Notes: Selects a specified object in the
Browser window.
Accepted object types are Package,
Element, Diagram, Attribute, and
Method; an exception is thrown if the
object is of an invalid type.
Parameters:

Item: Object - the object to highlight·

ShowWindo
w (long
Show)

Notes: Shows or hides the Enterprise
Architect User Interface.
Parameters:

Show: Long·

SQLQuery
(string SQL)

String
Notes: Enables execution of a SQL select
statement against the current repository.
Returns an XML formatted string value
of the resulting record set.
Parameters:

SQL: String - contains the SQL Select·

statement

SynchProfile
(string
Profile, string

Boolean
Notes: Synchronizes Tagged Values and
constraints of a UML Profile item using

(c) Sparx Systems 2019 Page 249 of 985

User Guide - Automation 20 January, 2020

Stereotype) the 'Synch Profiled Elements' dialog.
Parameters:

Profile: String - the name of the profile·

that contains the stereotype
Stereotype: String - the name of the·

profile stereotype for which the default
tags and constraints are to be
synchronized

VCRPS Type
VersionControlResynchPkgStatuses
(boolean ClearSettings)
Notes: Synchronizes the Version Control
status of each Version Controlled
Package within the current model with
the status reported by your Version
Control provider.
Parameters:

ClearSettings: Boolean·

 - if True, clear the Version Control
settings from Packages
 that are reported by the Version
Control provider as
 uncontrolled
 - if False, leave the Version Control
settings unchanged for
 Packages reported as uncontrolled

WriteOutput Notes: Writes text to a specified tab in the

(c) Sparx Systems 2019 Page 250 of 985

User Guide - Automation 20 January, 2020

(string Name,
string Output,
long ID)

System Output window, and associates
the text with an ID.
Parameters:

Name: String - specifies the tab on·

which to display the text
Output: String - specifies the text to·

display
ID: Long - specifies a numeric ID·

value to associate with this output item
for further handling by Add-Ins; can be
set to 0 if no handling is required

(c) Sparx Systems 2019 Page 251 of 985

User Guide - Automation 20 January, 2020

SecurityUser Class

A SecurityUser object represents a named security user.

Associated table in .EAP file

None.

SecurityUser Attributes

Attribute Remarks

Department String
Notes: Read only
Returns the current user's department.

FirstName String
Notes: Read only
Returns the current user's first name.

FullName String
Notes: Read only
Returns the current user's full name.

(c) Sparx Systems 2019 Page 252 of 985

User Guide - Automation 20 January, 2020

Login String
Notes: Read only
Returns the current user's login name.

ObjectType ObjectType
Notes: Read only
Distinguishes objects referenced through
a Dispatch interface.

Surname String
Notes: Read only
Returns the current user's surname.

SecurityUser Methods

Method Remarks

IsMemberOf
(string
GroupId)

Boolean
Returns True if the user is part of the
specified security group.
Parameter:

GroupId: String - Name of the security·

group to check.

(c) Sparx Systems 2019 Page 253 of 985

User Guide - Automation 20 January, 2020

(c) Sparx Systems 2019 Page 254 of 985

User Guide - Automation 20 January, 2020

Stereotype Class

The Stereotype element corresponds to a UML stereotype,
which is an extension mechanism for varying the behavior
and type of a model element. Use the Repository
Stereotypes collection to add new elements and delete
existing ones.

Associated table in .EAP file

 t_stereotypes

Stereotype Attributes

Attribute Description

AppliesTo String
Notes: Read/Write
A reference to the stereotype Base Class;
that is, which element it applies to.

MetafileLoad
Path

String
Notes: Read/Write
The path to an associated metafile. The
Automation Interface does not yet

(c) Sparx Systems 2019 Page 255 of 985

User Guide - Automation 20 January, 2020

support loading metafiles. To do this you
must use the 'Stereotype' tab of the 'UML
Types' dialog in Enterprise Architect.

Notes String
Notes: Read/Write.
Notes about the stereotype.

Name String
Notes: Read/Write
The stereotype name, which appears in
the Stereotype drop list for elements that
match the AppliesTo attribute.

ObjectType ObjectType
Notes: Read only
Distinguishes objects referenced through
a Dispatch interface.

StereotypeG
UID

String
Notes: Read/Write
A unique identifier for stereotype,
generally set and maintained by
Enterprise Architect.

Style String
Notes: Read/Write

(c) Sparx Systems 2019 Page 256 of 985

User Guide - Automation 20 January, 2020

An additional style specifier for the
stereotype.

VisualType String
Notes: Read/Write
Indicates an inbuilt visual style associated
with a stereotype.
Not currently implemented.

Stereotype Methods

Method Description

GetLastError
()

String
Notes: Returns a string value describing
the most recent error that occurred in
relation to this object.

Update() Boolean
Notes: Updates the current stereotype
object after modification or appending a
new item.
If False is returned, check the
'GetLastError()' function for more
information.

(c) Sparx Systems 2019 Page 257 of 985

User Guide - Automation 20 January, 2020

(c) Sparx Systems 2019 Page 258 of 985

User Guide - Automation 20 January, 2020

Task Class

A Task is an entry in the System Task list. Tasks can be
accessed using the Repository Tasks collection.

Associated table in .EAP file

 t_tasks

Task Attributes

Attribute Remarks

ActualTime Long
Notes: Read/Write
The time already expended on the task, in
hours, days or other units.

AssignedTo String
Notes: Read/Write
The person this task is assigned to; that
is, the responsible resource.

EndDate Date

(c) Sparx Systems 2019 Page 259 of 985

User Guide - Automation 20 January, 2020

Notes: Read/Write
The date the task is scheduled to finish.

History String
Notes: Read/Write
A memo field to hold, for example, task
history or notes.

Name Variant
Notes: Read/Write
The task name.

Notes Variant
Notes: Read/Write
A description of the task.

ObjectType ObjectType
Notes: Read only
Distinguishes objects referenced through
a Dispatch interface.

Owner String
Notes: Read/Write
The task owner.

Percent Long
Notes: Read/Write

(c) Sparx Systems 2019 Page 260 of 985

User Guide - Automation 20 January, 2020

The percentage completion of the task.

Phase String
Notes: Read/Write
The phase of the project the task relates
to.

Priority String
Notes: Read/Write
The priority of this task.

StartDate Date
Notes: Read/Write
The date the task is to start.

Status Variant
Notes: Read/Write
The current status of the task.

TaskID Long
Notes: Read only
The local ID of the task.

TotalTime Long
Notes: Read/Write
The total expected time the task might
run, in hours, days or some other unit.

(c) Sparx Systems 2019 Page 261 of 985

User Guide - Automation 20 January, 2020

Type String
Notes: Read/Write
Sets or returns a string representing the
type.

Task Methods

Method Type

GetLastError
()

String
Notes: Returns a string value describing
the most recent error that occurred in
relation to this object.

Update() Boolean
Notes: Updates the current Task object
after modification or appending a new
item.
If False is returned, check the
'GetLastError()' function for more
information.

(c) Sparx Systems 2019 Page 262 of 985

User Guide - Automation 20 January, 2020

Term Class

A Term object represents one entry in the system glossary.
Terms can be accessed using the Repository Terms
collection.

Associated table in .EAP file

t_glossary

Term Attributes

Attribute Remarks

Meaning String
Notes: Read/Write
The description of the term; its meaning.

ObjectType ObjectType
Notes: Read only
Distinguishes objects referenced through
a Dispatch interface.

Term String

(c) Sparx Systems 2019 Page 263 of 985

User Guide - Automation 20 January, 2020

Notes: Read/Write
The glossary item name.

TermID Long
Notes: Read only
A local ID number to identify the term in
the model.

Type String
Notes: Read/Write
The type this term applies to (for
example, business or technical).

Term Methods

Method Remarks

GetLastError
()

String
Notes: Returns a string value describing
the most recent error that occurred in
relation to this object.

Refresh Void
Notes: Forces Enterprise Architect to
reload the Glossary terms from the

(c) Sparx Systems 2019 Page 264 of 985

User Guide - Automation 20 January, 2020

database.
If an element is selected, it will have to
be re-selected before the 'Note' fields and
windows reflect the updated Glossary
terms.

Update() Boolean
Notes: Updates the current Term object
after modification or appending a new
item.
If False is returned, check the
'GetLastError()' function for more
information.

(c) Sparx Systems 2019 Page 265 of 985

User Guide - Automation 20 January, 2020

Element Package

The Element Package contains information about an
element and its associated extended properties such as
testing and project management information. An element is
the basic item in an Enterprise Architect model. Classes,
Use Cases and Components are all different types of UML
element.

This diagram illustrates the relationships between an
element and its associated extended information. The related
information is accessed through the collections owned by
the element (for example, Scenarios and Tests). It also
includes a full description of the element object (the basic
model structural unit).

Example

(c) Sparx Systems 2019 Page 266 of 985

User Guide - Automation 20 January, 2020

(c) Sparx Systems 2019 Page 267 of 985

User Guide - Automation 20 January, 2020

Constraint Class

A Constraint is a condition imposed on an element.
Constraints are accessed through the Element Constraints
collection.

Associated table in .EAP file

t_objectconstraints

Constraint Attributes

Attribute Remarks

Name String
Notes: Read/Write
The name of the constraint (that is, the
constraint).

Notes String
Notes: Read/Write
Notes about the constraint.

ObjectType ObjectType

(c) Sparx Systems 2019 Page 268 of 985

User Guide - Automation 20 January, 2020

Notes: Read only
Distinguishes objects referenced through
a Dispatch interface.

ParentID Long
Notes: Read only
The ElementID of the element to which
this constraint applies.

Status String
Notes: Read/Write
The current status of the constraint.

Type String
Notes: Read/Write
The constraint type.

Weight Long
Notes: Read/Write
A weighting factor.

Constraint Methods

Method Remarks

(c) Sparx Systems 2019 Page 269 of 985

User Guide - Automation 20 January, 2020

GetLastError
()

String
Notes: Returns a string value describing
the most recent error that occurred in
relation to this object.

Update() Boolean
Notes: Update the current Constraint
object after modification or appending a
new item.
If False is returned, check the
'GetLastError()' function for more
information.

(c) Sparx Systems 2019 Page 270 of 985

User Guide - Automation 20 January, 2020

Effort Class

An Effort is a named item with a weighting that can be
associated with an element for purposes of building metrics
about the model. Efforts are accessed through the Element
Efforts collection.

Associated table in .EAP file

t_objecteffort

Effort Attributes

Attribute Remarks

Name String
Notes: Read/Write
The name of the effort.

Notes String
Notes: Read/Write
Notes about the effort.

ObjectType ObjectType

(c) Sparx Systems 2019 Page 271 of 985

User Guide - Automation 20 January, 2020

Notes: Read only
Distinguishes objects referenced through
a Dispatch interface.

Type String
Notes: Read/Write
The effort type.

Weight Long
Notes: Read/Write
A weighting factor.

Weight2 Float
Notes: Read/Write
A weighting factor.

Effort Methods

Method Remarks

GetLastError
()

String
Notes: Returns a string value describing
the most recent error that occurred in
relation to this object.

(c) Sparx Systems 2019 Page 272 of 985

User Guide - Automation 20 January, 2020

Update() Boolean
Notes: Update the current Effort object
after modification or appending a new
item.
If False is returned, check the
'GetLastError()' function for more
information.

(c) Sparx Systems 2019 Page 273 of 985

User Guide - Automation 20 January, 2020

Element Class

An Element is the main modeling unit, corresponding to (for
example) a Class, Use Case, Node or Component. You
create new elements by adding to the Package Elements
collection. Once you have created an element, you can add it
to the DiagramObject Class of a diagram to include it in the
diagram.

Elements also have a collection of connectors. Each entry in
this collection indicates a relationship to another element.

There are also some extended collections for managing
addition information about the element, including properties
such as Tagged Values, Issues, Constraints and
Requirements.

Associated table in .EAP file

t_object

Element Attributes

Attribute Remarks

Abstract String
Notes: Read/Write

(c) Sparx Systems 2019 Page 274 of 985

User Guide - Automation 20 January, 2020

Indicates if the element is Abstract (1) or
Concrete (0).

ActionFlags String
Notes: Read/Write
A structure to hold flags concerned with
Action semantics.

Alias String
Notes: Read/Write
An optional alias for this element.

AssociationC
lassConnecto
rID

Long
Notes: Read only
If the element is an AssociationClass,
AssociationClassConnectorID contains
the Connector ID of the respective
Association connector.

Attributes Collection
Notes: Read only
A collection of attribute objects for the
current element; use the AddNew and
Delete functions to manage attributes.

AttributesEx Collection
Notes: Read only

(c) Sparx Systems 2019 Page 275 of 985

User Guide - Automation 20 January, 2020

A collection of attribute objects
belonging to the current element and its
parent elements.

Author String
Notes: Read/Write
The element author.

BaseClasses Collection
Notes: Read only
A list of Base Classes for this element,
presented as a collection for convenience.

ClassfierID Long
Notes: Deprecated
See ClassifierID

ClassifierID Long
Notes: Read/Write
The ElementID of a Classifier associated
with this element; that is, the base type.
Only valid for instance type elements
(such as Object or Sequence).

ClassifierNa
me

String
Notes: Read/Write
Name of associated Classifier (if any).

(c) Sparx Systems 2019 Page 276 of 985

User Guide - Automation 20 January, 2020

ClassifierTyp
e

String
Notes: Read only
Type of associated Classifier.

Complexity String
Notes: Read/Write
A complexity value indicating how
complex the element is; used for metric
reporting and estimation.
Valid values are: 1 for Easy, 2 for
Medium, 3 for Difficult.

CompositeDi
agram

Diagram
Notes: Read only
If the element is Composite, returns its
associated diagram; otherwise returns
null.

Connectors Collection
Notes: Read only
Returns a collection containing the
connectors to other elements.

Constraints Collection
Notes: Read only
A collection of Constraint objects.

(c) Sparx Systems 2019 Page 277 of 985

User Guide - Automation 20 January, 2020

ConstraintsE
x

Collection
Notes: Read only
Collection of Constraint objects
belonging to the current element and its
parent elements.

Created Date
Notes: Read/Write
The date the element was created.

CustomPrope
rties

Collection
Notes: Read only
List of advanced properties for an
element.
The collection of advanced properties
differs depending on element type; for
example, an Action and an Activity have
different advanced properties.
Currently only editable from the user
interface.

Diagrams Collection
Notes: Read only
Returns a collection of sub-diagrams
(child diagrams) attached to this element
as seen in the tree view.

(c) Sparx Systems 2019 Page 278 of 985

User Guide - Automation 20 January, 2020

Difficulty String
Notes: Read/Write
A difficulty level associated with this
element for estimation/metrics; only
useable for Requirement, Change and
Issue element types, otherwise ignored.
Valid values are: Low, Medium, High.

Efforts Collection
Notes: Read only
A collection of Effort objects.

ElementGUI
D

String
Notes: Read only
A globally unique ID for this element;
that is, unique across all model files.

ElementID Long
Notes: Read only
The local ID of the element; valid for this
file only.

Elements Collection
Notes: Read only
Returns a collection of child elements
(sub-elements) attached to this element as
seen in the tree view.

(c) Sparx Systems 2019 Page 279 of 985

User Guide - Automation 20 January, 2020

EmbeddedEl
ements

Collection
Notes: Read only
A list of elements that are embedded into
this element, such as Ports, Parts, Pins
and Parameter Sets.

EventFlags String
Notes: Read/Write
A structure to hold a variety of flags to do
with signals or events.

ExtensionPoi
nts

String
Notes: Read/Write
Optional extension points for a Use Case
as a comma-separated list.

Files Collection
Notes: Read only
A collection of File objects.

FQName String
Notes: Read only
The fully-qualified name of the element,
consisting of a dot-separated list of names
including all parent elements and
Packages up to the first namespace root
that is encountered.

(c) Sparx Systems 2019 Page 280 of 985

User Guide - Automation 20 January, 2020

FQStereotype String
Notes: Read only
The fully-qualified stereotype name in the
format "Profile::Stereotype". One or more
fully-qualified stereotype names can be
assigned to StereotypeEx.

GenFile String
Notes: Read/Write
The file associated with this element for
code generation and synchronization
purposes; can include macro expansion
tags for local conversion to full path.

Genlinks String
Notes: Read/Write
Links to other Classes discovered at code
reversing time; Parents and Implements
connectors only.

GenType String
Notes: Read/Write
The code generation type; for example,
Java, C++, C#, VBNet, Visual Basic,
Delphi.

Header1 Variant

(c) Sparx Systems 2019 Page 281 of 985

User Guide - Automation 20 January, 2020

Notes: Read/Write
A user defined string for inclusion as
header in the source files generated.

Header2 Variant
Notes: Read/Write
Same as for Header1, but used in the CPP
source file.

IsActive Boolean
Notes: Read/Write
Boolean value indicating whether the
element is active or not.
1 = True, 0 = False.

IsComposite Boolean
Notes: Read/Write
Indicates whether the element is
composite or not.
1 = True, 0 = False.

IsLeaf Boolean
Notes: Read/Write
Indicates whether or not the element is a
leaf node (and therefore cannot be a
parent for any other elements).
1 = True, 0 = False.

(c) Sparx Systems 2019 Page 282 of 985

User Guide - Automation 20 January, 2020

IsNew Boolean
Notes: Read/Write
Boolean value indicating whether the
element is new or not.
1 = True, 0 = False.

IsRoot Boolean
Notes: Read/Write
Indicates whether or not the element is a
root node (and therefore cannot be
descended from another element).
1 = True, 0 = False.

IsSpec Boolean
Notes: Read/Write
Boolean value indicating whether the
element is a specification or not.
1 = True, 0 = False.

Issues Collection
Notes: Read only
Collection of Issue objects.

Locked Boolean
Notes: Read/Write
Indicates if the element has been locked

(c) Sparx Systems 2019 Page 283 of 985

User Guide - Automation 20 January, 2020

against further change.

MetaType String
Notes: Read only
The element's domain-specific meta type,
as defined by an applied stereotype from
an MDG Technology.

Methods Collection
Notes: Read only
Collection of Method objects for current
element.

MethodsEx Collection
Notes: Read only
Collection of Method objects belonging
to the current element and its parent
elements.

Metrics Collection
Notes: Read only
Collection of Metric elements for current
element.

MiscData String
Notes: Read only
This low-level property provides

(c) Sparx Systems 2019 Page 284 of 985

User Guide - Automation 20 January, 2020

information about the contents of the
PData x fields.
These database fields are not
documented, and developers must gain
understanding of these fields through
their own endeavors to use this property.
MiscData is zero based, therefore:

MiscData(0) corresponds to PData1·

MiscData(1) to PData2, and so on·

Modified Date
Notes: Read/Write
The date the element was last modified.

Multiplicity String
Notes: Read/Write
Multiplicity value for this element.

Name String
Notes: Read/Write
The element name; should be unique
within the current Package.

Notes String
Notes: Read/Write
Further descriptive text about the
element.

(c) Sparx Systems 2019 Page 285 of 985

User Guide - Automation 20 January, 2020

ObjectType ObjectType
Notes: Read only
Distinguishes objects referenced through
a Dispatch interface.

PackageID Long
Notes: Read/Write
A local ID for the Package containing
this element.

ParentID Long
Notes: Read/Write
If this element is a child of another, used
to set or retrieve the ElementID of the
other element; if not, returns 0.

Partitions Collection
Notes: Read only
List of logical partitions into which an
element can be divided.
Only valid for elements that support
partitions, such as Activities and States.

Persistence String
Notes: Read/Write
The persistence associated with this

(c) Sparx Systems 2019 Page 286 of 985

User Guide - Automation 20 January, 2020

element; can be Persistent or Transient.

Phase String
Notes: Read/Write
The phase this element is scheduled to be
constructed in; any string value.

Priority String
Notes: Read/Write
The priority of this element as compared
to other project elements; only applies to
Requirement, Change and Issue types,
otherwise ignored.
Valid values are: Low, Medium and
High.

Properties Properties
Notes: Returns a list of specialized
properties that apply to the element that
might not be available using the
automation model.
The properties are purposely
undocumented because of their obscure
nature and because they are subject to
change as progressive enhancements are
made to them.

PropertyType Long

(c) Sparx Systems 2019 Page 287 of 985

User Guide - Automation 20 January, 2020

Notes: Read/Write
The ElementID of a Type associated with
this element; only valid for Port and Part
elements.

PropertyType
Name

String
Notes: Read
The name of a Type associated with this
element; only valid for Port and Part
elements.

Realizes Collection
Notes: Read only
List of Interfaces realized by this element
for convenience.

Requirements Collection
Notes: Read only
Collection of Requirement objects.

Requirements
Ex

Collection
Notes: Read only
Collection of Requirement objects
belonging to the current element and its
parent elements.

Resources Collection

(c) Sparx Systems 2019 Page 288 of 985

User Guide - Automation 20 January, 2020

Notes: Read only
Collection of Resource objects for current
element.

Risks Collection
Notes: Read only
Collection of Risk objects.

RunState String
Notes: Read/Write
The object's runstate list as a string.

The string consists of a set of statements
in the form:
string =
'@VAR;Variable=<string>;Value=<strin
g>;Op=<string>;@ENDVAR;'
Where:
Op = ['=','>','<','>=','<=', '!=','<>']

For example:
A set of run states can be created by
looping through a set of attributes and
forming a concatenated string:
eRunState = eRunState +
"@VAR;Variable="+ attrib.name +
";Value=" + attrib.value

(c) Sparx Systems 2019 Page 289 of 985

User Guide - Automation 20 January, 2020

+";Op==;@ENDVAR;";

Scenarios Collection
Notes: Read only
Collection of Scenario objects for current
element.

StateTransiti
ons

Collection
Notes: Read only
List of State Transitions that an element
can support; applies in particular to
Timing elements.

Status String
Notes: Read/Write
Sets or gets the status, such as Proposed
or Approved.

Stereotype String
Notes: Read/Write
The primary element stereotype; the first
of the list of stereotypes you can access
using the 'StereotypeEx' attribute.
When setting this attribute, LastError (for
the GetLastError method) will be
non-empty if an error occurs.

(c) Sparx Systems 2019 Page 290 of 985

User Guide - Automation 20 January, 2020

StereotypeEx String
Notes: Read/Write
All the applied stereotypes of the element
in a comma-separated list. Reading the
value will provide the stereotype name
only; assigning the value accepts either
fully-qualified or simple names.
When setting this attribute, LastError (for
the GetLastError method) will be
non-empty if an error occurs.

StyleEx String
Notes: Read/Write
Advanced style settings; reserved for the
use of Sparx Systems.

Subtype Long
Notes: Read/Write
A numeric subtype that qualifies the Type
of the main element

For Event: 0 = Receiver, 1 = Sender·

For Class: 1 = Parameterised, 2 =·

Instantiated, 3 = Both, 0 = Neither,
17 = Association Class

If 17, because an Association Class has
been created through the user interface,
MiscData(3) contains the ID of the
related Association; as MiscData is

(c) Sparx Systems 2019 Page 291 of 985

User Guide - Automation 20 January, 2020

read-only, you cannot create an
Association Class through the
Automation Interface.

For Note: 1 = Note linked to connector,·

2 = Constraint linked to connector
For StateNode: 100 = ActivityIntitial,·

101 = ActivityFinal
For Activity: 0 = Activity, 8 =·

composite Activity (also set to 8 for
other composite elements such as Use
Cases)
For Synchronization: 0 = Horizontal, 1·

= Vertical
Note that there are many more Types
than indicated in these examples.

Tablespace String
Notes: Read/Write
Associated tablespace for a Table
element.

Tag String
Notes: Read/Write
Corresponds to the 'Keywords' field in
the Enterprise Architect user interface.

TaggedValue
s

Collection
Notes: Read only

(c) Sparx Systems 2019 Page 292 of 985

User Guide - Automation 20 January, 2020

Returns a collection of TaggedValue
objects.

TaggedValue
sEx

Collection
Notes: Read only
Returns a collection of TaggedValue
objects belonging to the current element
and the elements specialized or realized
by the current element.

TemplatePara
meters

Collection
Notes: Read Only
A collection of TemplateParameter
objects.

Tests Collection
Notes: Read only
A collection of Test objects for the
current element.

TreePos Long
Notes: Read/Write
Sets or gets the tree position.

Type String
Notes: Read/Write
The element type (such as Class,

(c) Sparx Systems 2019 Page 293 of 985

User Guide - Automation 20 January, 2020

Component).
Note that Type is case sensitive inside
Enterprise Architect and should be
provided with an initial capital (proper
case); valid types are:

Action·

Activity·

ActivityPartition·

ActivityRegion·

Actor·

Artifact·

Association·

Boundary·

Change·

Class·

Collaboration·

Component·

Constraint·

Decision·

DeploymentSpecification·

DiagramFrame·

EmbeddedElement·

Entity·

EntryPoint·

Event·

ExceptionHandler·

(c) Sparx Systems 2019 Page 294 of 985

User Guide - Automation 20 January, 2020

ExitPoint·

ExpansionNode·

ExpansionRegion·

Feature·

GUIElement·

InteractionFragment·

InteractionOccurrence·

InteractionState·

Interface·

InterruptibleActivityRegion·

Issue·

Node·

Note·

Object·

Package·

Parameter·

Part·

Port·

ProvidedInterface·

Report·

RequiredInterface·

Requirement·

Screen·

Sequence·

State·

(c) Sparx Systems 2019 Page 295 of 985

User Guide - Automation 20 January, 2020

StateNode·

Synchronization·

Text·

TimeLine·

UMLDiagram·

UseCase·

TypeInfoPro
perties

Notes: Read only
Returns an interface pointer of
TypeInfoProperties.

Version String
Notes: Read/Write
The version of the element.

Visibility String
Notes: Read/Write
The Scope of this element within the
current Package.
Valid values are: Public, Private,
Protected or Package.

Element Methods

(c) Sparx Systems 2019 Page 296 of 985

User Guide - Automation 20 January, 2020

Method Remarks

ApplyGroup
Lock(string
aGroupName
)

Boolean
Notes: Applies a group lock to the
element object, for the specified group,
on behalf of the current user.
Returns True if the operation is
successful; returns False if the operation
is unsuccessful. Use 'GetLastError()' to
retrieve error information.
Parameters:

aGroupName: String - the name of the·

user group for which to set the group
lock

ApplyUserLo
ck()

Boolean
Notes: Applies a user lock to the element
object for the current user.
Returns True if the operation is
successful; returns False if the operation
is unsuccessful. Use 'GetLastError()' to
retrieve error information.

Clone () LDISPATCH
Notes: Inserts a copy of the selected
element under the same parent as the
selected element.
Returns the newly-created element.

(c) Sparx Systems 2019 Page 297 of 985

User Guide - Automation 20 January, 2020

CreateAssoci
ationClass(lo
ng
ConnectorID)

Boolean
Notes: Makes this element an
AssociationClass of the Association with
the provided Connector ID; the return
value indicates whether the function
succeeded in converting the element to an
AssociationClass.
AssociationClasses are created only
where:

The current element is valid·

The current element is a Class·

The current element is not already an·

AssociationClass
The specified connector exists·

The specified connector is an·

Association
The specified connector is not already·

in an AssociationClass pair
The current element is not at either end·

of the specified connector
Parameters:

ConnectorID: Long - the Connector ID·

of an Association connector

DeleteLinked
Document()

Boolean
Notes: Removes the Linked Document
for the element. This method does not

(c) Sparx Systems 2019 Page 298 of 985

User Guide - Automation 20 January, 2020

display a confirmatory prompt.
Returns True if a document was deleted.

GetBusiness
Rules()

String
Notes: Read Only.
Returns all the Business Rules for the
element.

GetDecision
Table()

String
Notes: Provides read-only access to a
Decision Table XML string.
Returns the XML data for the Decision
Table as a string.

GetElementG
rid()

String
Notes: Returns an object of type
ElementGrid (a Custom Table Artifact
element).

GetLastError
()

String
Notes: Returns a string value describing
the most recent error that occurred in
relation to this object.

GetLinkedDo
cument()

String
Notes: Returns a string value containing
the element's Linked Document contents,
in Rich Text Format.

(c) Sparx Systems 2019 Page 299 of 985

User Guide - Automation 20 January, 2020

If the element contains no Linked
Document, an empty string is returned.

GetRelationS
et(EnumRelat
ionSetType
Type)

String
Notes: Returns a string containing a
comma-separated list of ElementIDs of
directly- and indirectly-related elements
based on the given type.
Recurses using the same relation type on
all elements it finds, retrieving all
dependencies and sub-dependencies of
the current element; for example, Object1
depends on Object2, which depends on
Object3, therefore this method returns
Object2 and Object3.
To obtain only the direct relationships of
the element, use the Connector collection
instead.

GetStereotyp
eList()

String
Notes: Returns a comma-separated list of
stereotypes allied to this element.

HasStereotyp
e(string
Stereotype)

Boolean
Notes: Returns true if the current element
has the specified stereotype applied to it.
Accepts either qualified or unqualified
stereotype names; for example, 'block' or

(c) Sparx Systems 2019 Page 300 of 985

User Guide - Automation 20 January, 2020

'SysML1.3::block'.
Parameters:

Stereotype: String - the name of the·

stereotype to search for

IsAssociation
Class

Boolean
Notes: Returns whether or not the current
element is an AssociationClass.

LoadLinked
Document(str
ing
Filename)

Boolean
Notes: Loads the document from the
specified file into the element's Linked
Document.
Parameters:

FileName: String - the name of the file·

from which to load the document; both
RTF and DOCX input formats are
supported

Refresh() Void
Notes: Refreshes the element features in
the Browser window.
Usually called after adding or deleting
attributes or methods, when the user
interface is required to be updated as
well.

ReleaseUser Boolean

(c) Sparx Systems 2019 Page 301 of 985

User Guide - Automation 20 January, 2020

Lock() Notes: Releases a user lock or group lock
on the element object.
Returns True if the operation is
successful; returns False if the operation
is unsuccessful. Use GetLastError() to
retrieve error information.

SaveLinkedD
ocument(strin
g Filename)

Boolean
Notes: Saves the Linked Document for
this element to the specified file. Returns
False if the element does not have a
Linked document or fails to save the file.
Parameters:

FileName: String - the name of the file·

to save to disk
The output format will be determined
by the file's extension - currently rtf,
docx and pdf are supported; if an
invalid extension is used, it will write
the file in RTF format regardless of the
extension

SetAppearan
ce(long
Scope, long
Item, long
Value)

Void
Notes: Sets the visual appearance of the
element.
Parameters:

Scope: Long - Scope of appearance set·

to modify

(c) Sparx Systems 2019 Page 302 of 985

User Guide - Automation 20 January, 2020

1 - Base (Default appearance across
entire model)
To set appearance for the element
(diagram object) in a selected diagram
only, see Setting The Style in the
DiagramObject Class topic
Item: Long - Appearance feature to·

modify
0 - Background color
1 - Font Color
2 - Border Color
3 - Border Width
Value: Long - Value to set appearance·

to

SetComposit
eDiagram()

Boolean
Notes: Sets the composite diagram of the
element.
Parameters:

GUID: String - the GUID of the·

composite diagram; a blank GUID will
remove the link to the composite
diagram

SetCreated(D
ate NewVal)

Void
Notes: Deprecated
This method is no longer supported.

(c) Sparx Systems 2019 Page 303 of 985

User Guide - Automation 20 January, 2020

SetModified(
Date
NewVal)

Void
Notes: Deprecated
This method is no longer supported.

SynchConstr
aints(string
Profile, string
Stereotype)

Boolean
Notes: Synchronizes the constraints of a
UML Profile item for this element, only
if the specified stereotype has been
applied.
Parameters:

Profile: String - Name of the profile·

that contains the stereotype
Stereotype: String - Name of the profile·

stereotype for which the default
constraints are to be synchronized

SynchTagged
Values(string
Profile, string
Stereotype)

Boolean
Notes: Synchronizes the Tagged Values
of a UML Profile item for this element,
only if the specified stereotype has been
applied.
Parameters:

Profile: String - Name of the profile·

that contains the stereotype
Stereotype: String - Name of the profile·

stereotype for which the default tags
are to be synchronized

(c) Sparx Systems 2019 Page 304 of 985

User Guide - Automation 20 January, 2020

UnlinkFrom
Association

Boolean
Notes: Performs the opposite of
CreateAssociationClass().

Update() Boolean
Notes: Updates the current element object
after modification or appending a new
item.
If False is returned, check the
'GetLastError()' function for more
information.

(c) Sparx Systems 2019 Page 305 of 985

User Guide - Automation 20 January, 2020

ElementGrid Class

The ElementGrid object represents a Custom Table, which
is used to display custom data in tabular format on a
diagram, the data being provided by the user rather than
generated by the system.

The ElementGrid object is accessible from an Element
object, using the GetElementGrid() method.

Associated table in .EAP file

t_object

ElementGrid Methods

Method Remarks

GetCell (int
nrow, int
ncell)

Variant
Notes: The cell value is return as a
variant value.
Parameters:

nRow: Integer - the number of the row·

containing the cell
nCell: Integer - the number of the cell·

in the row (the column number)

(c) Sparx Systems 2019 Page 306 of 985

User Guide - Automation 20 January, 2020

GetColumnC
ount ()

Integer
Notes: Returns the number of columns in
the grid.

GetRowCoun
t ()

Integer
Notes: Returns the number of rows in the
grid.

SetCell (int
nRow, int
nCell, variant
sValue)

Boolean
Notes: Sets a value in the specified cell.
Parameters:

nRow: Integer - specifies the row into·

which to insert the value
nCell: Integer - specifies the cell·

(column number) into which to insert
the value
sValue: Variant - specifies the value to·

set in the cell

SetGridSize
(int nRows,
int
nColumns)

Boolean
Notes: Sets the size of the grid in rows
and columns. The size can be set and
reset; any data outside the bounds of the
new grid size will be lost on resize.
Parameters:

nRows: Integer - the number of rows in·

the table grid

(c) Sparx Systems 2019 Page 307 of 985

User Guide - Automation 20 January, 2020

nColumns: Integer - the number of·

columns in the table grid

(c) Sparx Systems 2019 Page 308 of 985

User Guide - Automation 20 January, 2020

File Class

A File represents an associated file for an element. Files are
accessed through the Element Files collection.

Associated table in .EAP file

t_objectfiles

File Attributes

Attribute Remarks

FileDate String
Notes: Read/Write
The file date when the entry was created.

Name String
Notes: Read/Write
The file name can be a logical file or a
reference to a web address (using http://).

Notes String
Notes: Read/Write

(c) Sparx Systems 2019 Page 309 of 985

User Guide - Automation 20 January, 2020

Notes about the file.

ObjectType ObjectType
Notes: Read only
Distinguishes objects referenced through
a Dispatch interface.

Size String
Notes: Read/Write
The file size.

Type String
Notes: Read/Write
The file type.

File Methods

Method Remarks

GetLastError
()

String
Notes: Returns a string value describing
the most recent error that occurred in
relation to this object.

(c) Sparx Systems 2019 Page 310 of 985

User Guide - Automation 20 January, 2020

Update() Boolean
Notes: Updates the current File object
after modification or appending a new
item.
If False is returned, check the
'GetLastError()' function for more
information.

(c) Sparx Systems 2019 Page 311 of 985

User Guide - Automation 20 January, 2020

Issue (Maintenance) Class

An Issue is either a Change or a Defect, is associated with
the containing element, and is accessed through the Issues
collection of an element.

Associated table in .EAP file

t_objectproblems

Issue Attributes

Attribute Remarks

DateReported Date
Notes: Read/Write
The date the issue was reported.

DateResolve
d

Date
Notes: Read/Write
The date the issue was resolved.

ElementID Long
Notes: Read/Write

(c) Sparx Systems 2019 Page 312 of 985

User Guide - Automation 20 January, 2020

The ID of the element associated with
this issue.

Name String
Notes: Read/Write
The Issue name; that is, the Issue itself.

Notes String
Notes: Read/Write
The Issue description.

ObjectType ObjectType
Notes: Read only
Distinguishes objects referenced through
a Dispatch interface.

Priority String
Notes: Read/Write
The priority of the Issue - Low, Medium
or High.

Reporter String
Notes: Read/Write
The user ID of the person reporting the
issue.

Resolver String

(c) Sparx Systems 2019 Page 313 of 985

User Guide - Automation 20 January, 2020

Notes: Read/Write
The user ID of the person resolving the
issue.

ResolverNote
s

String
Notes: Read/Write
Notes entered by the resolver about
resolution of the Issue.

Severity String
Notes: Read/Write
The Issue severity - Low, Medium or
High.

Status String
Notes: Read/Write
The current status of the issue.

Type Variant
Notes: Read/Write
The Issue type - Defect, Change, Issue or
Task.

Version String
Notes: Read/Write
The version associated with the issue.
Note that this method is only available

(c) Sparx Systems 2019 Page 314 of 985

User Guide - Automation 20 January, 2020

through a Dispatch interface.
Object ob = Issue;
Print ob.Version;

Issue Methods

Method Remarks

GetLastError
()

String
Notes: Returns a string value describing
the most recent error that occurred in
relation to this object.

Update() Boolean
Notes: Updates the current Issue object
after modification or appending a new
item.
If False is returned, check the
'GetLastError()' function for more
information.

(c) Sparx Systems 2019 Page 315 of 985

User Guide - Automation 20 January, 2020

Metric Class

A Metric is a named item with a weighting that can be
associated with an element for purposes of building metrics
about the model. Metrics are accessed through the Element
Metrics collection.

Associated table in .EAP file

t_objectmetrics

Metric Attributes

Attribute Remarks

Name String
Notes: Read/Write
The name of the metric.

Notes String
Notes: Read/Write
Notes about this metric.

ObjectType ObjectType

(c) Sparx Systems 2019 Page 316 of 985

User Guide - Automation 20 January, 2020

Notes: Read only
Distinguishes objects referenced through
a Dispatch interface.

Type String
Notes: Read/Write
The metric type.

Weight Long
Notes: Read/Write
A user-defined weighting for estimation
or metric purposes.

Metric Methods

Method Remarks

GetLastError
()

String
Notes: Returns a string value describing
the most recent error that occurred in
relation to this object.

Update() Boolean
Notes: Updates the current Metric object
after modification or appending a new

(c) Sparx Systems 2019 Page 317 of 985

User Guide - Automation 20 January, 2020

item.
If False is returned, check the
'GetLastError()' function for more
information.

(c) Sparx Systems 2019 Page 318 of 985

User Guide - Automation 20 January, 2020

Requirement Class

An Element Requirement object holds information about the
requirements of an element in the context of the model.
Requirements can be accessed using the Element
Requirements collection.

Associated table in .EAP file

t_objectrequires

Requirement Attributes

Attribute Remarks

Difficulty String
Notes: Read/Write
The estimated difficulty of implementing
the requirement.

LastUpdate Date
Notes: Read/Write
The date the requirement was last
updated.

(c) Sparx Systems 2019 Page 319 of 985

User Guide - Automation 20 January, 2020

Name String
Notes: Read/Write
The requirement itself.

Notes String
Notes: Read/Write
Further notes on the requirement.

ObjectType ObjectType
Notes: Read only
Distinguishes objects referenced through
a Dispatch interface.

ParentID Long
Notes: Read only
The ElementID of the element to which
this requirement applies.

Priority String
Notes: Read/Write
The assigned priority of the requirement.

RequirementI
D

Long
Notes: Read only
A local ID for this requirement.

Stability String

(c) Sparx Systems 2019 Page 320 of 985

User Guide - Automation 20 January, 2020

Notes: Read/Write
The estimated stability of the
requirement.
This is an indication of the probability of
the requirement - or understanding of the
requirement - changing. High stability
indicates a low probability of the
requirement changing.

Status String
Notes: Read/Write
The current status of the requirement.

Type String
Notes: Read/Write
The requirement type.

Requirement Methods

Method Remarks

GetLastError
()

String
Notes: Returns a string value describing
the most recent error that occurred in
relation to this object.

(c) Sparx Systems 2019 Page 321 of 985

User Guide - Automation 20 January, 2020

Update() Boolean
Notes: Updates the current Requirement
object after modification or appending a
new item.
If False is returned, check the
'GetLastError()' function for more
information.

(c) Sparx Systems 2019 Page 322 of 985

User Guide - Automation 20 January, 2020

Resource Class

An Element Resource is a named person/task pair with
timing constraints and percent complete indicators. Use this
to manage the work associated with delivering an Element.

Associated table in .EAP file

t_objectresources

Resource Attributes

Attribute Description

ActualHours Long
Notes: Read/Write
The time already expended on the task, in
hours, days or other units.

DateEnd Date
Notes: Read/Write
The expected end date.

DateStart Date

(c) Sparx Systems 2019 Page 323 of 985

User Guide - Automation 20 January, 2020

Notes: Read/Write
The date to start work.

ExpectedHou
rs

Long
Notes: Read/Write
The total expected time the task might
run, in hours, days or other units.

History String
Notes: Read/Write
Gets or sets history text.

Name String
Notes: Read/Write
The name of the resource (for example, a
person's name).

Notes String
Notes: Read/Write
Descriptive notes.

ObjectType ObjectType
Notes: Read only
Distinguishes objects referenced through
a Dispatch interface.

PercentComp Long

(c) Sparx Systems 2019 Page 324 of 985

User Guide - Automation 20 January, 2020

lete Notes: Read/Write
The current percent complete figure.

Role String
Notes: Read/Write
The role the resource plays in
implementing the element.

Time Long
Notes: Read/Write
The time expected to complete the task; a
numeric indicating the number of days.

Resource Methods

Method Description

GetLastError
()

String
Notes: Returns a string value describing
the most recent error that occurred in
relation to this object.
This function is rarely used as an
exception is thrown when an error occurs.

Update() Boolean

(c) Sparx Systems 2019 Page 325 of 985

User Guide - Automation 20 January, 2020

Notes: Update the current Resource
object after modification or appending a
new item.
If False is returned, check the
'GetLastError()' function for more
information.

(c) Sparx Systems 2019 Page 326 of 985

User Guide - Automation 20 January, 2020

Risk Class

A Risk object represents a named risk associated with an
element, it is used for project management purposes. Risks
can be accessed through the Element Risks collection.

Associated table in .EAP file

t_objectrisks

Risk Attributes

Attribute Description

Name String
Notes: Read/Write
The name of the risk.

Notes String
Notes: Read/Write
Further notes describing the risk.

ObjectType ObjectType
Notes: Read only

(c) Sparx Systems 2019 Page 327 of 985

User Guide - Automation 20 January, 2020

Distinguishes objects referenced through
a Dispatch interface.

Type String
Notes: Read/Write
The risk type associated with this
element.

Weight Long
Notes: Read/Write
A weighting for estimation or metric
purposes.

Risk Methods

Method Description

GetLastError
()

String
Notes: Returns a string value describing
the most recent error that occurred in
relation to this object.

Update() Boolean
Notes: Update the current Risk object
after modification or appending a new

(c) Sparx Systems 2019 Page 328 of 985

User Guide - Automation 20 January, 2020

item.
If False is returned, check the
'GetLastError()' function for more
information.

(c) Sparx Systems 2019 Page 329 of 985

User Guide - Automation 20 January, 2020

Scenario Class

A Scenario corresponds to a Collaboration or Use Case
instance. Each Scenario is a path of execution through the
logic of a Use Case. Scenarios can be added to using the
Element Scenarios collection.

Associated table in .EAP file

t_objectscenarios

Scenario Attributes

Attribute Description

Name String
Notes: Read/Write
The Scenario name.

Notes String
Notes: Read/Write
A description of the Scenario, usually
containing the steps to execute the
scenario.

(c) Sparx Systems 2019 Page 330 of 985

User Guide - Automation 20 January, 2020

ObjectType ObjectType
Notes: Read only
Distinguishes objects referenced through
a Dispatch interface.

ScenarioGUI
D

String
Notes: Read/Write
A unique ID for the Scenario, used to
identify the Scenario unambiguously
within a model.

Steps Collection of ScenarioStep Class
Notes: Read only
A collection of step objects for this
Scenario.
Use the 'AddNew' and 'Delete' functions
to manage steps. 'AddNew' passes the
step name and '1' as the type for an actor
step.

Type String
Notes: Read/Write
The scenario type (for example, Basic
Path).

Weight Long
Notes: Read/Write

(c) Sparx Systems 2019 Page 331 of 985

http://www.sparxsystems.com/enterprise_architect_user_guide/15.1/automation/scenariostep.html

User Guide - Automation 20 January, 2020

Currently used to position scenarios in
the scenario list (that is, List Position).

XMLContent String
Notes: Read/Write
A structured field that can contain
scenario details in XML format. It is
recommended that you use the 'Steps'
collection to read or modify this field.

Scenario Methods

Method Description

GetLastError
()

String
Notes: Returns a string value describing
the most recent error that occurred in
relation to this object.

Update() Boolean
Notes: Update the current Scenario object
after modification or appending a new
item.
If False is returned, check the
'GetLastError()' function for more

(c) Sparx Systems 2019 Page 332 of 985

User Guide - Automation 20 January, 2020

information.

(c) Sparx Systems 2019 Page 333 of 985

User Guide - Automation 20 January, 2020

ScenarioExtension Class

ScenarioExtension Attributes

Attribute Description

ExtensionGU
ID

String
Notes: Read/Write
A unique GUID for this Extension.

Join String
Notes: Read/Write
The GUID of the step where this
Extension rejoins the Scenario.

JoiningStep ScenarioStep
Notes: Read only
The actual step where this Extension
rejoins the Scenario, if any.

Level String
Notes: Read only
The number of this Extension as shown
in the scenario editor. This is derived
from the value of Pos for this object and
the owning step.

(c) Sparx Systems 2019 Page 334 of 985

User Guide - Automation 20 January, 2020

Name String
Notes: Read/Write
The Extension name. This should match
the name of the linked scenario.

ObjectType ObjectType
Notes: Read only
Distinguishes objects referenced through
a Dispatch interface.

Pos Long
Notes: Read/Write
The position of the Extension in the
Extensions list.

Scenario Scenario
Notes: Read only
The scenario that is executed as an
alternative path for this Extension.

ScenarioExtension Methods

Method Description

(c) Sparx Systems 2019 Page 335 of 985

User Guide - Automation 20 January, 2020

GetLastError
()

String
Notes: Returns a string value describing
the most recent error that occurred in
relation to this object.

Update() Boolean
Notes: Updates the current
ScenarioExtension object after
modification or appending a new item.
If False is returned, check the
'GetLastError()' function for more
information.

(c) Sparx Systems 2019 Page 336 of 985

User Guide - Automation 20 January, 2020

ScenarioStep Class

ScenarioStep Attributes

Attribute Description

Extensions Collection of ScenarioExtension
Notes: Read only
A collection of ScenarioExtension objects
that specify how the scenario is extended
from this step. The arguments to
'AddNew' should match the name and
GUID of the alternative scenario being
linked to.

Level String
Notes: Read only
The number of this Step as shown in the
scenario editor. This is derived from the
value of Pos.

Link String
Notes: Read/Write
The GUID of a Use Case that is relevant
to this step.

(c) Sparx Systems 2019 Page 337 of 985

User Guide - Automation 20 January, 2020

LinkedEleme
nt

Element
Notes: Read only
The actual element specified by Link, if
any.

Name String
Notes: Read/Write
The step name.

ObjectType ObjectType
Notes: Read only
Distinguishes objects referenced through
a Dispatch interface.

Pos Long
Notes: Read/Write
The position of the 'Step' in the 'Scenario
Step' list.

Results String
Notes: Read/Write
Any results that are given from this step.

State String
Notes: Read/Write
A description of the state the system
enters when this Step is executed.

(c) Sparx Systems 2019 Page 338 of 985

User Guide - Automation 20 January, 2020

StepGUID String
Notes: Read/Write
A unique GUID for this Step.

StepType ScenarioStepType
Notes: Read/Write
Identifies whether this step is being
performed by a user or the system.

Uses String
Notes: Read/Write
The input and requirements that are
relevant to this step.

UsesElement
List

Collection of Element
Notes: Read only
Indicates that the Scenarios view 'Uses'
field is a linked element list.

ScenarioStep Methods

Method Description

GetLastError String

(c) Sparx Systems 2019 Page 339 of 985

User Guide - Automation 20 January, 2020

() Notes: Returns a string value describing
the most recent error that occurred in
relation to this object.

Update() Boolean
Notes: Updates the current ScenarioStep
object after modification or appending a
new item.
If False is returned, check the
'GetLastError()' function for more
information.

(c) Sparx Systems 2019 Page 340 of 985

User Guide - Automation 20 January, 2020

TaggedValue Class

A TaggedValue is a named property and value associated
with an element. Tagged Values can be accessed through the
TaggedValues collection.

Associated table in .EAP file

t_objectproperties

TaggedValue Attributes

Attribute Description

ElementID Long
Notes: Read/Write
The local ID of the associated element.

FQName String
Notes: Read only
The fully-qualified name of the tag.

Name String
Notes: Read/Write

(c) Sparx Systems 2019 Page 341 of 985

User Guide - Automation 20 January, 2020

The name of the tag.

Notes String
Notes: Read/Write
Further descriptive notes about this tag.
If 'Value' is set to '<memo>', then 'Notes'
should contain the actual Tagged Value
content.

ObjectType ObjectType
Notes: Read only
Distinguishes objects referenced through
a Dispatch interface.

PropertyGUI
D

String
Notes: Read/Write
The global ID of the tag.

PropertyID Long
Notes: Read only
The local ID of the tag.

Value String
Notes: Read/Write
The value assigned to this tag.
This field has a 255 character limit. If the
value is greater than 255 characters long,

(c) Sparx Systems 2019 Page 342 of 985

User Guide - Automation 20 January, 2020

set the value to "<memo>" and insert the
body of text in the 'Notes' attribute.
When reading existing Tagged Values, if
'Value'' = "<memo>" then the developer
should read the actual body of text from
the 'Notes' attribute.

TaggedValue Methods

Method Description

GetAttribute(
string
propName)

String
Notes: Returns the text of a single named
property within a structured Tagged
Value.
Parameters:

propName: String - the name of the·

property for which the text is being
returned

GetLastError
()

String
Notes: Returns a string value describing
the most recent error that occurred in
relation to this object.

(c) Sparx Systems 2019 Page 343 of 985

User Guide - Automation 20 January, 2020

HasAttributes
()

Boolean
Notes: Returns True if the Tagged Value
is a structured Tagged Value with one or
more properties.

SetAttribute(
string
propName,
string
propValue)

Boolean
Notes: Sets the text of a single named
property within a structured Tagged
Value.
Parameters:

propName: String - the name of the·

property for which the text is being set
propValue: the value of the property·

Update() Boolean
Notes: Updates the current TaggedValue
object after modification or appending a
new item.
If False is returned, check the
'GetLastError()' function for more
information.

(c) Sparx Systems 2019 Page 344 of 985

User Guide - Automation 20 January, 2020

Test Class

A Test is a single Test Case applied to an element. Tests are
added and accessed through the Element Tests collection.

Associated table in .EAP file

t_objecttests

Test Attributes

Attribute Description

AcceptanceC
riteria

String
Notes: Read/Write
The acceptance criteria for successful
execution.

CheckedBy String
Notes: Read/Write
User ID of the person confirming the
results.

Class Long

(c) Sparx Systems 2019 Page 345 of 985

User Guide - Automation 20 January, 2020

Notes: Read/Write
The test Class:
1 = Unit Test
2 = Integration Test
3 = System Test
4 = Acceptance Test
5 = Scenario Test
6 = Inspection Test

DateRun Date
Notes: Read/Write
The date the test was last run.

Input String
Notes: Read/Write
Input data for the test.

Name String
Notes: Read/Write
The test name.

Notes String
Notes: Read/Write
Detailed notes about test to be carried
out.

(c) Sparx Systems 2019 Page 346 of 985

User Guide - Automation 20 January, 2020

ObjectType ObjectType
Notes: Read only
Distinguishes objects referenced through
a Dispatch interface.

RunBy String
Notes: Read/Write
The user ID of the person conducting the
test.

Status String
Notes: Read/Write
The current status of the test.

TestResults Variant
Notes: Read/Write
Results of test.

Type String
Notes: Read/Write
The test type, such as Load or
Regression.

Test Methods

(c) Sparx Systems 2019 Page 347 of 985

User Guide - Automation 20 January, 2020

Method Description

GetLastError
()

String
Notes: Returns a string value describing
the most recent error that occurred in
relation to this object.

Update() Boolean
Notes: Update the current Test object
after modification or appending a new
item.
If False is returned, check the
'GetLastError()' function for more
information.

(c) Sparx Systems 2019 Page 348 of 985

User Guide - Automation 20 January, 2020

Element Features Package

The ElementFeatures Package contains descriptions of the
model interfaces that enable access to operations and
attributes, and their associated Tagged Values and
constraints.

This diagram illustrates the components associated with
element features. These include attributes and methods, and
their associated constraints and Tagged Values. It also
includes the Parameter object that defines the arguments
associated with an operation (Method).

(c) Sparx Systems 2019 Page 349 of 985

User Guide - Automation 20 January, 2020

(c) Sparx Systems 2019 Page 350 of 985

User Guide - Automation 20 January, 2020

Attribute Class

An attribute corresponds to a UML Attribute. It contains
further collections for constraints and Tagged Values.
Attributes are accessed from the element Attributes
collection.

Associated table in .EAP file

 t_attribute

Attribute Attributes

Attribute Remarks

Alias String
Notes: Read/Write
Contains the (optional) 'Alias' property
for this attribute. This can be used
interchangeably with the Style attribute.

AllowDuplic
ates

Boolean
Notes: Read/Write
Indicates if duplicates are allowed in the
collection.

(c) Sparx Systems 2019 Page 351 of 985

User Guide - Automation 20 January, 2020

If the attribute represents a database
column this, when set, represents the 'Not
Null' option.

AttributeGUI
D

String
Notes: Read only
A globally unique ID for the current
attribute. This attribute is system
generated.

AttributeID Long
Notes: Read only
The local ID number of the attribute.

ClassifierID Long
Notes: Read/Write
The classifier ID, if appropriate,
indicating the base type associated with
the attribute, if not a primitive type.

Constraints Collection
Notes: Read only
A collection of AttributeConstraint
objects, used to access and manage
constraints associated with this attribute.

Container String

(c) Sparx Systems 2019 Page 352 of 985

User Guide - Automation 20 January, 2020

Notes: Read/Write
The container type.

Containment String
Notes: Read/Write
The type of containment - Not Specified,
By Reference or By Value.

Default String
Notes: Read/Write
The initial value assigned to this attribute.

FQStereotype String
Notes: Read Only
The fully-qualified stereotype name in the
format "Profile::Stereotype". One or more
fully-qualified stereotype names can be
assigned to StereotypeEx.

IsCollection Boolean
Notes: Read/Write
Indicates if the current feature is a
collection or not. If the attribute
represents a database column this, when
set, represents a Foreign Key.

IsConst Boolean

(c) Sparx Systems 2019 Page 353 of 985

User Guide - Automation 20 January, 2020

Notes: Read/Write
A flag indicating if the attribute is Const
or not.

IsDerived Boolean
Notes: Read/Write
Indicates if the attribute is derived (that
is, a calculated value).

IsID Boolean
Notes: Read/Write
Indicates if the attribute uniquely
identifies an instance of the containing
Class, or not.

IsOrdered Boolean
Notes: Read/Write
Indicates if a collection is ordered or not.
If the attribute represents a database
column this, when set, represents a
Primary Key.

IsStatic Boolean
Notes: Read/Write
Indicates if the current attribute is a static
feature or not. If the attribute represents a
database column this, when set,
represents the 'Unique' option.

(c) Sparx Systems 2019 Page 354 of 985

User Guide - Automation 20 January, 2020

Length String
Notes: Read/Write
The attribute length, where applicable.

LowerBound String
Notes: Read/Write
A value for the collection lower
boundary.

Name String
Notes: Read/Write
The attribute name.

Notes String
Notes: Read/Write
Further notes on this attribute.

ObjectType ObjectType
Notes: Read only
Distinguishes objects referenced through
a Dispatch interface.

ParentID Long
Notes: Read only
Returns the ElementID of the element
that this attribute is a part of.

(c) Sparx Systems 2019 Page 355 of 985

User Guide - Automation 20 January, 2020

Pos Long
Notes: Read/Write
The position of the attribute in the Class
attribute list.

Precision String
Notes: Read/Write
The precision value.

RedefinedPro
perty

String
Notes: Read/Write
Corresponds to the 'Redefined Property'
field on the 'Detail' page of the attribute
'Properties' dialog, or the UML
redefinedProperty attribute.
Contains a comma separated list of
GUIDs.

Scale String
Notes: Read/Write
The scale value.

Stereotype String
Notes: Read/Write
Sets or gets the stereotype for this
attribute.

(c) Sparx Systems 2019 Page 356 of 985

User Guide - Automation 20 January, 2020

When setting this attribute, LastError (for
the GetLastError method) will be
non-empty if an error occurs.

StereotypeEx String
Notes: Read/Write
Provides all the applied stereotypes of the
attribute, in a comma-separated list.
Reading the value will provide the
stereotype name only; assigning the value
accepts either fully-qualified or simple
names.
When setting this attribute, LastError (for
the GetLastError method) will be
non-empty if an error occurs.

Style String
Notes: Read/Write
Contains the (optional) Alias property for
this attribute. This can be used
interchangeably with the Alias attribute.

StyleEx String
Notes: Read/Write
Advanced style settings, reserved for the
use of Sparx Systems.

SubsettedPro String

(c) Sparx Systems 2019 Page 357 of 985

User Guide - Automation 20 January, 2020

perty Notes: Read/Write
Corresponds to the 'Subsetted Property'
field on the 'Detail' page of the attribute
'Properties' dialog, or the UML
subsettedProperty attribute.
Contains a comma separated list of
GUIDs.

TaggedValue
s

Collection of type AttributeTag
Notes: Read only
A collection of AttributeTag objects, used
to access and manage Tagged Values
associated with this attribute.

TaggedValue
sEx

Collection of type TaggedValue
Notes: Read only
A collection of TaggedValue objects
belonging to the current attribute and the
TaggedValuesEx property of its
classifier.

Type String
Notes: Read/Write
The attribute type (by name; also see
ClassifierID).

TypeInfoPro
perties

Notes: Read only
Returns an interface pointer of

(c) Sparx Systems 2019 Page 358 of 985

User Guide - Automation 20 January, 2020

TypeInfoProperties.

UpperBound String
Notes: Read/Write
A value for the collection upper
boundary.

Visibility String
Notes: Read/Write
Identifies the scope of the attribute -
Private, Protected, Public or Package.

Attribute Methods

Method Remarks

GetLastError
()

String
Notes: Returns a string value describing
the most recent error that occurred in
relation to this object.

Update() Boolean
Notes: Updates the current attribute
object after modifying or appending a
new item.

(c) Sparx Systems 2019 Page 359 of 985

User Guide - Automation 20 January, 2020

If False is returned, check the
'GetLastError()' function for more
information.

(c) Sparx Systems 2019 Page 360 of 985

User Guide - Automation 20 January, 2020

AttributeConstraint Class

An AttributeConstraint is a constraint associated with the
current Attribute.

Associated table in .EAP file

t_attributeconstraints

AttributeConstraint Attributes

Attribute Remarks

AttributeID Long
Notes: Read/Write
The ID of the attribute this constraint
applies to.

Name String
Notes: Read/Write
The name of the constraint.

Notes String
Notes: Read/Write

(c) Sparx Systems 2019 Page 361 of 985

User Guide - Automation 20 January, 2020

Descriptive notes about the constraint.

ObjectType ObjectType
Notes: Read only
Distinguishes objects referenced through
a Dispatch interface.

Type String
Notes: Read/Write
The type of constraint.

AttributeConstraint Methods

Method Remarks

GetLastError
()

String
Notes: Returns a string value describing
the most recent error that occurred in
relation to this object.

Update() Boolean
Notes: Update the current
AttributeConstraint object after
modification or appending a new item.
If False is returned, check the

(c) Sparx Systems 2019 Page 362 of 985

User Guide - Automation 20 January, 2020

'GetLastError()' function for more
information.

(c) Sparx Systems 2019 Page 363 of 985

User Guide - Automation 20 January, 2020

AttributeTag Class

An AttributeTag represents a Tagged Value associated with
an attribute.

Associated table in .EAP file:

t_attributetag

AttributeTag Attributes:

Attribute Remarks

AttributeID Long
Notes: Read/Write
The local ID of the attribute associated
with this Tagged Value.

FQName String
Notes: Read only
The fully-qualified name of the tag.

Name String
Notes: Read/Write

(c) Sparx Systems 2019 Page 364 of 985

User Guide - Automation 20 January, 2020

The name of the tag.

Notes String
Notes: Read/Write
Further descriptive notes about this tag.
If 'Value' is set to '<memo>', then 'Notes'
should contain the actual Tagged Value
content.

ObjectType ObjectType
Notes: Read only
Distinguishes objects referenced through
a Dispatch interface.

TagGUID String
Notes: Read/Write
A globally unique ID for this Tagged
Value.

TagID Long
Notes: Read only
The local ID to identify the Tagged
Value.

Value String
Notes: Read/Write
The value assigned to this tag.

(c) Sparx Systems 2019 Page 365 of 985

User Guide - Automation 20 January, 2020

This field has a 255 character limit. If the
value is greater than 255 characters long,
set the value to "<memo>" and insert the
body of text in the 'Notes' attribute.
When reading existing Tagged Values, if
'Value' = "<memo>" then the developer
should read the actual body of text from
the 'Notes' attribute.

AttributeTag Methods:

Method Remarks

GetAttribute(
string
propName)

String
Notes: Returns the text of a single named
property within a structured Tagged
Value.

GetLastError
()

String
Notes: Returns a string value describing
the most recent error that occurred in
relation to this object.
This function is rarely used as an
exception is thrown when an error occurs.

(c) Sparx Systems 2019 Page 366 of 985

User Guide - Automation 20 January, 2020

HasAttributes
()

Boolean
Notes: Returns True if the Tagged Value
is a structured Tagged Value with one or
more properties.

SetAttribute(
string
propName,
string
propValue)

Boolean
Notes: Sets the text of a single named
property within a structured Tagged
Value.

Update() Boolean
Notes: Updates the current AttributeTag
object after modification or appending a
new item.
If False is returned, check the
'GetLastError()' function for more
information.

(c) Sparx Systems 2019 Page 367 of 985

User Guide - Automation 20 January, 2020

CustomProperties Collection

The CustomProperties collection contains 0 or more
CustomProperties associated with the current element.
These properties provide advanced UML configuration
options, and must not be added to or deleted. The value of
each property can be set.

CustomProperty

Attribute Remarks

Name String
Notes: Read only
The CustomProperty name.

ObjectType ObjectType
Notes: Read only
Distinguishes objects referenced through
a Dispatch interface.

Value String
Notes: Read/Write
The value associated with this
CustomProperty. This can be:

A string·

(c) Sparx Systems 2019 Page 368 of 985

User Guide - Automation 20 January, 2020

The boolean values True or False, or·

An enumeration value from a defined·

list
The UML 2.5 specification in general
provides information on the kinds of
enumeration relevant here.

Notes

The number and type of properties vary depending on the·

actual element

(c) Sparx Systems 2019 Page 369 of 985

User Guide - Automation 20 January, 2020

EmbeddedElements Collection

In UML 2.5 an element can have one or more embedded
elements such as Ports, Pins, Parameters or ObjectNodes.
These are attached to the boundary of the host element and
cannot be moved off the element. They are owned by their
host element. This collection gives easy access to the set of
elements embedded on the surface of an element. Note that
some embedded elements can have their own embedded
element collection (for example, Ports can have Interfaces
embedded on them).

The EmbeddedElements collection contains Element
objects.

Example

(c) Sparx Systems 2019 Page 370 of 985

User Guide - Automation 20 January, 2020

(c) Sparx Systems 2019 Page 371 of 985

User Guide - Automation 20 January, 2020

Method Class

A method represents a UML operation. It is accessed from
the Element Methods collection and includes collections for
parameters, constraints and Tagged Values.

Associated table in .EAP file

t_operation

Method Attributes

Attribute Remarks

Abstract Boolean
Notes: Read/Write
A flag indicating if the method is abstract
(1) or not (0).

Behavior String
Notes: Read/Write
Some further explanatory behavior notes
(for example, pseudocode).
In earlier releases of Enterprise Architect
this attribute had the UK/Australian

(c) Sparx Systems 2019 Page 372 of 985

User Guide - Automation 20 January, 2020

spelling 'Behaviour'; this is still present
for backwards compatibility, but please
now use the 'Behavior' attribute for
consistency.

ClassifierID String
Notes: Read/Write
The Classifier ID that applies to the
ReturnType.

Code String
Notes: Read/Write
An optional field to hold the method code
(used for the 'Initial Code' field).

Concurrency Variant
Notes: Read/Write
Indicates the concurrency type of the
method.

FQStereotype String
Notes: Read Only
The fully-qualified stereotype name in the
format "Profile::Stereotype". One or more
fully-qualified stereotype names can be
assigned to StereotypeEx.

IsConst Boolean

(c) Sparx Systems 2019 Page 373 of 985

User Guide - Automation 20 January, 2020

Notes: Read/Write
A flag indicating that the method is
Const.

IsLeaf Boolean
Notes: Read/Write
A flag to indicate if the method is a Leaf
(cannot be overridden).

IsPure Boolean
Notes: Read/Write
A flag indicating that the method is
defined as 'Pure' in C++.

IsQuery Boolean
Notes: Read/Write
A flag to indicate if the method is a query
(that is, does not alter Class variables).

IsRoot Boolean
Notes: Read/Write
A flag to indicate if the method is Root.

IsStatic Boolean
Notes: Read/Write
A flag to indicate a static method.

(c) Sparx Systems 2019 Page 374 of 985

User Guide - Automation 20 January, 2020

IsSynchroniz
ed

Boolean
Notes: Read/Write
A flag indicating a Synchronized method
call.

MethodGUI
D

String
Notes: Read/Write
A globally unique ID for the current
method. This is system generated.

MethodID Long
Notes: Read only
A local ID for the current method, only
valid within this .eap file.

Name String
Notes: Read/Write
The method name.

Notes String
Notes: Read/Write
Descriptive notes on the method.

ObjectType ObjectType
Notes: Read only
Distinguishes objects referenced through
a Dispatch interface.

(c) Sparx Systems 2019 Page 375 of 985

User Guide - Automation 20 January, 2020

Parameters Collection Class
Notes: Read only
The Parameters collection for the current
method, used to add and access parameter
objects for the current method.

ParentID Long
Notes: Read only
Returns the ElementID of the element
that this method belongs to.

Pos Long
Notes: Read/Write
Specifies the position of the method
within the set of operations defined for a
Class.

PostConditio
ns

Collection Class
Notes: Read only
The PostConditions (constraints) as they
apply to this method. This returns a
MethodConstraint object of type 'post'.

PreCondition
s

Collection Class
Notes: Read only
The PreConditions (constraints) as they
apply to this method. This returns a

(c) Sparx Systems 2019 Page 376 of 985

http://www.sparxsystems.com/enterprise_architect_user_guide/15.1/automation/collection.html
http://www.sparxsystems.com/enterprise_architect_user_guide/15.1/automation/collection.html
http://www.sparxsystems.com/enterprise_architect_user_guide/15.1/automation/collection.html

User Guide - Automation 20 January, 2020

MethodConstraint object of type 'pre'.

ReturnIsArra
y

Boolean
Notes: Read/Write
A flag to indicate that the return value is
an array.

ReturnType String
Notes: Read/Write
The return type for the method; this can
be a primitive data type or a Class or
Interface type.

StateFlags String
Notes: Read/Write
Some flags as applied to methods in State
elements.

Stereotype String
Notes: Read/Write
The method stereotype (optional).
When setting this attribute, LastError (for
the GetLastError method) will be
non-empty if an error occurs.

StereotypeEx String
Notes: Read/Write

(c) Sparx Systems 2019 Page 377 of 985

User Guide - Automation 20 January, 2020

All the applied stereotypes of the method
in a comma-separated list. Reading the
value will provide the stereotype name
only; assigning the value accepts either
fully-qualified or simple names.
When setting this attribute, LastError (for
the GetLastError method) will be
non-empty if an error occurs.

Style String
Notes: Read/Write
Contains the Alias property for this
method.

StyleEx String
Notes: Read/Write
Advanced style settings, reserved for the
use of Sparx Systems.

TaggedValue
s

Collection Class of type MethodTag
Class
Notes: Read only
The TaggedValues collection for the
current method. This accesses a list of
MethodTag objects.

Throws String
Notes: Read/Write

(c) Sparx Systems 2019 Page 378 of 985

http://www.sparxsystems.com/enterprise_architect_user_guide/15.1/automation/collection.html
http://www.sparxsystems.com/enterprise_architect_user_guide/15.1/automation/methodtag.html
http://www.sparxsystems.com/enterprise_architect_user_guide/15.1/automation/methodtag.html

User Guide - Automation 20 January, 2020

Exception information. Valid input for
setting the Throws is:

GUID String - the GUID of an element·

in the model or a comma-separated list
of element GUIDS
<none> - removes the existing Throws·

set

TypeInfoPro
perties

Notes: Read only
Returns an interface pointer of
TypeInfoProperties.

Visibility String
Notes: Read/Write
The method scope - Public, Protected,
Private or Package.

Method Methods

Method Remarks

GetLastError
()

String
Notes: Returns a string value describing
the most recent error that occurred in
relation to this object.

(c) Sparx Systems 2019 Page 379 of 985

User Guide - Automation 20 January, 2020

Update() Boolean
Notes: Update the current method object
after modification or appending a new
item.
If False is returned, check the
'GetLastError()' function for more
information.

(c) Sparx Systems 2019 Page 380 of 985

User Guide - Automation 20 January, 2020

MethodConstraint Class

A MethodConstraint is a condition imposed on a method. It
is accessed through either the Method PreConditions or
Method PostConditions collection.

Associated table in .EAP file

 t_operationpres and t_operationposts

MethodConstraint Attributes

Attribute Remarks

MethodID Long
Notes: Read/Write
The local ID of the associated method.

Name String
Notes: Read/Write
The name of the constraint.

Notes String
Notes: Read/Write

(c) Sparx Systems 2019 Page 381 of 985

User Guide - Automation 20 January, 2020

Descriptive notes about this constraint.

ObjectType ObjectType
Notes: Read only
Distinguishes objects referenced through
a Dispatch interface.

Type String
Notes: Read/Write
The constraint type.

MethodConstraint Methods

Method Remarks

GetLastError
()

String
Notes: Returns a string value describing
the most recent error that occurred in
relation to this object.
This function is rarely used as an
exception is thrown when an error occurs.

Update() Boolean
Notes: Update the current
MethodConstraint object after

(c) Sparx Systems 2019 Page 382 of 985

User Guide - Automation 20 January, 2020

modification or appending a new item.
If False is returned, check the
'GetLastError()' function for more
information.

(c) Sparx Systems 2019 Page 383 of 985

User Guide - Automation 20 January, 2020

MethodTag Class

A MethodTag is a Tagged Value associated with a method.

Associated table in .EAP file:

t_operationtag

MethodTag Attributes:

Attribute Remarks

FQName String
Notes: Read only
The fully-qualified name of the tag.

MethodID Long
Notes: Read/Write
The ID of the associated method.

Name String
Notes: Read/Write
The tag or name of the property.

(c) Sparx Systems 2019 Page 384 of 985

User Guide - Automation 20 January, 2020

Notes String
Notes: Read/Write
Further descriptive notes about this tag.
If 'Value' is set to '<memo>', then 'Notes'
should contain the actual Tagged Value
content.

ObjectType ObjectType
Notes: Read only
Distinguishes objects referenced through
a Dispatch interface.

TagGUID String
Notes: Read/Write
A unique GUID for this Tagged Value.

TagID Long
Notes: Read only
A unique ID for this Tagged Value.

Value String
Notes: Read/Write
The value assigned to this tag.
This field has a 255 character limit. If the
value is greater than 255 characters long,
set the value to "<memo>" and insert the
body of text in the 'Notes' attribute.

(c) Sparx Systems 2019 Page 385 of 985

User Guide - Automation 20 January, 2020

When reading existing Tagged Values, if
'Value' = "<memo>" then the developer
should read the actual body of text from
the 'Notes' attribute.

MethodTag Methods:

Method Remarks

GetAttribute(
string
propName)

String
Notes: Returns the text of a single named
property within a structured Tagged
Value.

GetLastError
()

String
Notes: Returns a string value describing
the most recent error that occurred in
relation to this object.
This function is rarely used as an
exception is thrown when an error occurs.

HasAttributes
()

Boolean
Notes: Returns True if the Tagged Value
is a structured Tagged Value with one or
more properties.

(c) Sparx Systems 2019 Page 386 of 985

User Guide - Automation 20 January, 2020

SetAttribute(
string
propName,
string
propValue)

Boolean
Notes: Sets the text of a single named
property within a structured Tagged
Value.

Update() Boolean
Notes: Updates the current MethodTag
object after modification or appending a
new item.
If False is returned, check the
'GetLastError()' function for more
information.

(c) Sparx Systems 2019 Page 387 of 985

User Guide - Automation 20 January, 2020

Parameter Class

A Parameter object represents a method argument and is
accessed through the Method Parameters collection.

Associated table in .EAP file

t_operationparams

Parameter Attributes

Attribute Remarks

Alias String
Notes: Read/Write
An optional alias for this parameter.

ClassifierID String
Notes: Read/Write
A ClassifierID for the parameter, if
known.

Default String
Notes: Read/Write

(c) Sparx Systems 2019 Page 388 of 985

User Guide - Automation 20 January, 2020

A default value for this parameter.

IsConst Boolean
Notes: Read/Write
A flag indicating that the parameter is
Const (cannot be altered).

Kind String
Notes: Read/Write
The parameter kind - in, inout, out, or
return.

Name String
Notes: Read/Write
The parameter name; this must be unique
for a single method.

Notes String
Notes: Read/Write
Descriptive notes.

ObjectType ObjectType
Notes: Read only
Distinguishes objects referenced through
a Dispatch interface.

OperationID Long

(c) Sparx Systems 2019 Page 389 of 985

User Guide - Automation 20 January, 2020

Notes: Read only
The ID of the method associated with this
parameter.

ParameterGU
ID

String
Notes: Read/Write
A system generated, globally unique ID
for the current Parameter.

Position Long
Notes: Read/Write
The position of the parameter in the
argument list.

Stereotype String
Notes: Read/Write
The first stereotype of the parameter.
When setting this attribute, LastError (for
the GetLastError method) will be
non-empty if an error occurs.

StereotypeEx String
Notes: Read/Write
All the applied stereotypes of the
parameter in a comma-separated list.
Reading the value will provide the
stereotype name only; assigning the value
accepts either fully-qualified or simple

(c) Sparx Systems 2019 Page 390 of 985

User Guide - Automation 20 January, 2020

names.
When setting this attribute, LastError (for
the GetLastError method) will be
non-empty if an error occurs.

Style String
Notes: Read/Write
Some style information.

StyleEx String
Notes: Read/Write
Advanced style settings, reserved for the
use of Sparx Systems.

TaggedValue
s

Collection Class of type ParamTag Class
Notes: Read/Write
The GUID of the parameter with which
this ParamTag is associated.

Type Variant
Notes: Read/Write
The parameter type; can be a primitive
type or a defined classifier.

TypeInfoPro
perties

Notes: Read only
Returns an interface pointer of
TypeInfoProperties.

(c) Sparx Systems 2019 Page 391 of 985

http://www.sparxsystems.com/enterprise_architect_user_guide/15.1/automation/collection.html
http://www.sparxsystems.com/enterprise_architect_user_guide/15.1/automation/paramtag.html

User Guide - Automation 20 January, 2020

Parameter Methods

Method Remarks

GetLastError
()

String
Notes: Returns a string value describing
the most recent error that occurred in
relation to this object.

Update() Boolean
Notes: Update the current Parameter
object after modifying or appending a
new item.
If False is returned, check the
'GetLastError()' function for more
information.

(c) Sparx Systems 2019 Page 392 of 985

User Guide - Automation 20 January, 2020

ParamTag Class

A ParamTag is a Tagged Value associated with a method
parameter.

Associated table in .EAP file

t_taggedvalue

ParamTag Attributes

Attribute Remarks

ElementGUI
D

String
Notes: Read/Write
The GUID of the parameter with which
this ParamTag is associated.

FQName String
Notes: Read only
The fully qualified name of the tag.

ObjectType ObjectType
Notes: Read only

(c) Sparx Systems 2019 Page 393 of 985

User Guide - Automation 20 January, 2020

Distinguishes objects referenced through
a Dispatch interface.

PropertyGUI
D

String
Notes: Read/Write
A system generated GUID to identify the
Tagged Value.

Tag String
Notes: Read/Write
The actual tag name.

Value String
Notes: Read/Write
The value associated with this tag.

ParamTag Methods

Method Remarks

GetAttribute(
string
propName)

String
Notes: Returns the text of a single named
property within a structured Tagged
Value.

(c) Sparx Systems 2019 Page 394 of 985

User Guide - Automation 20 January, 2020

GetLastError
()

String
Notes: Returns a string value describing
the most recent error that occurred in
relation to this object.

HasAttributes
()

Boolean
Notes: Returns True if the Tagged Value
is a structured Tagged Value with one or
more properties.

SetAttribute(
string
propName,
string
propValue)

Boolean
Notes: Sets the text of a single named
property within a structured Tagged
Value.

Update() Boolean
Notes: Updates the current ParamTag
object after modifying or appending a
new item.
If False is returned, check the
'GetLastError()' function for more
information.

(c) Sparx Systems 2019 Page 395 of 985

User Guide - Automation 20 January, 2020

Partitions Collection

A collection of internal element partitions (regions). This is
commonly seen in Activity, State, Boundary, Diagram
Frame and similar elements. Not all elements support
partitions.

This collection contains a set of Partition elements. The set
is read/write: information is not saved until the host element
is saved, so ensure that you call the Element.Save method
after making changes to a Partition.

Partition Attributes

Attribute Remarks

Name String
Notes: Read/Write
The partition name; this can represent a
condition or constraint in some cases.

Note String
Notes: Read/Write
A free text note associated with this
partition.

ObjectType ObjectType

(c) Sparx Systems 2019 Page 396 of 985

User Guide - Automation 20 January, 2020

Notes: Read only
Distinguishes objects referenced through
a Dispatch interface.

Operator String
Notes: Read/Write
An optional operator value that specifies
the partition type.

Size String
Notes: Read/Write
The vertical or horizontal width of the
partition in pixels.

(c) Sparx Systems 2019 Page 397 of 985

User Guide - Automation 20 January, 2020

Properties Class

Properties

Properties Attributes

Attribute Remarks

Count Long
Notes: The number of properties that are
available for this object.

ObjectType ObjectType
Notes: Read only
Distinguishes objects referenced through
a Dispatch interface.

Properties Methods

Property

Method Remarks

Item(object Property

(c) Sparx Systems 2019 Page 398 of 985

User Guide - Automation 20 January, 2020

Index) Notes: Returns a property either by name
or by a zero-based integer offset into the
list of properties.
Parameter:

Index: Variant - either a string·

representing the property name or an
integer representing the zero-based
offset into the property list

Property Attributes

Attribute Remarks

Name String
Notes: Read only
The name of the property.
The object to which the properties list
applies can have an automation property
with the same name, in which case the
data accessed through Value is identical
to that obtained through the automation
property.

ObjectType ObjectType
Notes: Read only

(c) Sparx Systems 2019 Page 399 of 985

User Guide - Automation 20 January, 2020

Distinguishes objects referenced through
a Dispatch interface.

Type PropType
Notes: Read only
Provides an indication of what sort of
data is going to be stored by this
property. This restriction can be further
defined by the Validation attribute.

Validation String
Notes: Read only
An optional string that is used to validate
any data that is passed to the Value
attribute. This string is used by the
programmer at run time to provide an
indication of what is expected, and by
Enterprise Architect to ensure that the
submitted data is appropriate.

Value Variant
Notes: Read/write
The value of the property as defined in
the other fields.

(c) Sparx Systems 2019 Page 400 of 985

http://www.sparxsystems.com/enterprise_architect_user_guide/15.1/automation/proptype_enum.html

User Guide - Automation 20 January, 2020

TemplateParameter Class

A TemplateParameter for a template signature specifies a
formal parameter that will be substituted by an actual
parameter (or the default) in a TemplateBinding relationship
on a Class element.

Associated table in .EAP file

 t_xref

TemplateParameter Attributes

Attribute Remarks

Constraint String
Notes: Read/Write
The name of the Classifier that acts as the
constraint value.

Default String
Notes: Read/Write
The name of the Classifier that acts as the
default value.

(c) Sparx Systems 2019 Page 401 of 985

User Guide - Automation 20 January, 2020

Name String
Notes: Read/Write
The name of the Template Parameter.

ObjectType ObjectType
Notes: Read Only
Distinguishes objects referenced through
a Dispatch interface.

TemplatePara
meterID

String
Notes: Read Only
The Enterprise Architect Globally Unique
ID (GUID) of the current Template
Parameter, in the XrefID column of
t_xref.

Type String
Notes: Read/Write
The Template Parameter type.

TemplateParameter Methods

Method Remarks

GetLastError

(c) Sparx Systems 2019 Page 402 of 985

User Guide - Automation 20 January, 2020

() String
Notes: Returns a string value describing
the most recent error that occurred in
relation to this object.

Update() Boolean
Notes: Updates the current
TemplateParameter object after
modifying or appending a new item.
If False is returned, check the
'GetLastError()' function for more
information.

(c) Sparx Systems 2019 Page 403 of 985

User Guide - Automation 20 January, 2020

Transitions Collection

The Transitions collection applies only to Timeline
elements.

A Timeline element displays 0 or more state transitions at
set times on its extent. This collection enables you to access
the transition set. You can also access additional
information by referring to the connectors associated with
the Timeline, and by referencing messages passed between
timelines. Note that any changes made to elements in this
collection are only saved when the main element is saved.

Transition Attributes

Attribute Remarks

DurationCon
straint

String
Notes: Read/Write
A constraint on the time duration of the
transition.

Event String
Notes: Read/Write
The event (optional) that initiated the
transition.

(c) Sparx Systems 2019 Page 404 of 985

User Guide - Automation 20 January, 2020

Note String
Notes: Read/Write
A free text note.

ObjectType ObjectType
Notes: Read only
Distinguishes objects referenced through
a Dispatch interface.

TimeConstrai
nt

String
Notes: Read/Write
A constraint on when the transition has to
be completed.

TxState String
Notes: Read/Write
The state to transition to, as defined in the
'Timeline Properties' dialog.

TxTime String
Notes: Read/Write.
The time that the transition occurs. The
value depends on a range set in the
diagram.

(c) Sparx Systems 2019 Page 405 of 985

User Guide - Automation 20 January, 2020

Connector Package

The Connector Package details how connectors between
elements are accessed and managed.

This diagram shows the Connector Class, its collections and
its relationships to the Element Class. Association Target
roles correspond to member variable names in the source
interface. The associated Classes represent the object type
used in each collection.

(c) Sparx Systems 2019 Page 406 of 985

User Guide - Automation 20 January, 2020

Element

Connector

ConnectorConstraint

ConnectorEnd

ConnectorTag

RoleTag

CustomProperty

PropertyProperties

TemplateBinding

1

+Properties

1

1

+CustomProperties

0..*

1

+Constraints

0..*

1

+TaggedValues

0..*

1 0..*

1

+Connectors 0..*

1

+TaggedValues

0..*

1

+ConveyedItems 0..*

1

+SupplierEnd

1

1

+ClientEnd

1

1

+TemplateBindings

0..*

(c) Sparx Systems 2019 Page 407 of 985

User Guide - Automation 20 January, 2020

Connector Class

To represent the various kinds of connectors between UML
elements, you use a Connector object. You can access this
from either the Client or Supplier element, using the
Connectors collection of that element. When creating a new
connector you assign to it a valid type from this list:

Aggregation·

Assembly·

Association·

Collaboration·

CommunicationPath·

Connector·

ControlFlow·

Delegate·

Dependency·

Deployment·

ERLink·

Generalization·

InformationFlow·

Instantiation·

InterruptFlow·

Manifest·

Nesting·

NoteLink·

(c) Sparx Systems 2019 Page 408 of 985

User Guide - Automation 20 January, 2020

ObjectFlow·

Package·

Realization·

Sequence·

StateFlow·

TemplateBinding·

UseCase·

Associated table in .EAP file

t_connector

Connector Attributes

Attribute Remarks

Alias String
Notes: Read/Write
An optional alias for this connector.

AssociationC
lass

Element
Notes: Read Only
Returns the Association Class element if
the connector has one; otherwise NULL/.

(c) Sparx Systems 2019 Page 409 of 985

User Guide - Automation 20 January, 2020

ClientEnd ConnectorEnd
Notes: Read Only
A pointer to the ConnectorEnd object
representing the source end of the
relationship.

ClientID Long
Notes: Read/Write
The ElementID of the element at the
source end of this connector.

Color Long
Notes: Read/Write
Sets the color of the connector.

ConnectorG
UID

String
Notes: Read Only
A system generated, globally unique ID
for the current connector.

ConnectorID Long
Notes: Read Only
A system generated local identifier for
the current connector.

Constraints Collection
Notes: Read Only

(c) Sparx Systems 2019 Page 410 of 985

User Guide - Automation 20 January, 2020

A collection of constraint objects.

ConveyedIte
ms

Collection of type Element
Notes: Read Only
Returns a collection of elements that have
been conveyed.
To add another element to the conveyed
Collection, use 'AddNew
(ElementGUID,NULL)', where
'ElementGUID' is the GUID of the
element to be added.

CustomPrope
rties

Collection
Notes: Read Only
Returns a collection of advanced
properties associated with an element in
the form of CustomProperty objects.

DiagramID Long
Notes: Read/Write
The DiagramID of the connector.

Direction String
Notes: Read/Write
The connector direction, which can be set
to one of:

Unspecified·

(c) Sparx Systems 2019 Page 411 of 985

User Guide - Automation 20 January, 2020

Bi-Directional·

Source -> Destination or·

Destination -> Source·

If the connector is non-navigable, set the
'sourceNavigability' and/or
'targetNavigability' attributes.

EndPointX Long
Notes: Read/Write
The x-coordinate of the connector's end
point.
Connector end points are specified in
Cartesian coordinates with the origin to
the top left of the screen.

EndPointY Long
Notes: Read/Write
The y-coordinate of the connector's end
point.
Connector end points are specified in
Cartesian coordinates with the origin to
the top left of the screen.

EventFlags String
Notes: Read/Write
A structure to hold a variety of flags
concerned with event signaling on

(c) Sparx Systems 2019 Page 412 of 985

User Guide - Automation 20 January, 2020

messages.

ForeignKeyI
nformation

String
Notes: Read Only
Returns the Foreign Key information.

FQStereotype String
Notes: Read Only
The fully-qualified stereotype name in the
format "Profile::Stereotype". One or more
fully-qualified stereotype names can be
assigned to StereotypeEx.

IsLeaf Boolean
Notes: Read/Write
A flag indicating that the connector is a
leaf.

IsRoot Boolean
Notes: Read/Write
A flag indicating that the connector is a
root.

IsSpec Boolean
Notes: Read/Write
A flag indicating that the connector is a
specification.

(c) Sparx Systems 2019 Page 413 of 985

User Guide - Automation 20 January, 2020

MessageArgu
ments

String
Notes: Read Only
The connector Message arguments.

MetaType String
Notes: Read Only
The connector's domain-specific meta
type, as defined by an applied stereotype
from an MDG Technology.

MiscData String
Notes: Read Only
This low-level property returns an array
providing information about the contents
of the PData x fields.
These database fields are not documented
and developers must gain understanding
of these fields through their own
endeavors to use this property.
MiscData is zero based, therefore:

MiscData(0) corresponds to PData1·

MiscData(1) corresponds to PData2,·

and so on

Name String
Notes: Read/Write

(c) Sparx Systems 2019 Page 414 of 985

User Guide - Automation 20 January, 2020

The connector name.

Notes String
Notes: Read/Write
Descriptive notes about the connector.

ObjectType ObjectType
Notes: Read Only
Distinguishes objects referenced through
a Dispatch interface.

Properties Properties
Notes: Returns a list of specialized
properties applicable to the connector that
might not be available using the
automation model.
The properties are purposely
undocumented because of their obscure
nature and because they are subject to
change as progressive enhancements are
made to them.

ReturnValue
Alias

String
Notes: Shows the 'Return Value Alias'
field of the operation.

RouteStyle Long
Notes: Read/Write

(c) Sparx Systems 2019 Page 415 of 985

User Guide - Automation 20 January, 2020

The route style.

SequenceNo Long
Notes: Read/Write
The SequenceNo of the connector.

StartPointX Long
Notes: Read/Write
The x-coordinate of the connector's start
point.
Connector end points are specified in
Cartesian coordinates with the origin to
the top left of the screen.

StartPointY Long
Notes: Read/Write
The y-coordinate of the connector's start
point.
Connector end points are specified in
Cartesian coordinates with the origin to
the top left of the screen.

StateFlags String
Notes: Read/Write
A structure to hold a variety of flags
concerned with State signaling on
messages; the list is delimited by

(c) Sparx Systems 2019 Page 416 of 985

User Guide - Automation 20 January, 2020

semi-colons.

Stereotype String
Notes: Read/Write
Sets or gets the stereotype for this
connector end.

StereotypeEx String
Notes: Read/Write
All the applied stereotypes of the
connector in a comma-separated list.
Reading the value will provide the
stereotype name only; assigning the value
accepts either fully-qualified or simple
names.

StyleEx String
Notes: Read/Write
Advanced style settings; reserved for the
use of Sparx Systems.

Subtype String
Notes: Read/Write
A possible subtype to refine the meaning
of the connector.

SupplierEnd ConnectorEnd

(c) Sparx Systems 2019 Page 417 of 985

User Guide - Automation 20 January, 2020

Notes: Read Only
A pointer to the ConnectorEnd object
representing the target end of the
relationship.

SupplierID Long
Notes: Read/Write
The ElementID of the element at the
target end of this connector.

TaggedValue
s

Collection of type ConnectorTag
Notes: Read Only
The collection of ConnectorTag objects.

TemplateBin
dings

Collection of type TemplateBinding
Notes: Read Only
A collection of TemplateBinding objects.

TransitionAct
ion

String
Notes: Read/Write
See the Transition topic for appropriate
values.

TransitionEv
ent

String
Notes: Read/Write
See the Transition topic for appropriate
values.

(c) Sparx Systems 2019 Page 418 of 985

User Guide - Automation 20 January, 2020

TransitionGu
ard

String
Notes: Read/Write
See the Transition topic for appropriate
values.

Type String
Notes: Read/Write
The connector type; valid types are held
in the t_connectortypes table in the .eap
file.

TypeInfoPro
perties

Notes: Read only
Returns an interface pointer of
TypeInfoProperties.

VirtualInherit
ance

String
Notes: Read/Write
For Generalization, indicates if the
inheritance is virtual.

Width Long
Notes: Read/Write
Specifies the width of the connector.

(c) Sparx Systems 2019 Page 419 of 985

User Guide - Automation 20 January, 2020

Connector Methods

Method Remarks

GetLastError
()

String
Notes: Returns a string value describing
the most recent error that occurred in
relation to this object.

IsConnector
Valid()

Boolean
Notes: Queries Enterprise Architect's
internal relationship validation schema on
the current connector.
If False is returned, check the
'GetLastError()' function for more
information.

Update() Boolean
Notes: Updates the current
ConnectorObject after modification or
appending a new item.
If False is returned, check the
'GetLastError()' function for more
information.

(c) Sparx Systems 2019 Page 420 of 985

User Guide - Automation 20 January, 2020

ConnectorConstraint Class

A ConnectorConstraint holds information about special
conditions that apply to a connector. It is accessed through
the Connector Constraints collection.

Associated table in .EAP file

 t_connectorconstraints

ConnectorConstraint Attributes

Attribute Remarks

ConnectorID Long
Notes: Read/Write
A local ID value (long) - system
generated.

Name String
Notes: Read/Write
The constraint name.

Notes String

(c) Sparx Systems 2019 Page 421 of 985

User Guide - Automation 20 January, 2020

Notes: Read/Write
Notes about this constraint.

ObjectType ObjectType
Notes: Read only
Distinguishes objects referenced through
a Dispatch interface.

Type String
Notes: Read/Write
The constraint type.

ConnectorConstraint Methods

Method Remarks

GetLastError
()

String
Notes: Returns a string value describing
the most recent error that occurred in
relation to this object.

Update() Boolean
Notes: Update the current
ConnectorConstraint object after
modification or appending a new item.

(c) Sparx Systems 2019 Page 422 of 985

User Guide - Automation 20 January, 2020

If False is returned, check the
'GetLastError()' function for more
information.

(c) Sparx Systems 2019 Page 423 of 985

User Guide - Automation 20 January, 2020

ConnectorEnd Class

A ConnectorEnd contains information about a single end of
a connector. A ConnectorEnd is accessed from the
connector as either the ClientEnd or SupplierEnd.

Associated table in .EAP file

derived from t_connector

ConnectorEnd Attributes

Attribute Remarks

Aggregation Long
Notes: Read/Write
The type of Aggregation as it applies to
this end; valid values are:
 0 = None
 1 = Shared
 2 = Composite

Alias String
Notes: Read/Write

(c) Sparx Systems 2019 Page 424 of 985

User Guide - Automation 20 January, 2020

An optional alias for this connector end.

AllowDuplic
ates

Boolean
Notes: Read/Write
For multiplicities greater than 1, indicates
that duplicate entries are possible.

Cardinality String
Notes: Read/Write
The cardinality associated with this end.

Constraint String
Notes: Read/Write
A constraint that can be applied to this
connector end.

Containment String
Notes: Read/Write
The containment type applied to this
connector end.

Derived Boolean
Notes: Read/Write
Indicates that the value of this end is
derived.

DerivedUnio Boolean

(c) Sparx Systems 2019 Page 425 of 985

User Guide - Automation 20 January, 2020

n Notes: Read/Write
Indicates the value of this role derived
from the union of all roles that subset
this.

End String
Notes: Read only
The end this ConnectorEnd object applies
to - Client or Supplier.

IsChangeable String
Notes: Read/Write
Flag indicating whether this end is
changeable or not - 'frozen', 'addOnly' or
none.

IsNavigable Note: This property is not used
Boolean
Notes: Read/Write
A flag indicating this end is navigable
from the other end.

Navigable String
Notes: Read/Write
Indicates whether this role of an
association is navigable from the opposite
classifier - Navigable, Non-Navigable or

(c) Sparx Systems 2019 Page 426 of 985

User Guide - Automation 20 January, 2020

Unspecified.

ObjectType ObjectType
Notes: Read only
Distinguishes objects referenced through
a Dispatch interface.

Ordering Long
Notes: Read/Write
Ordering for this connector end.

OwnedByCla
ssifier

Boolean
Notes: Read/Write
Indicates that this Association end
corresponds to an attribute on the
opposite end of the Association.

Qualifier String
Notes: Read/Write
A qualifier that can apply to the
connector end.

Role String
Notes: Read/Write
The connector end role.

RoleNote String

(c) Sparx Systems 2019 Page 427 of 985

User Guide - Automation 20 January, 2020

Notes: Read/Write
Notes associated with the role of this
connector end.

RoleType String
Notes: Read/Write
The role type applied to this end of the
connector.

Stereotype String
Notes: Read/Write
Sets or gets the stereotype for this
connector end.

StereotypeEx String
Notes: Read/Write
All the applied stereotypes of the
connector end in a comma-separated list.
Reading the value will provide the
stereotype name only; assigning the value
accepts either fully qualified or simple
names.

TaggedValue
s

Collection of type RoleTag
Notes: Read only
A collection of RoleTag objects.

(c) Sparx Systems 2019 Page 428 of 985

User Guide - Automation 20 January, 2020

Visibility String
Notes: Read/Write
The Scope associated with this connector
end - Public, Private, Protected or
Package.

ConnectorEnd Methods

Method Remarks

GetLastError
()

String
Notes: Returns a string value describing
the most recent error that occurred in
relation to this object.

Update() Boolean
Notes: Update the current ConnectorEnd
object after modification or appending a
new item.
If False is returned, check the
'GetLastError()' function for more
information.

(c) Sparx Systems 2019 Page 429 of 985

User Guide - Automation 20 January, 2020

ConnectorTag Class

A ConnectorTag is a Tagged Value for a connector and is
accessed through the Connector TaggedValues collection.

Associated table in .EAP file

t_connectortag

ConnectorTag Attributes

Attribute Remarks

ConnectorID Long
Notes: Read/Write
The local ID of the associated connector.

FQName String
Notes: Read only
The fully qualified name of the tag.

Name String
Notes: Read/Write
The tag or name.

(c) Sparx Systems 2019 Page 430 of 985

User Guide - Automation 20 January, 2020

Notes String
Notes: Read/Write
Further descriptive notes on this tag.
If 'Value' is set to '<memo>', then 'Notes'
should contain the actual Tagged Value
content.

ObjectType ObjectType
Notes: Read only
Distinguishes objects referenced through
a Dispatch interface.

TagGUID String
Notes: Read/Write
A globally unique ID for this Tagged
Value.

TagID Long
Notes: Read only
A local ID to identify the Tagged Value.

Value String
Notes: Read/Write
The value assigned to this tag.
This field has a 255 character limit. If the
value is greater than 255 characters long,

(c) Sparx Systems 2019 Page 431 of 985

User Guide - Automation 20 January, 2020

set the value to "<memo>" and insert the
body of text in the 'Notes' attribute.
When reading existing Tagged Values, if
'Value' = "<memo>" then the developer
should read the actual body of text from
the 'Notes' attribute.

ConnectorTag Methods

Method Remarks

GetAttribute(
string
propName)

String
Notes: Returns the text of a single named
property within a Structured Tagged
Value.

GetLastError
()

String
Notes: Returns a string value describing
the most recent error that occurred in
relation to this object.

HasAttributes
()

Boolean
Notes: Returns True if the Tagged Value
is a Structured Tagged Value with one or
more properties.

(c) Sparx Systems 2019 Page 432 of 985

User Guide - Automation 20 January, 2020

SetAttribute(
string
propName,
string
propValue)

Boolean
Notes: Sets the text of a single named
property within a Structured Tagged
Value.

Update() Boolean
Notes: Update the current ConnectorTag
object after modification or appending a
new item.
If False is returned, check the
'GetLastError()' function for more
information.

(c) Sparx Systems 2019 Page 433 of 985

User Guide - Automation 20 January, 2020

RoleTag Class

The RoleTag interface provides access to an Association's
Role Tagged Values. Each connector end has a RoleTag
collection that can be accessed to add, delete and access the
RoleTags.

You might use this in creating code that resembles this
fragment for accessing a RoleTag in VB.NET (where con is
a Connector Object):

client = con.ClientEnd

client.Role = "m_client"

client.Update()

tag = client.TaggedValues.AddNew("tag", "value")

tag.Update()

tag = client.TaggedValues.AddNew("tag2", "value2")

tag.Update()

client.TaggedValues.Refresh()

For idx = 0 To client.TaggedValues.Count - 1

tag = client.TaggedValues.GetAt(idx)

Console.WriteLine(tag.Tag)

client.TaggedValues.DeleteAt(idx, False)

Next

tag = Nothing

Associated table in .EAP file

(c) Sparx Systems 2019 Page 434 of 985

User Guide - Automation 20 January, 2020

t_taggedvalue

RoleTag Attributes

Attribute Description

BaseClass String
Notes: Read/Write
Indicates the role end; set to
ASSOCIATION_SOURCE or
ASSOCIATION_TARGET.

ElementGUI
D

String
Notes: Read/Write
The GUID of the connector with which
this role tag is associated.

FQName String
Notes: Read only
The fully qualified name of the tag.

ObjectType ObjectType
Notes: Read only
Distinguishes objects referenced through
a Dispatch interface.

(c) Sparx Systems 2019 Page 435 of 985

User Guide - Automation 20 January, 2020

PropertyGUI
D

String
Notes: Read/Write
A system generated GUID to identify the
Tagged Value.

Tag String
Notes: Read/Write
The actual tag name.

Value String
Notes: Read/Write
The value associated with this tag.

RoleTag Methods

Method Description

GetAttribute(
string
propName)

String
Notes: Returns the text of a single named
property within a Structured Tagged
Value.

GetLastError
()

String
Notes: Returns a string value describing

(c) Sparx Systems 2019 Page 436 of 985

User Guide - Automation 20 January, 2020

the most recent error that occurred in
relation to this object.

HasAttributes
()

Boolean
Notes: Returns True if the Tagged Value
is a Structured Tagged Value with one or
more properties.

SetAttribute(
string
propName,
string
propValue)

Boolean
Notes: Sets the text of a single named
property within a Structured Tagged
Value.

Update() Boolean
Notes: Update the RoleTag after changes
or on initial creation.
If False is returned, check the
'GetLastError()' function for more
information.

(c) Sparx Systems 2019 Page 437 of 985

User Guide - Automation 20 January, 2020

TemplateBinding Class

A TemplateBinding defines the connector between a
binding Class and a parameterized Class, and the binding
expression on that connector.

TemplateBinding Attributes

Attribute Remarks

ActualGUID String
Notes: Read/Write
The GUID of the element classifier set as
the Actual Template Binding parameter.
If the Actual Template Binding parameter
is set as a string expression only, this will
be an empty string.
Assigning a GUID value will
automatically change the ActualName
attribute after Update() has been called.

ActualName String
Notes: Read/Write
The name of the Actual Template
Binding parameter.
Assigning a new value will clear any

(c) Sparx Systems 2019 Page 438 of 985

User Guide - Automation 20 January, 2020

current ActualGUID value.

BindingExpr
ession

String
Notes: Read only
The Binding Expression as shown in
Enterprise Architect.

ConnectorG
UID

String
Notes: Read only
The Globally Unique ID of the associated
connector.

ConnectorTy
pe

String
Notes: Read only
The type of the associated connector.

FormalName String
Notes: Read/Write
The name of the Formal Template
Binding parameter.

ObjectType ObjectType
Notes: Read only
Distinguishes objects referenced through
a Dispatch Interface.

Pos String

(c) Sparx Systems 2019 Page 439 of 985

User Guide - Automation 20 January, 2020

Notes: Read only
The position of the Template Binding in
the list (as on the 'Bindings' page of the
connector 'Properties' dialog).

TemplateBin
dingID

String
Notes: Read only
The Globally Unique ID of the current
Template Binding.

TemplateBinding Methods

Method Remarks

GetLastError
()

String
Notes: Returns a string value describing
the most recent error that occurred in
relation to this object.

Update() Boolean
Notes: Update the current
TemplateBinding object after
modification or appending a new item.
If False is returned, check the
'GetLastError()' function for more

(c) Sparx Systems 2019 Page 440 of 985

User Guide - Automation 20 January, 2020

information.

(c) Sparx Systems 2019 Page 441 of 985

User Guide - Automation 20 January, 2020

Diagram Package

The Diagram Package has information on a diagram and on
DiagramObject and DiagramLink, which are the instances
of elements within a diagram.

(c) Sparx Systems 2019 Page 442 of 985

User Guide - Automation 20 January, 2020

Diagram Class

A Diagram corresponds to a single UML diagram. It is
accessed through the Package Diagrams collection and in
turn contains a collection of diagram objects and diagram
connectors. Adding to the DiagramObject Class adds an
existing element to the diagram. When adding a new
diagram, you must set the diagram type to one of the valid
types:

Activity·

Analysis·

Component·

Custom·

Deployment·

Logical·

Sequence·

Statechart·

Use Case·

For a Collaboration (Communication) diagram, use the
Analysis type.

Associated table in .EAP file

t_diagram

(c) Sparx Systems 2019 Page 443 of 985

User Guide - Automation 20 January, 2020

Diagram Attributes

Attribute Remarks

Author String
Notes: Read/Write
The name of the author.

CreatedDate Date
Notes: Read/Write
The date the diagram was created.

cx Long
Notes: Read/Write
The X dimension of the diagram (the
default is 800).

cy Long
Notes: Read/Write
The Y dimension of the diagram (the
default is 1100).

DiagramGUI
D

Variant
Notes: Read/Write
A globally unique ID for this diagram.

(c) Sparx Systems 2019 Page 444 of 985

User Guide - Automation 20 January, 2020

DiagramID Long
Notes: Read only
A local ID for the diagram.

DiagramLink
s

Collection
Notes: Read only
A list of DiagramLink objects, each
containing information about the display
characteristics of a connector in a
diagram.

DiagramObje
cts

Collection
Notes: Read only
A collection of references to
DiagramObjects. A DiagramObject is an
instance of an element in a diagram, and
includes size and display characteristics.

ExtendedStyl
e

String
Notes: Read/Write
An extended style attribute.

FilterElement
s

String
Notes: Read/Write
Applies a comma-separated list of object
ids (from SelectedObjects) to the
currently-applied diagram filter,
overriding the filter. The effect persists

(c) Sparx Systems 2019 Page 445 of 985

User Guide - Automation 20 January, 2020

until another filter is applied, or the
diagram is closed.

HighlightImp
orts

Boolean
Notes: Read/Write
A flag to indicate that elements from
other Packages should be highlighted.
Corresponds with the 'Show Namespace'
option in the diagram 'Properties' dialog.

IsLocked Boolean
Notes: Read/Write
A flag indicating whether this diagram is
locked or not.

MetaType String
Notes: Read/Write
The diagram's domain-specific meta type,
as defined by an MDG Technology.
When writing, the meta type must be
fully qualified and from an existing
profile.

ModifiedDat
e

Variant
Notes: Read/Write
The date the diagram was last modified.

Name String

(c) Sparx Systems 2019 Page 446 of 985

User Guide - Automation 20 January, 2020

Notes: Read/Write
The diagram name.

Notes String
Notes: Read/Write
Set or retrieve notes for this diagram.

ObjectType ObjectType
Notes: Read only
Distinguishes objects referenced through
a Dispatch interface.

Orientation String
Notes: Read/Write
The page orientation: P for Portrait or L
for Landscape.

PackageID Long
Notes: Read/Write
The ID of the Package that this diagram
belongs to.

PageHeight Long
Notes: Read
The number of pages high the diagram is.

PageWidth Long

(c) Sparx Systems 2019 Page 447 of 985

User Guide - Automation 20 January, 2020

Notes: Read
The number of pages wide the diagram is.

ParentID Long
Notes: Read/Write
The optional ID of an element that 'owns'
this diagram; for example, a Sequence
diagram owned by a Use Case.

Scale Long
Notes: Read/Write
The zoom scale (the default is 100).

SelectedConn
ector

Connector
Notes: Read/Write
The currently selected connector on this
diagram. Null if there is no currently
selected diagram.

SelectedObje
cts

Collection
Notes: Read only
Gets a collection representing the
currently selected elements on the
diagram.
You can remove objects from this
collection to deselect them, and add
elements to the collection by passing the

(c) Sparx Systems 2019 Page 448 of 985

User Guide - Automation 20 January, 2020

Object ID as a name to select them.

ShowDetails Long
Notes: Read/Write
A flag to indicate that the Diagram
Details text should be shown: 1 = Show,
0 = Hide.

ShowPackag
eContents

Boolean
Notes: Read/Write
A flag to indicate that the Package
contents should be shown in the current
diagram.

ShowPrivate Boolean
Notes: Read/Write
A flag to show or hide Private features.

ShowProtecte
d

Boolean
Notes: Read/Write
A flag to show or hide Protected features.

ShowPublic Boolean
Notes: Read/Write
A flag to show or hide Public features.

Stereotype String

(c) Sparx Systems 2019 Page 449 of 985

User Guide - Automation 20 January, 2020

Notes: Read/Write
Sets or gets the stereotype for this
diagram.

StyleEx String
Notes: Read/Write
Advanced style settings, reserved for the
use of Sparx Systems.

Swimlanes String
Notes: Read/Write
Information on swimlanes contained in
the diagram.
Please note that this property is
superseded by SwimlaneDef.

SwimlaneDef SwimlaneDef
Notes: Read/Write
Information on swimlanes contained in
the diagram.

Type String
Notes: Read only
The diagram type; see the t_diagramtypes
table in the .eap file for more information.

Version String

(c) Sparx Systems 2019 Page 450 of 985

User Guide - Automation 20 January, 2020

Notes: Read/Write
The version of the diagram.

Diagram Methods

Method Details

ApplyGroup
Lock (string
aGroupName
)

Boolean
Notes: Applies a group lock to this
diagram object, for the specified group,
on behalf of the current user.
Returns True if the operation is
successful; returns False if the operation
is unsuccessful. Use GetLastError() to
retrieve error information.
Parameter:

aGroupName: String - the name of the·

user group for which to set the group
lock

ApplyUserLo
ck ()

Boolean
Notes: Applies a user lock to this diagram
object, for the current user.
Returns True if the operation is
successful; returns False if the operation

(c) Sparx Systems 2019 Page 451 of 985

User Guide - Automation 20 January, 2020

is unsuccessful. Use GetLastError() to
retrieve error information.

FindElementI
nDiagram
(long
ElementID)

Boolean
Notes: This function activates the
Diagram View and displays the diagram
with the diagram object selected. If the
diagram is too large to display all of it on
the screen, the portion of the diagram
containing the object is displayed with
the object shown in the center of the
screen. Diagram objects flagged as
non-selected are shown but are not
selected
Returns True if the diagram object was
found, the diagram displayed and the
object selected (or at least displayed) in
the view. Returns False if the diagram
object was not found in the diagram and
the diagram not displayed.
Parameter

ElementID: Long - the element ID of·

the diagram object to locate

GetDiagram
ObjectByID
(long ID,
string DUID)

DiagramObject
Notes: Returns the DiagramObject object,
if it exists on the diagram.
Parameters:

(c) Sparx Systems 2019 Page 452 of 985

User Guide - Automation 20 January, 2020

ID: Long - the ElementID of the·

diagram object
DUID: String - the optional Diagram·

Unique ID of the diagram object

GetLastError
()

String
Notes: Returns a string value describing
the most recent error that occurred in
relation to this object.

ReadStyle
(string
StyleName)

String
Notes: Returns the current value of the
named diagram style.
Use GetLastError() to retrieve error
information.
Parameters:

StyleName: String - the name of the·

diagram style whose value is to be
retrieved; valid StyleNames are:
 - Show Element Property String
 - Show Connector Property String
 - Show Feature Property String

ReleaseUser
Lock ()

Boolean
Notes: Releases a group lock or user lock
on this diagram object.
Returns True if the operation is
successful; returns False if the operation

(c) Sparx Systems 2019 Page 453 of 985

User Guide - Automation 20 January, 2020

is unsuccessful. Use GetLastError() to
retrieve error information.

ReorderMess
ages ()

Void
Notes: Resets the display order of
Sequence and Collaboration messages.
This is typically used after inserting or
deleting messages in the diagram.

SaveAsPDF
(string
FileName)

Boolean
Notes: Export the diagram to a PDF
document. Returns True on success.
Parameters:

FileName: String - full path to file·

location

SaveImagePa
ge(long x,
long y, long
sizeX, long
sizeY, string
filename,
long flags)

Boolean
Notes: Saves a page of the diagram to
disk.
Returns True if the operation is
successful; returns False if the operation
is unsuccessful.
Use GetLastError() to retrieve error
information.
Parameters:

x: Long - the horizontal page·

y: Long - the vertical page·

(c) Sparx Systems 2019 Page 454 of 985

User Guide - Automation 20 January, 2020

sizeX: Long - currently unused; pass a·

value of 0 to ensure behavior does not
change in a future build
sizeY: Long - currently unused; pass a·

value of 0 to ensure behavior does not
change in a future build
filename: String - the filename and path·

to save the image
flags: Long - additional options,·

currently unused; pass a value of 0 to
ensure behavior does not change in a
future build

The image type is determined by the
extension of the filename. Currently only
.emf, .bmp and .png formats are
supported.

ShowAsElem
entList (bool
ShowAsList,
bool Persist)

Boolean
Notes: Toggles the diagram display
between diagram format and Diagram
List depending on the value of
ShowAsList.
If Persist is set, the display format is
written to the database so the diagram
always opens in that format (diagram or
list). Otherwise, the display format falls
back to the default (diagram) once the
display is closed.

(c) Sparx Systems 2019 Page 455 of 985

User Guide - Automation 20 January, 2020

Parameters:
ShowAsList: Boolean - indicates·

diagram or Diagram List
Persist: Boolean - indicates set·

(maintain ShowAsList value) or not
(revert to default)

Update () Boolean
Notes: Updates this diagram object after
modification or appending a new item.
If False is returned, use GetLastError() to
retrieve error information.

VirtualizeCo
nnector (int
ConnectorID,
int Action,
int X, int Y)

Boolean
Notes: Creates a virtual copy of the
source or target element on a connector,
and sets its location on the diagram as a
waypoint on the connector. If the source
element is being virtualized, the waypoint
is created as the first on the connector,
and if the target element is being
virtualized, the waypoint is created as the
last on the connector.
If called again on the same connector,
removes the virtual element. However,
the waypoint remains in place.
As waypoints and therefore virtual
elements can only be created on

(c) Sparx Systems 2019 Page 456 of 985

User Guide - Automation 20 January, 2020

connectors with the Custom line-style, if
the connector does not have this line style
the method sets it. So, after this method
executes, an Update function should be
called for the connector as well as for the
diagram. All parameters are required for
the function to complete successfully.
Returns True if the operation is
successful; returns False if the operation
is unsuccessful.
Parameters:

ConnectorID - Integer: the ID of the·

connector on which to create the virtual
element
Action - Integer: the element to be·

virtualized; 1 for the source element, 2
for the target element
X - Integer: the position on the X axis·

that the element's center point will be
aligned with
Y - Integer: the position on the Y axis·

that the element's centre point will be
aligned with

For example, to virtualize the source
element of the selected connector:
function main()
{
 var diagram as EA.Diagram;

(c) Sparx Systems 2019 Page 457 of 985

User Guide - Automation 20 January, 2020

 var conn as EA.Connector;
 diagram =
Repository.GetCurrentDiagram();
 if(diagram != null)
 {
 var connector as EA.Connector.
 connector =
diagram.SelectedConnector;

diagram.VirtualizeConnector(connector.
ConnectorID, 1, 100, 150);
 connector.Update();
 diagram.Update();

Repository.ReloadDiagram(diagram.Diag
ramID);
 }
 else
 {
 Session.Output("Script requires a
diagram to be visible");
 }
}
main();

WriteStyle
(string
StyleName,

Void
Notes: Sets the value of the named

(c) Sparx Systems 2019 Page 458 of 985

User Guide - Automation 20 January, 2020

string
StyleValue)

diagram style.
Use GetLastError() to retrieve error
information.
Parameters:

StyleName: String - the name of the·

diagram style whose value is to be
retrieved; valid StyleNames are:
 - Show Element Property String
 - Show Connector Property String
 - Show Feature Property String
StyleValue: String - the value to be set·

in the named diagram style; valid
values for the StyleNames listed are 0
and 1

(c) Sparx Systems 2019 Page 459 of 985

User Guide - Automation 20 January, 2020

DiagramLinks Class

A DiagramLink is an object that holds display information
on a connector between two elements in a specific diagram.
It includes, for example, the custom points and display
appearance. It can be accessed from the Diagram
DiagramLinks collection.

Associated table in .EAP file

t_diagramlinks

DiagramLinks Attributes

Attribute Remarks

ConnectorID Long
Notes: Read/Write
The ID of the associated connector.

DiagramID Long
Notes: Read/Write
The local ID for the associated diagram.

Geometry String

(c) Sparx Systems 2019 Page 460 of 985

User Guide - Automation 20 January, 2020

Notes: Read/Write
The geometry associated with the current
connector in this diagram.

HiddenLabel
s

Boolean
Notes: Indicates if this connector's labels
are hidden on the diagram.

InstanceID Long
Notes: Read only
The connector identifier for the current
model.

IsHidden Boolean
Notes: Read/Write
Indicates if this item is hidden or not.

LineColor Long
Notes: Sets the line color of the
connector.
Set to -1 to reset to the default color in
the model.

LineStyle Long
Notes: Sets the line style of the
connector.
1 = Direct

(c) Sparx Systems 2019 Page 461 of 985

User Guide - Automation 20 January, 2020

2 = Auto Routing
3 = Custom Line
4 = Tree Vertical
5 = Tree Horizontal
6 = Lateral Vertical
7 = Lateral Horizontal
8 = Orthogonal Square
9 = Orthogonal Rounded

LineWidth Long
Notes: Sets the line width of the
connector.

ObjectType ObjectType
Notes: Read only
Distinguishes objects referenced through
a Dispatch interface.

Path String
Notes: Read/Write
The path of the connector in this diagram.

SourceInstan
ceUID

String
Notes: Read only
Returns the Unique Identifier of the
source object.

(c) Sparx Systems 2019 Page 462 of 985

User Guide - Automation 20 January, 2020

SuppressSeg
ment

Boolean
Notes: Indicates whether the connector
segments are suppressed.

Style String
Notes: Read/Write
Additional style information; for
example, color or thickness.

TargetInstanc
eUID

String
Notes: Read only
Returns the Unique Identifier of the target
object.

DiagramLinks Methods

Method Remarks

GetLastError
()

String
Notes: Returns a string value describing
the most recent error that occurred in
relation to this object.
This function is rarely used as an
exception is thrown when an error occurs.

(c) Sparx Systems 2019 Page 463 of 985

User Guide - Automation 20 January, 2020

Update() Boolean
Notes: Update the current DiagramLink
object after modification or appending a
new item.
If False is returned, check the
'GetLastError()' function for more
information.

(c) Sparx Systems 2019 Page 464 of 985

User Guide - Automation 20 January, 2020

DiagramObject Class

The DiagramObject Class stores presentation information
that indicates what is displayed in a diagram and how it is
shown.

Associated table in .EAP file

t_diagramobjects

DiagramObject Attributes

Attribute Remarks

BackgroundC
olor

Long
Notes: The background color of the
object on the diagram.
Set to -1 to re-set to the default color in
the model.

BorderColor Long
Notes: The border line color of the object
on the diagram.
Set to -1 to re-set to the default color in
the model.

(c) Sparx Systems 2019 Page 465 of 985

User Guide - Automation 20 January, 2020

BorderLineW
idth

Long
Notes: The border line width of the object
on the diagram.
Valid values are 1 (narrowest) to 5
(thickest); a default of 1 is applied if an
invalid value is passed in.

Bottom Long
Notes: Read/Write
The bottom edge position of the object on
the diagram. Enterprise Architect uses a
cartesian coordinate system, with {0,0}
being the top-left corner of the diagram.
For this reason, Y-axis values (Top and
Bottom) should always be negative.

DiagramID Long
Notes: Read/Write
The ID of the associated diagram.

ElementDispl
ayMode

Long
Notes: Indicates how to adjust the
element features if the element is resized.
 1 = Resize to longest feature
 2 = Wrap features
 3 = Truncate features
Defaults to 1 if an invalid value is

(c) Sparx Systems 2019 Page 466 of 985

User Guide - Automation 20 January, 2020

supplied.

ElementID Long
Notes: Read/Write
The ElementID of the object instance in
this diagram.

FeatureStereo
typesTo
Hide

String
Notes: Lists the stereotypes to hide on the
object on the diagram.

FontBold Boolean
Notes: Get or Set the status of the object
text font as Bold.

FontColor Long
Notes: The color of the font of the object
text on the diagram.

FontItalic Boolean
Notes: Get or Set the status of the object
text font as Italic.

FontName String
Notes: The name of the font used for the
object text.

FontSize String

(c) Sparx Systems 2019 Page 467 of 985

User Guide - Automation 20 January, 2020

Notes: The size of the font used for the
object text.

FontUnderlin
e

Boolean
Notes: Get or Set the status of the object
text font as Underlined.

InstanceGUI
D

String
Notes: The instance GUID for the object
on the diagram (the DUID).

InstanceID Long
Notes: Read
Holds the connector identifier for the
current model.

IsSelectable Boolean
Notes: Indicates whether this object on
the diagram can be selected.

Left Long
Notes: Read/Write
The left edge position of the object on the
diagram.

ObjectType ObjectType
Notes: Read only
Distinguishes objects referenced through

(c) Sparx Systems 2019 Page 468 of 985

User Guide - Automation 20 January, 2020

a Dispatch interface.

Right Long
Notes: Read/Write
The right edge position of the object on
the diagram.

Sequence Long
Notes: Read/Write
The sequence position when loading the
object into the diagram (this affects its Z
order).
The Z-order is one-based and the lowest
value is in the foreground.

ShowCompo
sedDiagram

Boolean
Notes: Indicates whether the object's
composite diagram should be displayed
by default when the object is selected.

ShowConstra
ints

Boolean
Notes: Show constraints for this object on
the diagram.

ShowFormatt
edNotes

Boolean
Notes: Show any formatting applied to
the notes, for this object on the diagram.
ShowNotes must be True for the

(c) Sparx Systems 2019 Page 469 of 985

User Guide - Automation 20 January, 2020

formatted notes to be displayed.

ShowFullyQ
ualifiedTags

Boolean
Notes: Show fully qualified Tagged
Values for this object on the diagram.

ShowInherite
dAttributes

Boolean
Notes: Show inherited attributes for this
object on the diagram.

ShowInherite
dConstraints

Boolean
Notes: Show inherited constraints for this
object on the diagram.

ShowInherite
dOperations

Boolean
Notes: Show inherited operations for this
object on the diagram.

ShowInherite
dResponsibili
ties

Boolean
Notes: Show the inherited requirements
within the Requirements compartment for
this object on the diagram.

ShowInherite
dTags

Boolean
Notes: Show inherited Tagged Values for
this object on the diagram.

ShowNotes Boolean

(c) Sparx Systems 2019 Page 470 of 985

User Guide - Automation 20 January, 2020

Note: Show the notes for this object on
the diagram.

ShowPackag
eAttributes

Boolean
Notes: Show Package attributes for this
object on the diagram.

ShowPackag
eOperations

Boolean
Notes: Show Package operations for this
object on the diagram.

ShowPortTyp
e

Boolean
Notes: Show the Port type.

ShowPrivate
Attributes

Boolean
Notes: Show private attributes for this
object on the diagram.

ShowPrivate
Operations

Boolean
Notes: Show private operations for this
object on the diagram.

ShowProtecte
dAttributes

Boolean
Notes: Show protected attributes for this
object on the diagram.

ShowProtecte
dOperations

Boolean
Notes: Show protected operations for this

(c) Sparx Systems 2019 Page 471 of 985

User Guide - Automation 20 January, 2020

object on the diagram.

ShowPublicA
ttributes

Boolean
Notes: Show public attributes for this
object on the diagram.

ShowPublicO
perations

Boolean
Notes: Show public operations for this
object on the diagram.

ShowRespon
sibilities

Boolean
Notes: Show the requirements
compartment for this object on the
diagram.

ShowRunstat
es

Boolean
Notes: Show Runstates for this object on
the diagram.

ShowStructur
edCompartm
ents

Boolean
Note: Indicates whether to display the
Structure Compartments for this object on
the diagram.

ShowTags Boolean
Notes: Show Tagged Values for this
object on the diagram.

(c) Sparx Systems 2019 Page 472 of 985

User Guide - Automation 20 January, 2020

Style Variant
Notes: Read/Write
The style information for this object.
Returns a semi-colon delimited string that
defines the current style settings.
Changing a value will completely
overwrite the previously existing value,
so caution is advised to avoid losing
existing style information that you want
to keep.
See Setting the Style.

TextAlign Long
Notes: Indicates the alignment of text on
a Text element on the diagram.
 1 = Left aligned
 2 = Center aligned
 3 = Right aligned
Defaults to 1 if an invalid value is
supplied.

Top Long
Notes: Read/Write
The top edge position of the object on the
diagram. Enterprise Architect uses a
cartesian coordinate system, with {0,0}
being the top-left corner of the diagram.
For this reason, Y-axis values (Top and

(c) Sparx Systems 2019 Page 473 of 985

User Guide - Automation 20 January, 2020

Bottom) should always be negative.

DiagramObject Methods

Method Remarks

GetLastError
()

String
Notes: Returns a string value describing
the most recent error that occurred in
relation to this object.

ResetFont Notes: Resets the font of the object text
on the diagram back to the model default.

SetFontStyle(
FontName,
FontSize,
Bold, Italic,
Underline)

Boolean
Notes: Sets the font of the object text on
the diagram to the specified values.

SetStyleEx(st
ring
Parameter,
string Value)

Void
Notes: Sets an individual parameter of the
Style string.
Parameters:

Parameter: String - the name of the·

(c) Sparx Systems 2019 Page 474 of 985

User Guide - Automation 20 January, 2020

style parameter to modify; for example:
 "BCol" = background color
 "BFol" = font color
 "LCol" = line color
 "LWth" = line width
Value: String - the new value for the·

style parameter

Update() Boolean
Notes: Updates the current
DiagramObject after modification or
appending a new item
If False is returned, check the
GetLastError function for more
information.

Setting the Style

The Style attribute contains various settings that affect the
appearance of a DiagramObject. However, it is not
recommended to directly edit this attribute string. Instead,
use either the SetStyleEx method or one of the individual
DiagramObject attributes such as BackgroundColor,
FontColor or BorderColor.

For example, the Style string might contain a series of
values in a format such as:

(c) Sparx Systems 2019 Page 475 of 985

User Guide - Automation 20 January, 2020

 BCol=n;BFol=n;LCol=n;LWth=n;

where:

BCol = Background Color·

BFol = Font Color·

LCol = Line Color·

LWth = Line Width·

The value assigned to each of the Style color properties is a
decimal representation of the hex RGB value, where
Red=FF, Green=FF00 and Blue=FF0000.

This code snippet shows how you might change the style
settings for all of the objects in the current diagram,
changing the background color to red (FF=255) and the font
and line colors to yellow (FFFF=65535):

 For Each aDiagObj In aDiag.DiagramObjects

 aDiagObj.BackgroundColor=255

 aDiagObj.FontColor=65535

 aDiagObj.BorderColor=65535

 aDiagObj.BorderLineWidth=1

 aDiagObj.Update

 aRepos.ReloadDiagram aDiagObj.DiagramID

 Next

(c) Sparx Systems 2019 Page 476 of 985

User Guide - Automation 20 January, 2020

SwimlaneDef Class

A SwimlaneDef object makes available attributes relating to
a single row or column in a list of swimlanes.

SwimlaneDef Attributes

Attribute Description

Bold Boolean
Notes: Read/Write
Show the title text in bold.

FontColor Long
Notes: Read/Write
The RGB color used to draw the titles.

HideClassifie
r

Boolean
Notes: Read/Write
Removes any classifier from the title
display.

HideNames Boolean
Notes: Read/Write
Set to True to hide the swimlane titles.

(c) Sparx Systems 2019 Page 477 of 985

User Guide - Automation 20 January, 2020

LineColor Long
Notes: Read/Write
The RGB color used to draw swimlane
borders.

LineWidth Long
Notes: Read/Write
The width, in pixels, of the line used to
draw swimlanes. Valid values are 1, 2 or
3.

Locked Boolean
Notes: Read/Write
If set to True, disables user modification
of the swimlanes via the diagram.

ObjectType ObjectType
Notes: Read only
Distinguishes objects referenced through
a Dispatch interface.

Orientation String
Notes: Read/Write
Indicates whether the swimlanes are
vertical or horizontal.

ShowInTitle Boolean

(c) Sparx Systems 2019 Page 478 of 985

User Guide - Automation 20 January, 2020

Bar Notes: Read/Write
Enables vertical swimlane titles to be
shown in the title bar.

Swimlanes Swimlanes
Notes: Read/Write
A list of individual swimlanes.

(c) Sparx Systems 2019 Page 479 of 985

User Guide - Automation 20 January, 2020

Swimlanes Class

A Swimlanes object is attached to a diagram's SwimlaneDef
object and provides a mechanism to access individual
swimlanes.

Swimlanes Attributes

Attribute Description

Count Long
Notes: Read/Write
Gives the number of swimlanes.

ObjectType ObjectType
Notes: Read only
Distinguishes objects referenced through
a Dispatch interface.

Swimlanes Methods

Method Description

(c) Sparx Systems 2019 Page 480 of 985

User Guide - Automation 20 January, 2020

Add(string
Title, long
Width)

Swimlane
Notes: Adds a new swimlane to the end
of the list, and returns a swimlane object
representing the newly added entry.
Parameters:

Title: String - The title text that appears·

at the top of the swimlane; this can be
the same as an existing swimlane title
Width: Long - The width of the·

swimlane in pixels

Delete(object
Index)

Void
Notes: Deletes a selected swimlane.
If the string matches more than one entry,
only the first entry is deleted.
Parameter:

Index: Object - Either a string·

representing the title text or an integer
representing the zero-based index of
the swimlane to delete

DeleteAll() Void
Notes: Removes all swimlanes.

Insert(long
Index, string
Title, long
Width)

Swimlane
Notes: Inserts a swimlane at a specific
position, and returns a swimlane object
representing the newly added entry.

(c) Sparx Systems 2019 Page 481 of 985

User Guide - Automation 20 January, 2020

Parameters:
Index: Long - The zero-based index of·

the existing Swimlane before which
this new entry is inserted
Title: String - The title text that appears·

at the top of the swimlane; this can be
the same as an existing swimlane title
Width: Long - The width of the·

swimlane in pixels

Items(object
Index)

Swimlane collection
Notes: Accesses an individual swimlane.
If the string matches more than one
swimlane title, the first matching
swimlane is returned.
Parameter:

Index: Object - Either a string·

representing the title text or an integer
representing the zero-based index of
the swimlane to get

(c) Sparx Systems 2019 Page 482 of 985

User Guide - Automation 20 January, 2020

Swimlane Class

A Swimlane object makes available attributes relating to a
single row or column in a list of swimlanes.

Swimlane Attributes

Attribute Description

BackColor Long
Notes: Read/Write
The RGB color that the swimlane is filled
with.

ClassifiedGui
d

String
Notes: Read/Write
The GUID of the classifier Class. This
can be obtained from the corresponding
element object via the ElementGUID
property.

ObjectType ObjectType
Notes: Read only
Distinguishes objects referenced through
a Dispatch interface.

(c) Sparx Systems 2019 Page 483 of 985

User Guide - Automation 20 January, 2020

Title String
Notes: Read/Write
The text at the head of the swimlane.

Width Long
Notes: Read/Write
The width of the swimlane, in pixels.

(c) Sparx Systems 2019 Page 484 of 985

User Guide - Automation 20 January, 2020

Project Interface Package

The Enterprise Architect.Project interface. This is the
interface to Enterprise Architect elements; it also includes
some utility functions. You can get a pointer to this interface
using the Repository.GetProjectInterface method.

Example

(c) Sparx Systems 2019 Page 485 of 985

User Guide - Automation 20 January, 2020

Project Class

The Project interface can be accessed from the Repository
using GetProjectInterface(). The returned interface provides
access to the XML-based Enterprise Architect Automation
Interface. Use this interface to get XML for the various
internal elements and to run some utility functions to
perform tasks such as load diagrams or run reports.

Project Attributes

Attribute Remarks

ObjectType ObjectType
Notes: Read only
Distinguishes objects referenced through
a Dispatch interface.

Project Methods

Method Remarks

BuildExecuta
bleStatemach

Boolean
Notes: Builds Executable StateMachine

(c) Sparx Systems 2019 Page 486 of 985

User Guide - Automation 20 January, 2020

ine (string
ElementGUI
D, string
ExtraOptions
)

code for an <<executable statemachine>>
Artifact element.
Parameters:

ElementGUID: String - the GUID (in·

XML format) of the element to
generate
ExtraOptions: String - enables extra·

options to be given to the command
(currently unused)

CancelValida
tion ()

Void
Notes: Cancels a validation process.

CanValidate
()

Boolean
Notes: Returns a value to indicate that the
Model Validation component is loaded.

ExportRefere
nceData
(string
FileName,
string Tables)

Boolean
Notes: Exports Reference Data.
Parameters:

FileName: String - the name of the file·

to output the reference data to
Tables: String - the list of reference·

data tables to be output; the data table
delimeter is ";"
If the string is empty, Enterprise
Architect will prompt with a dialog to
select the tables to output

(c) Sparx Systems 2019 Page 487 of 985

User Guide - Automation 20 January, 2020

ImportRefere
nceData
(string
FileName,
string
DataSets)

Boolean
Notes: Imports Reference Data
Parameters:

FileName: String - the name of the·

reference data file to import from
DataSets: String - the list of reference·

data sets to import from; the data set
delimeter is ";"
If the string is empty, Enterprise
Architect displays a dialog prompt to
select the data sets to import

GenerateBuil
dRunExecuta
bleStateMach
ine (string
ElementGUI
D, string
ExtraOptions
)

Boolean
Notes: Generates, builds and runs
Executable StateMachine code for an
<<executable statemachine>> Artifact
element, which will start simulation of
the StateMachine.
Parameters:

ElementGUID: String - the GUID (in·

XML format) of the element to
generate
ExtraOptions: String - enables extra·

options to be given to the command
(currently unused)

CreateBaseli Boolean

(c) Sparx Systems 2019 Page 488 of 985

User Guide - Automation 20 January, 2020

ne (string
PackageGUI
D, string
Version,
string Notes)

Notes: Creates a Baseline of a specified
Package.
Parameters:

PackageGUID: String - the GUID (in·

XML format) of the Package to
Baseline
Version: String - the version of the·

Baseline
Notes: String - any notes concerning·

the Baseline

CreateBaseli
neEx (string
PackageGUI
D, string
Version,
string Notes,
EA.CreateBa
selineFlag
Flags)

Boolean
Notes: Creates a Baseline of a specified
Package, with a flag to exclude Package
contents below the first level.
Parameters:

PackageGUID: String - the GUID (in·

XML format) of the Package to be
Baselined
Version: String - the version of the·

Baseline
Notes: String - any notes concerning·

the Baseline
Flags: EA.CreateBaselineFlag -·

whether or not to exclude the Package
contents below the first level

DefineRule String

(c) Sparx Systems 2019 Page 489 of 985

User Guide - Automation 20 January, 2020

(string
CategoryID,
EA.EnumM
VErrorType
ErrorType,
string
ErrorMessag
e)

Notes: Defines the individual rules that
can be performed during model
validation. It must be called once for each
rule from the EA_OnInitializeUserRules
broadcast handler.
The return value is a RuleId, which can
be used for reference purposes when an
individual rule is executed by Enterprise
Architect during model validation.
See the Model Validation Example for a
detailed example of the use of this
method.
Parameters:

CategoryId: String - should be passed·

the return value from the
DefineRuleCategory method
ErrorType: EA.EnumMVErrorType -·

depending on the severity of the error
being validated, can be:
 - mvErrorCritical
 - mvError
 - mvWarning, or
 - mvInformation
ErrorMessage: String - can contain a·

default error string, although this is
probably overridden by the
PublishResult call

DefineRuleC

(c) Sparx Systems 2019 Page 490 of 985

User Guide - Automation 20 January, 2020

ategory
(string
CategoryNa
me)

String
Notes: Defines a category of rules that
can be performed during model validation
(there is typically one category per
Add-In). It must be called once from the
EA_OnInitializeUserRules broadcast
handler.
The return value is a CategoryId that
must to be passed to the DefineRule
method.
See the Model Validation Example for a
detailed example of the use of this
method.
Parameters:

CategoryName: String - a text string·

that is visible in the 'Model Validation
Configuration' dialog

RunExecutab
leStatemachi
ne (string
ElementGUI
D, string
ExtraOptions
)

Boolean
Notes: Runs Executable StateMachine
code for an <<executable statemachine>>
Artifact element, which will start
simulation of the StateMachine
Parameters:

ElementGUID: String - the GUID (in·

XML format) of the element to
generate
ExtraOptions: String - enables extra·

(c) Sparx Systems 2019 Page 491 of 985

User Guide - Automation 20 January, 2020

options to be given to the command
(currently unused)

DeleteBaseli
ne (string
BaselineGUI
D)

Boolean
Notes: Deletes a Baseline, identified by
the BaselineGUID, from the repository.
If the repository is configured to store
Baselines in a Reusable Asset Service
Registry, then it is not possible to delete
the Baseline and a False value is returned.
Parameters:

BaselineGUID: String - the GUID (in·

XML format) of the Baseline to delete

DoBaselineC
ompare
(string
PackageGUI
D, string
Baseline,
string
ConnectStrin
g)

String
Notes: Performs a Baseline comparison
using the supplied Package GUID and
Baseline GUID (obtained in the result list
from GetBaselines).
Optionally you can include the
connection string required to find the
Baseline if it exists in a different model
file.
This method returns a log file of the
status of all elements found and
compared in the difference procedure.
You can use this log information as input
to DoBaselineMerge - automatically

(c) Sparx Systems 2019 Page 492 of 985

User Guide - Automation 20 January, 2020

merging information from the Baseline.
Parameters:

PackageGUID: String - the GUID (in·

XML format) of the Package to run the
comparison on
Baseline: String - the GUID (in XML·

format) of the Baseline to run the
comparison on
ConnectString: String - the location of·

the external .eap file or DBMS to
extract the Baseline from

DoBaselineM
erge (string
PackageGUI
D, string
Baseline,
string
MergeInstruc
tions, string
ConnectStrin
g)

String
Notes: Performs a batch merge based on
instructions contained in an XML file
(MergeInstructions). You can supply an
optional connection string if the Baseline
is located in another model.
In the MergeInstructions file, each
MergeItem node supplies the GUID of a
differenced item from the XML
difference log. As the merge is
uni-directional and actioned in only one
possible way, no additional arguments are
required. Enterprise Architect chooses the
correct procedure based on the
'Difference' results.
 <Merge>

(c) Sparx Systems 2019 Page 493 of 985

User Guide - Automation 20 January, 2020

 <MergeItem guid="{XXXXXX}" />
 <MergeItem guid="{XXXXXX}" />
 </Merge>
Alternatively, you can supply a single
Mergeitem with a GUID of RestoreAll.
In this case, Enterprise Architect
batch-processes ALL differences.
 <Merge>
 <MergeItem guid="RestoreAll"
changed="true" baselineOnly="true"
modelOnly="true" moved="true"
fullRestore="false" />
 </Merge>
Parameters:

PackageGUID: String - the GUID (in·

XML format) of the Package to merge
the Baseline into
Baseline: String - the GUID of the·

Baseline (in XML format) to merge
into the Package
MergeInstructions: String - the file·

containing the GUID of each
differenced item from the XML
difference log returned by
DoBaselineCompare()
ConnectString: String - the location of·

the EAP file or DBMS to get the
Baseline from, if not in the same model

(c) Sparx Systems 2019 Page 494 of 985

User Guide - Automation 20 January, 2020

as the Package

EnumDiagra
mElements
(string
DiagramGUI
D)

protected abstract: String
Notes: Gets an XML list of all elements
in a diagram.
Parameters:

DiagramGUID: String - the GUID (in·

XML format) of the diagram to get
elements for

EnumDiagra
ms (string
PackageGUI
D)

protected abstract: String
Notes: Gets an XML list of all diagrams
in a specified Package.
Parameters:

PackageGUID: String - the GUID (in·

XML format) of the Package to list
diagrams for

EnumElemen
ts (string
PackageGUI
D)

protected abstract: String
Notes: Gets an XML list of elements in a
specified Package.
Parameters:

PackageGUID: String - the GUID (in·

XML format) of the Package to get a
list of elements for

EnumLinks
(string

protected abstract: String
Notes: Gets an XML list of connectors

(c) Sparx Systems 2019 Page 495 of 985

User Guide - Automation 20 January, 2020

ElementGUI
D)

for a specified element.
Parameters:

ElementGUID: String - the GUID (in·

XML format) of the element to get all
associated connectors for

EnumPackag
es (string
PackageGUI
D)

protected abstract: String
Notes: Gets an XML list of child
Packages inside a parent Package.
Parameters:

PackageGUID: String - the GUID (in·

XML format) of the parent Package

EnumProject
s ()

protected abstract: String
Notes: Gets a list of projects in the
current file; corresponds to Models in
Repository.

EnumViews
()

protected abstract: String
Notes: Enumerates the Views for a
project. Returned as an XML document.

EnumViewE
x (string
ProjectGUID
)

protected abstract: String
Notes: Gets a list of Views in the current
project.
Parameters:

ProjectGUID: String - the GUID (in·

XML format) of the project to get

(c) Sparx Systems 2019 Page 496 of 985

User Guide - Automation 20 January, 2020

views for

Exit () protected abstract: String
Notes: Exits the current instance of
Enterprise Architect; this function is
maintained for backward compatibility
and should never be called.
Enterprise Architect automatically exits
when you are no longer using any of the
provided objects.

ExportPacka
geXMI
(string
PackageGUI
D,
enumXMITy
pe XMIType,
long
DiagramXM
L, long
DiagramImag
e, long
FormatXML,
long
UseDTD,
string
FileName)

protected abstract: String
Notes: Exports XMI for a specified
Package.
Parameters:

PackageGUID: String - the GUID (in·

XML format) of the Package to be
exported
XMIType: EnumXMIType - specifies·

the XMI type and version information;
see XMIType Enum for accepted values
DiagramXML: Long - True if XML for·

diagrams is required; accepted values:
 0 = Do not export diagrams
 1 = Export diagrams
 2 = Export diagrams along with
alternate images
DiagramImage: Long - the format for·

(c) Sparx Systems 2019 Page 497 of 985

User Guide - Automation 20 January, 2020

diagram images to be created at the
same time; accepted values:
 -1 = NONE
 0 = EMF
 1 = BMP
 2 = GIF
 3 = PNG
 4 = JPG
FormatXML: Long - True if XML·

output should be formatted prior to
saving
UseDTD: Long - True if a DTD should·

be used
FileName: String - the filename to·

output to

ExportPacka
geXMIEx
(string
PackageGUI
D,
enumXMITy
pe XMIType,
long
DiagramXM
L, long
DiagramImag
e,
long

protected abstract: String
Notes: Exports XMI for a specified
Package, with a flag to determine
whether the export includes Package
content below the first level.
Parameters:

PackageGUID: String - the GUID (in·

XML format) of the Package to be
exported
XMIType: EnumXMIType - specifies·

the XMI type and version information;
see XMIType Enum for accepted values

(c) Sparx Systems 2019 Page 498 of 985

User Guide - Automation 20 January, 2020

FormatXML,
long
UseDTD,
string
FileName,
ea.ExportPac
kageXMIFla
g Flags)

DiagramXML: Long - true if XML for·

diagrams is required; accepted values:
 0 = Do not export diagrams
 1 = Export diagrams
 2 = Export diagrams along with
alternate images
DiagramImage: Long - the format for·

diagram images to be created at the
same time; accepted values:
 -1 =NONE
 0 =EMF
 1 =BMP
 2 =GIF
 3 =PNG
 4 =JPG
FormatXML: Long - True if XML·

output should be formatted prior to
saving
UseDTD: Long - True if a DTD should·

be used.
FileName: String - the filename to·

output to
Flags: ea.ExportPackageXMIFlag -·

specify whether or not to include
Package content below the first level
(currently supported for
xmiEADefault), whether or not to
exclude tool-specific information from
export

(c) Sparx Systems 2019 Page 499 of 985

User Guide - Automation 20 January, 2020

GenerateClas
s (string
ElementGUI
D, string
ExtraOptions
)

Boolean
Notes: Generates the code for a single
Class.
Parameters:

ElementGUID: String - the GUID (in·

XML format) of the element to
generate
ExtraOptions: String - enables extra·

options to be given to the command;
currently unused

GenerateDiag
ramFromSce
nario (string
ElementGUI
D,
EnumScenari
oDiagramTy
pe
DiagramType
, long
OverwriteExi
stingDiagram
)

Boolean
Notes: Generates various diagrams from
the scenario specification of an element.
Parameters:

ElementGUID: String - the GUID (in·

XML format) of the element containing
the scenario specification
DiagramType:·

EnumScenarioDiagramType - the type
of diagram to generate; see
ScenarioDiagramType Enum for
accepted values
OverwriteExistingDiagram: Long -·

determines whether to overwrite the
existing diagram or synchronize the
existing elements with the scenario

(c) Sparx Systems 2019 Page 500 of 985

User Guide - Automation 20 January, 2020

steps
 0 = Delete the existing diagram and
elements, and create a new diagram
and elements
 1 = Synchronize existing elements
with the scenario steps and preserve the
diagram layout
 2 = Synchronize existing elements
with the scenario steps and re-cast the
diagram layout
 3 = Do not generate a diagram if
one already exists

GenerateEle
mentDDL
(string
ElementGUI
D, string
FileName,
string
ExtraOptions
)

Boolean
Notes: Generates DDL for an element
using the options that are currently set on
the Generate DDL screen.

GenerateExe
cutableState
machine
(string
ElementGUI
D, string
ExtraOptions

Boolean
Notes: Generates Executable
StateMachine code for an <<executable
statemachine>> Artifact element.
Parameters:

ElementGUID: String - the GUID (in·

(c) Sparx Systems 2019 Page 501 of 985

User Guide - Automation 20 January, 2020

) XML format) of the element to
generate
ExtraOptions: String - enables extra·

options to be given to the command
(currently unused)

GeneratePack
age (string
PackageGUI
D,
string
ExtraOptions
)

Boolean
Notes: Generates the code for all Classes
within a Package.
For example:
 recurse=1;overwrite=1;dir=C:\
Parameters:

PackageGUID: String - the GUID (in·

XML format) of the Package to
generate code for
ExtraOptions: String - enables extra·

options to be given to the command;
currently enables:
 - Generation of all sub-Packages
(recurse)
 - Force overwrite of all files
(overwrite) and
 - Specification to auto generate all
paths (dir)

GeneratePack
ageDDL
(string

Boolean
Notes: Generates DDL for all elements in
a Package using the options that are

(c) Sparx Systems 2019 Page 502 of 985

User Guide - Automation 20 January, 2020

PackageGUI
D, string
FileName,
string
ExtraOptions
)

currently set on the Generate DDL
screen.

GenerateTest
FromScenari
o (string
ElementGUI
D,
EnumScenari
oTestType
TestType)

Boolean
Notes: Generates a Vertical Test Suite, a
Horizontal Test Suite, an Internal test or
an External test from the scenario
specification of an element.
Parameters:

ElementGUID: String - the GUID (in·

XML format) of the element containing
the scenario specification
TestType: EnumScenarioTestType -·

the type of test to generate; see
ScenarioTestType Enum for accepted
values

GenerateWS
DL(string
WSDLComp
onentGUID,
string
Filename,
string
Encoding,

Boolean
Notes: Generates WSDL for the specified
WSDL stereotyped Component.
Parameters:

WSDLComponentGUID: String - the·

GUID (in XML format) of the WSDL
stereotyped Component

(c) Sparx Systems 2019 Page 503 of 985

User Guide - Automation 20 January, 2020

string
ExtraOptions
)

Filename: String - the target file path·

Encoding: String - the XML encoding·

for the code page instruction
ExtraOptions: String - enables extra·

options to be given to the command;
currently unused

GenerateXS
D (string
PackageGUI
D,
string
FileName,
string
Encoding,
string
Options)

Boolean
Notes: Creates an XML schema for a
Package, specified by its GUID. Returns
True on success.
Parameters:

PackageGUID: String - the GUID (in·

XML format) of the Package
FileName: String - the target filepath·

Encoding: String - the XML encoding·

for the code page instruction
Options: String - enables extra options·

to be given to the command, in a
comma-separated string; currently
enables:
 - GenGlobalElement - turn the
generation of global elements for
 all global ComplexTypes On or
Off; for example:
 GenGlobalElement=1
 - UseRelativePath - turns on or off
the option to use a relative

(c) Sparx Systems 2019 Page 504 of 985

User Guide - Automation 20 January, 2020

 path in the XSD import or XSD
include statement when
 referencing external Package,
provided the schemaLocation tag
 is empty on the referenced
Packages; for example:
 UseRelativePath=1

GetBaselines
(string
PackageGUI
D, string
ConnectStrin
g)

String
Notes: Returns a list (in XML format) of
Baselines associated with the supplied
Package GUID.
Parameters:

PackageGUID: String - the GUID (in·

XML format) of the Package to get
Baselines for
ConnectString: String - not currently·

used

GetDiagram
(string
DiagramGUI
D)

protected abstract: String
Notes: Gets the diagram details, in XML
format.
Parameters:

DiagramGUID: String - the GUID (in·

XML format) of the diagram to get
details for

GetElement protected abstract: String

(c) Sparx Systems 2019 Page 505 of 985

User Guide - Automation 20 January, 2020

(string
ElementGUI
D)

Notes: Gets XML for the specified
element.
Parameters:

ElementGUID: String - the GUID (in·

XML format) of the element to retrieve
XML for

GetElementC
onstraints
(string
ElementGUI
D)

protected abstract: String
Notes: Gets constraints for an element, in
XML format.
Parameters:

ElementGUID: String - the GUID (in·

XML format) of the element

GetElementE
ffort (string
ElementGUI
D)

protected abstract: String
Notes: Gets efforts for an element, in
XML format.
Parameters:

ElementGUID: String - the GUID (in·

XML format) of the element

GetElementF
iles (string
ElementGUI
D)

protected abstract: String
Notes: Gets metrics for an element, in
XML format.
Parameters:

ElementGUID: String - the GUID (in·

XML format) of the element

(c) Sparx Systems 2019 Page 506 of 985

User Guide - Automation 20 January, 2020

GetElement
Metrics
(string
ElementGUI
D)

protected abstract: String
Notes: Gets files for an element, in XML
format.
Parameters:

ElementGUID: String - the GUID (in·

XML format) of the element

GetElementP
roblems
(string
ElementGUI
D)

protected abstract: String
Notes: Gets a list of issues (problems)
associated with an element, in XML
format.
Parameters:

ElementGUID: String - the GUID (in·

XML format) of the element

GetElementP
roperties
(string
ElementGUI
D)

protected abstract: String
Notes: Gets Tagged Values for an
element, in XML format.
Parameters:

ElementGUID: String - the GUID (in·

XML format) of the element

GetElementR
equirements
(string
ElementGUI
D)

protected abstract: String
Notes: Gets a list of requirements for an
element, in XML format.
Parameters:

(c) Sparx Systems 2019 Page 507 of 985

User Guide - Automation 20 January, 2020

ElementGUID: String -the GUID (in·

XML format) of the element

GetElementR
esources
(string
ElementGUI
D)

protected abstract: String
Notes: Gets a list of resources for an
element, in XML format.
Parameters:

ElementGUID: String - the GUID (in·

XML format) of the element

GetElementR
isks (string
ElementGUI
D)

protected abstract: String
Notes: Gets a list of risks associated with
an element, in XML format.
Parameters:

ElementGUID: String - the GUID (in·

XML format) of the element

GetElementS
cenarios
(string
ElementGUI
D)

protected abstract: String
Notes: Gets a list of scenarios for an
element, in XML format.
Parameters:

ElementGUID: String - the GUID (in·

XML format) of the element

GetElementT
ests (string
ElementGUI
D)

protected abstract: String
Notes: Gets a list of tests for an element,
in XML format.

(c) Sparx Systems 2019 Page 508 of 985

User Guide - Automation 20 January, 2020

Parameters:
ElementGUID: String - the GUID (in·

XML format) of the element

GetFileName
Dialog
(string
Filename,
string
FilterString,
long
FilterIndex,
long Flags,
string
InitialDirecto
ry,
long
OpenOrSave)

String
Notes: Opens a standard 'File Open' or
'Save As' dialog and returns a string
containing the full path to the selected
file on success. Returns an empty string if
the dialog was canceled.
For example:
 Filename = ""
 FilterString = "CSV Files
(*.csv)|*.csv|All Files (*.*)|*.*||"
 Filterindex = 1
 Flags = &H2
'OFN_OVERWRITEPROMPT
 InitialDirectory = ""
 OpenOrSave = 1
 filepath = Project.GetFileNameDialog
(Filename, FilterString, Filterindex,
Flags, InitialDirectory, OpenOrSave)
In this example, the 'Save As' dialog will
prompt for a CSV file.
Parameters:

Filename: String - default filename·

specified in the dialog

(c) Sparx Systems 2019 Page 509 of 985

User Guide - Automation 20 January, 2020

FilterString: String - delimited list of·

available file type filters
Filterindex: Long - one-based index of·

the filter to be used by default
Flags: Long - additional bit flags used·

to initialize the file dialog; see the
OPENFILENAME structure in MSDN
documentation for accepted values
InitialDirectory: String - directory path·

to open this dialog
OpenOrSave: Long - show dialog as an·

'Open' or 'Save As' style dialog;
accepted values: 0 = Open, 1 = Save As

GetLastError
()

protected abstract: String
Notes: Returns a string value describing
the most recent error that occurred in
relation to this object.

GetLink
(string
LinkGUID)

protected abstract: String
Notes: Gets connector details, in XML
format.
Parameters:

LinkGUID: String - the GUID (in·

XML format) of the connector to get
details of

GUIDtoXML String

(c) Sparx Systems 2019 Page 510 of 985

User Guide - Automation 20 January, 2020

(string
GUID)

Notes: Changes an internal GUID to the
form used in XML.
Parameters:

GUID: String - the Enterprise Architect·

style GUID to convert to XML format

ImportDirect
ory (string
PackageGUI
D, string
Language,
string
DirectoryPat
h, string
ExtraOptions
)

Boolean
Notes: Imports a source code directory
into the model.
Parameters:

PackageGUID: String - the GUID (in·

XML format) of the Package to reverse
engineer code into
Language: String - specifies the·

language of the code to be imported
DirectoryPath: String - specifies the·

path where the code is found on the
computer
ExtraOptions: String - enables extra·

options to be given to the command;
currently enables import of source from
all child directories (recurse) - for
example: recurse=1

ImportFile
(string
PackageGUI
D, string

Boolean
Notes: Imports an individual file or
binary module into the model, in a
Package per namespace style import.

(c) Sparx Systems 2019 Page 511 of 985

User Guide - Automation 20 January, 2020

Language,
string
FileName,
string
ExtraOptions
)

Parameters:
PackageGUID: String - the GUID (in·

XML format) of the Package to reverse
engineer code into; this is expected to
be a namespace root Package
Language: String - specifies the·

language of the code to be imported
Use the value 'DNPE' to import a
binary module; this imports a .NET
assembly or Java .class file, but not a
.jar file
Filename: String - specifies the path·

where the code or module is found on
the computer
ExtraOptions: String - enables extra·

options to be given to the command;
currently unused

ImportPacka
geXMI
(string
PackageGUI
D, string
Filename,
long
ImportDiagra
ms, long
StripGUID)

String
Notes: Imports an XMI file at a point in
the tree. Returns an empty string if
successful, or returns an error message on
failure.
Parameters:

PackageGUID: String - the GUID (in·

XML format) of the target Package to
import the XMI file into (or overwrite
with the XMI file)

(c) Sparx Systems 2019 Page 512 of 985

User Guide - Automation 20 January, 2020

Filename or XMLText: String - the·

name of the XMI file; if the String is of
type filename it is interpreted as a
source file, otherwise the String is
imported as XML text
ImportDiagrams: Long - 1 for·

importing diagrams and 0 to skip
importing diagrams
StripGUID: Long·

 - 1 to replace the element
UniqueIDs on import; if stripped, then
 a copy of the Package could be
imported into the same Enterprise
 Architect model as two different
versions
 - 0 to retain the element UniqueIDs
on import; a duplicate copy of
 the Package cannot be created in
the same model of Enterprise
 Architect

LayoutDiagra
m (string
DiagramGUI
D, long
LayoutStyle)

Boolean
Notes: Deprecated. Use
LayoutDiagramEx.
Calls the function to automatically layout
a diagram in hierarchical fashion. It is
only recommended for Class and Object
diagrams.
Parameters:

(c) Sparx Systems 2019 Page 513 of 985

User Guide - Automation 20 January, 2020

DiagramGUID: String - the GUID (in·

XML format) of the diagram to lay out
LayoutStyle: Long - always ignored·

LayoutDiagra
mEx (string
DiagramGUI
D, long
LayoutStyle,
long
Iterations,
long
LayerSpacing
, long
ColumnSpaci
ng, boolean
SaveToDiagr
am)

Boolean
Notes: Calls the function to automatically
layout a diagram in hierarchical fashion.
It is only recommended for Class and
Object diagrams.
LayoutStyle accepts these options

Default Options:·

 - lsDiagramDefault
 - lsProgramDefault

Cycle Removal Options:·

 - lsCycleRemoveGreedy
 - lsCycleRemoveDFS

Layering Options:·

 - lsLayeringLongestPathSink
 - lsLayeringLongestPathSource
 - lsLayeringOptimalLinkLength

Initialize Options:·

 - IsInitializeNaive
 - IsInitializeDFSOut
 - IsInitializeDFSIn

Crossing Reduction Option:·

 - lsCrossReduceAggressive

(c) Sparx Systems 2019 Page 514 of 985

User Guide - Automation 20 January, 2020

Layout Options - Direction·

 - lsLayoutDirectionUp
 - lsLayoutDirectionDown
 - lsLayoutDirectionLeft
 - lsLayoutDirectionRight
Parameters:

DiagramGUID: String - the GUID (in·

XML format) of the diagram to lay out
LayoutStyle: Long - the layout style·

Iterations: Long - the number of layout·

iterations the Layout process should
take to perform cross reduction
(Default value = 4)
LayerSpacing: Long - the per-element·

layer spacing the Layout process
should use (Default value = 20)
ColumnSpacing: Long - the·

per-element column spacing the Layout
process should use (Default value = 20)
SaveToDiagram: Boolean - specifies·

whether or not Enterprise Architect
should save the supplied layout options
as default to the diagram in question

LoadControll
edPackage
(string
PackageGUI

String
Notes: Loads a Package that has been
marked and configured as controlled. The
filename details are stored in the Package

(c) Sparx Systems 2019 Page 515 of 985

User Guide - Automation 20 January, 2020

D) control data.
Parameters:

PackageGUID: String - the GUID (in·

XML format) of the Package to load

LoadDiagram
(string
DiagramGUI
D)

protected abstract: Boolean
Notes: Loads a diagram by its GUID.
Parameter:

DiagramGUID: String - the GUID (in·

XML format) of the diagram to load; if
you retrieve the GUID using the
Diagram interface, use the
GUIDtoXML function to convert it to
XML format

LoadProject
(string
FileName)

protected abstract: Boolean
Notes: Loads an Enterprise Architect
project file.
Do not use this method if you have
accessed the Project interface from the
Repository, which has already loaded a
file.
Parameters:

FileName: String - the name of the·

project file to load

Migrate
(string

Void
Notes: Migrates a model (or part of a

(c) Sparx Systems 2019 Page 516 of 985

User Guide - Automation 20 January, 2020

GUID, string
SourceType,
string
DestinationT
ype)

model) from one BPMN, ArchiMate,
UPDM or SysML format to an upgraded
format.
Parameters:

GUID: String - the GUID of the·

Package or element for which the
contents are to be migrated
SourceType: String - the type of model·

to be upgraded; accepted values:
 - BPMN
 - BPMN1.1
 - UPDM
 - SysML1.1
 - SysML1.2
 - SysML1.3
 - ArchiMate
 - ArchiMate2
 - UPDM2
DestinationType: String - the type of·

model to upgrade to; accepted values:
 - BPMN1.1
 - BPMN1.1::BPEL
 - BPMN2.0
 - UPDM2
 - SysML1.2
 - SysML1.3
 - SysML1.4
 - ArchiMate2
 - ArchiMate3

(c) Sparx Systems 2019 Page 517 of 985

User Guide - Automation 20 January, 2020

 - UAF

MigrateToBP
MN11 (string
GUID,
string Type)

Void
Notes: Migrates every BPMN 1.0
construct in a Package or an element
(including elements, attributes, diagrams
and connectors) to BPMN 1.1.
Parameters

GUID: String - the GUID of the·

Package or element for which the
contents are to be migrated to BPMN
1.1
Type: String - the type of upgrade,·

either just to BPMN 1.1 or to BPMN
1.1 and BPEL. Accepted values are:
- BPMN = migrate to BPMN 1.1
- BPEL = migrate to BPMN 1.1 and
update:
 - any diagram with stereotype
BPMN to BPEL
 - any element with stereotype
BusinessProcess to BPELProcess

Migrating to BPEL is possible in the
Ultimate and Unified editions of
Enterprise Architect.

ProjectTransf
er (string
SourceFilePa

Boolean
Notes: Transfers the project from a
source .eap file or DBMS to a target .eap

(c) Sparx Systems 2019 Page 518 of 985

User Guide - Automation 20 January, 2020

th,
string
TargetFilePat
h,
string
LogFilePath)

file, .eapx file or .feap file.
Parameters:

SourceFilePath: String - the path of the·

source file to transfer
TargetFilePath: String - the path of the·

target file, including the file type
extension; Enterprise Architect creates
a new Base project in this location
(using the TargetFilePath as its name)
and then transfers the content of the
source project into that file
LogFilePath: String - the path of the·

log file where the status of the transfer
process is updated

In automation, the target file must not
previously exist. Enterprise Architect
creates a new, empty Base.* file using the
specified target name and extension, and
transfers the source project into it.

ExportProject
XML (string
DirectoryPat
h)

Boolean
Notes: Exports the entire current project
to Native XML files in the specified
directory. The contents of the directory
will be deleted prior to exporting the
project data
Parameters:

DirectoryPath: String - directory path·

(c) Sparx Systems 2019 Page 519 of 985

User Guide - Automation 20 January, 2020

to save the exported Native XML files

PublishResult
(string
CategoryID,
EA.EnumM
VErrorType
ErrorType,
string
ErrorMessag
e)

String
Notes: Returns the results of each rule
that can be performed during model
validation. It must be called once for each
rule from the EA_OnInitializeUserRules
broadcast handler.
The return value is a RuleId, which can
be used for reference purposes when an
individual rule is executed by Enterprise
Architect during model validation.
See the Model Validation Example for a
detailed example of the use of this
method.
Parameters:

CategoryId: String - should be passed·

the return value from the
DefineRuleCategory method
ErrorType: EA.EnumMVErrorType -·

depending on the severity of the error
being validated, can be:
 - mvErrorCritical
 - mvError
 - mvWarning, or
 - mvInformation
ErrorMessage: String - contains an·

error string

(c) Sparx Systems 2019 Page 520 of 985

User Guide - Automation 20 January, 2020

PutDiagramI
mageOnClip
board (string
DiagramGUI
D,
long Type)

protected abstract: Boolean
Notes: Copies an image of the specified
diagram to the clipboard.
Parameters:

DiagramGUID: String - the GUID (in·

XML format) of the diagram to copy
Type: Long - the file type·

 - If Type = 0 then it is a metafile
 - If Type = 1 then it is a Device
Independent Bitmap

PutDiagramI
mageToFile
(string
Diagram
GUID,
string
FileName,
long Type)

protected abstract: Boolean
Notes: Saves an image of the specified
diagram to file.
Parameters:

DiagramGUID: String - the GUID (in·

XML format) of the diagram to save
FileName: String - the name of the file·

to save the diagram into
Type: Long - the file type·

 - If type = 0 then it is a metafile
 - If type = 1 then it uses the file
type from the name extension
 (that is, .bmp, .jpg, .gif, .png, .tga)

ReloadProjec
t ()

protected abstract: Boolean
Notes: Reloads the current project.

(c) Sparx Systems 2019 Page 521 of 985

User Guide - Automation 20 January, 2020

This is a convenient method to refresh the
current loaded project (in case of outside
changes to the .eap file).

RunModelSe
arch (string
Search, string
SearchTerm,
bool
ShowInEA)

Void
Notes: Invokes the Model Search
component.
Parameters:

Search: String - the name of an·

Enterprise Architect defined search
SearchTerm: String - the term to search·

for in the project
ShowInEA: Boolean - execute the·

search and output in the Model Search
window

RunReport
(string
PackageGUI
D,
string
TemplateNa
me,
string
Filename)

protected abstract: Void
Notes: Runs a named document report.
Parameters:

PackageGUID: String - the GUID of·

the Package or master document to run
the report on
TemplateName: String - the document·

report template to use; if the
PackageGUID has a stereotype of
MasterDocument, the template is not
required
FileName: String - the file name and·

(c) Sparx Systems 2019 Page 522 of 985

User Guide - Automation 20 January, 2020

path to store the generated report; the
file extension specified will determine
the format of the generated document -
for example, RTF, PDF

RunHTMLR
eport (string
PackageGUI
D,
string
ExportPath,
string
ImageFormat
,
string Style,
string
Extension)

String
Notes: Runs an HTML report (as for
'Documentation | Publish as HTML' when
you click on a Package in the Browser
window and on the icon).
Parameters:

PackageGUID: String - the GUID (in·

XML format) of the Package or master
document to run the report on
ExportPath: String - the directory path·

to store the generated report files
ImageFormat: String - file format in·

which to store images - .png or .gif
Style: String - name of the web style·

template to apply; use <default> for the
standard, system-provided template
Extension: String - file extension for·

generated HTML files (example: .htm)

SaveControll
edPackage
(string
PackageGUI

String
Notes: Saves a Package that has been
configured as a controlled Package, to
XMI. Only the Package GUID is

(c) Sparx Systems 2019 Page 523 of 985

User Guide - Automation 20 January, 2020

D) required, Enterprise Architect picks the
rest up from the Package control
information.
Parameter:

PackageGUID: String - the GUID (in·

XML format) of the Package to save

SaveDiagram
ImageToFile
(string
Filename)

protected abstract: String
Notes: Saves a diagram image of the
current diagram to file.
Parameters:

FileName: String - the filename of the·

image to save

ShowWindo
w (long
Show)

protected abstract: Void
Notes: Shows or hides the Enterprise
Architect User Interface.
Parameters:

Show: Long·

Synchronize
Class (string
ElementGUI
D,
string
ExtraOptions
)

Boolean
Notes: Synchronizes a Class with the
latest source code.
Parameters:

ElementGUID: String - the GUID (in·

XML format) of the element to update
from code

(c) Sparx Systems 2019 Page 524 of 985

User Guide - Automation 20 January, 2020

ExtraOptions: String - enables extra·

options to be given to the command;
currently unused

SynchronizeP
ackage
(string
PackageGUI
D,
string
ExtraOptions
)

Boolean
Notes: Synchronizes each Class in a
Package with the latest source code.
Parameters:

PackageGUID: String - the GUID (in·

XML format) of the Package
containing the elements to update from
code
ExtraOptions: String - enables extra·

options to be given to the command;
currently enables synchronization of all
child Packages (children) - for
example: children=1

TransformEle
ment (string
TransformNa
me,
string
ElementGUI
D,
string
TargetPackag
e,

Boolean
Notes: Transforms an element into a
Package.
Parameters:

TransformName: String - specifies the·

transformation that should be executed
ElementGUID: String - the GUID (in·

XML format) of the element to
transform
TargetPackageGUID: String - the·

(c) Sparx Systems 2019 Page 525 of 985

User Guide - Automation 20 January, 2020

string
ExtraOptions
)

GUID (in XML format) of the Package
to transform into
ExtraOptions: String - enables extra·

options to be given to the command:
 - GenCode=True / False - articulate
code generation from the
 transformed elements; this option
supercedes the current
 model setting

TransformPa
ckage (string
TransformNa
me,
string
SourcePacka
ge,
string
TargetPackag
e,
string
ExtraOptions
)

Boolean
Notes: Runs a transformation on the
contents of a Package.
Parameters:

TransformName: String - specifies the·

transformation that should be executed
SourcePackageGUID: String - the·

GUID (in XML format) of the Package
to transform
TargetPackageGUID: String - the·

GUID (in XML format) of the Package
to transform into
ExtraOptions: String - enables extra·

options to be given to the command:
 - GenCode=True/False - articulate
code generation from the transformed
elements;
 this option supercedes the current

(c) Sparx Systems 2019 Page 526 of 985

User Guide - Automation 20 January, 2020

model setting
 - SubPackages=True/False - specify
if the child Packages are to be included
whilst
 transforming a Package

ValidateDiag
ram (string
DiagramGUI
D)

Boolean
Notes: Invokes the Enterprise Architect
Model Validation component, then
validates the diagram (for correctness)
and the elements and connectors within
the diagram.
Output can be viewed through 'Start >
Desktop > Design > System Output >
Model Validation'.
Returns a boolean value to indicate the
success or failure of the process,
regardless of the results of the validation.
Parameters:

DiagramGUID: String - the GUID of·

the Diagram Class object

ValidateElem
ent (string
ElementGUI
D)

Boolean
Notes: Invokes the Enterprise Architect
Model Validation component, then
validates the element and all child
elements, diagrams, connectors, attributes
and operations.

(c) Sparx Systems 2019 Page 527 of 985

User Guide - Automation 20 January, 2020

Output can be viewed through 'Start >
Desktop > Design > System Output >
Model Validation'.
Returns a boolean value to indicate the
success or failure of the process,
regardless of the results of the validation.
Parameters:

ElementGUID: String - the GUID of·

the Element Class object

ValidatePack
age (string
PackageGUI
D)

Boolean
Notes: Invokes the Enterprise Architect
Model Validation component, then
validates the Package and all
sub-Packages, elements, connectors and
diagrams within it.
Output can be viewed through ' >
Desktop > Design > System Output >
Model Validation'.
Returns a boolean value to indicate the
success or failure of the process,
regardless of the results of the validation.
Parameters:

PackageGUID: String - the GUID of·

the Package Class object

XMLtoGUID
(string

String
Notes: Changes a GUID in XML format

(c) Sparx Systems 2019 Page 528 of 985

User Guide - Automation 20 January, 2020

GUID) to the form used inside Enterprise
Architect.
Parameters:

GUID: String - the XML style GUID to·

convert to Enterprise Architect internal
format

Notes

These methods all require input GUIDs in XML format;·

use GUIDtoXML to change the Enterprise Architect
GUID to an XML GUID

(c) Sparx Systems 2019 Page 529 of 985

User Guide - Automation 20 January, 2020

Document Generator Interface
Package

The DocumentGenerator Class provides an interface to the
document and web reporting facilities, which you can use to
generate reports on specific Packages, diagrams and
elements in your model.

Access

Repository
Class

You can create a pointer to this interface
using the method
Repository.CreateDocumentGenerator.

Example

This diagram illustrates how you might use the Document
Generator interface in generating a report through the
Automation Interface.

(c) Sparx Systems 2019 Page 530 of 985

User Guide - Automation 20 January, 2020

Automation Client Repository DocumentGenerator

loop

1.1 NewDocument()

1.2 DocumentElement()

1.3 SaveDocument()

1.0 CreateDocumentGenerator()

Also look at the:

Document Generation scripting example in the Scripting·

window ('Specialize > Tools > Scripting', then expand the
'Local Scripts' folder and double-click on 'JScript -
Documentation Example')

RunReport method in the Project Interface·

(c) Sparx Systems 2019 Page 531 of 985

User Guide - Automation 20 January, 2020

DocumentGenerator Class

The DocumentGenerator Class provides an interface to the
document and web reporting facilities, which you can use to
generate reports on specific Packages, diagrams and
elements in your model. This Class is accessed from the
Repository Class using the CreateDocumentGenerator()
method.

DocumentGenerator Attributes

Attribute Remarks

ObjectType ObjectType
Notes: Read only
Distinguishes objects referenced through
a Dispatch interface.

DocumentGenerator Methods

Method Remarks

DocumentCo
nnector (long

Boolean

(c) Sparx Systems 2019 Page 532 of 985

User Guide - Automation 20 January, 2020

connectorID,
long nDepth,
string
templateNam
e)

Notes: Documents a connector.
Parameters:

connectorId: Long - the ID of the·

connector
nDepth: Long - the depth by which to·

adjust the heading level
templateName: String - the name of a·

template to use when documenting
connectors; this can be blank

DocumentCu
stomData
(string XML,
long nDepth,
string
templateNam
e)

Boolean
Notes: Documents information based on
the data supplied.
Parameters:

XML: String - the XML of the data to·

be documented
nDepth: Long - the depth by which to·

adjust the heading level
templateName: String - the name of a·

template to use when documenting
custom data; this can be blank

DocumentDi
agram (long
diagramID,
long nDepth,
string
templateNam

Boolean
Notes: Documents a diagram.
Parameters:

diagramId: Long - the ID of the·

diagram

(c) Sparx Systems 2019 Page 533 of 985

User Guide - Automation 20 January, 2020

e) nDepth: Long - the depth by which to·

adjust the heading level
templateName: String - the name of a·

template to use when documenting
diagrams; this can be blank

DocumentEle
ment (long
elementID,
long nDepth,
string
templateNam
e)

Boolean
Notes: Documents an element.
Parameters:

elementId: Long - the ID of the·

element
nDepth: Long - the depth by which to·

adjust the heading level
templateName: String - the name of a·

template to use when documenting
elements; this can be blank

DocumentMo
delAuthor
(string name,
long nDepth,
string
templateNam
e)

Boolean
Notes: Documents a model author.
Parameters:

name: String - the name of the author·

nDepth: Long - the depth by which to·

adjust the heading level
templateName: String - a template to·

use when documenting model authors;
this can be blank

DocumentMo

(c) Sparx Systems 2019 Page 534 of 985

User Guide - Automation 20 January, 2020

delClient
(string name,
long nDepth,
string
templateNam
e)

Boolean
Notes: Documents a single model client.
Parameters:

name: String - the name of the client·

nDepth: Long - the depth by which to·

adjust the heading level
templateName: String - a template to·

use when documenting model clients;
this can be blank

DocumentMo
delGlossary
(long id, long
nDepth,
string
templateNam
e)

Boolean
Notes: Documents a single model
glossary term.
Parameters:

id: Long - the ID of the term·

nDepth: Long - the depth by which to·

adjust the heading level
templateName: String - a template to·

use when documenting model glossary
terms; this can be blank

DocumentMo
delIssue
(long id, long
nDepth,
string
templateNam
e)

Boolean
Notes: Documents a single model issue.
Parameters:

id: Long - the ID of the issue·

nDepth: Long - the depth by which to·

adjust the heading level

(c) Sparx Systems 2019 Page 535 of 985

User Guide - Automation 20 January, 2020

templateName: String - a template to·

use when documenting model issues;
this can be blank

DocumentMo
delResource
(string name,
long nDepth,
string
templateNam
e)

Boolean
Notes: Documents a single model
resource.
Parameters:

name: String - the name of the resource·

nDepth: Long - the depth by which to·

adjust the heading level
templateName: String - a template to·

use when documenting model
resources; this can be blank

DocumentMo
delRole
(string name,
long nDepth,
string
templateNam
e)

Boolean
Notes: Documents a single model role.
Parameters:

name: String - the name of the role·

nDepth: Long - the depth by which to·

adjust the heading level
templateName: String - a template to·

use when documenting model roles;
this can be blank

DocumentMo
delTask (long
id, long

Boolean
Notes: Documents a single model task.

(c) Sparx Systems 2019 Page 536 of 985

User Guide - Automation 20 January, 2020

nDepth,
string
templateNam
e)

Parameters:
id: Long - the ID of the task·

nDepth: Long - the depth by which to·

adjust the heading level
templateName: String - a template to·

use when documenting model tasks;
this can be blank

DocumentPa
ckage (long
packageID,
long nDepth,
string
templateNam
e)

Boolean
Notes: Documents a Package.
Parameters:

packageId: Long - the ID of the·

Package
nDepth: Long - the depth by which to·

adjust the heading level
templateName: String - a template to·

use when documenting Packages; this
can be blank

GetDocumen
tAsRTF()

Read Only.
Returns a string value of the document in
raw Rich Text Format.

GetProjectCo
nstant (string
nameVal)

String
Notes: Returns the value of a Project
Constant.
Parameters:

(c) Sparx Systems 2019 Page 537 of 985

User Guide - Automation 20 January, 2020

nameVal: String - the name of the·

Project Constant for which to extract
the value.

GetLastError
()

String
Notes: Returns a string value describing
the most recent error that occurred in
relation to this object.

InsertBreak
(long
breakType)

Boolean
Notes: Inserts a break into the report at
the current location.
Parameters:

breakType: Long - 0 = page break, 1 =·

section break

InsertCoverP
ageDocument
(string
Name)

Boolean
Notes: Inserts the Coverpage into the
document at the current location.
The style sheet is applied to the document
before it is insert into the generated
document.
Parameters:

Name: String - the name of the Cover·

page document found in the Resource
tree

InsertHyperli Boolean

(c) Sparx Systems 2019 Page 538 of 985

User Guide - Automation 20 January, 2020

nk (string
Name, string
URL)

Notes: Inserts a hyperlink at the current
location. If you use a URL with the
#BOOKMARKNAME syntax, the
hyperlink will link to another part of the
document.
Parameters:

Name: String - the link text to insert·

into the report
URL: String - The URL of the website·

to link to

InsertLinked
Document
(string guid)

Boolean
Notes: Inserts a Linked Document into
the report at the current location.
A Linked Document can used to set the
header and footer of the report. These are
taken from the first Linked Document
added to the report.
Parameters:

guid: String - the GUID of the element·

that has a Linked Document

InsertTableO
fContents

Boolean
Notes: Inserts a Table of Contents at the
current position.

InsertTeamR
eviewPost

Boolean
Notes: Inserts a Team Library posting

(c) Sparx Systems 2019 Page 539 of 985

User Guide - Automation 20 January, 2020

(string path) into the report at the current location.
Parameters:

path: String - the path of the Team·

Library post

InsertTempla
te (string
templateNam
e)

Notes: Inserts the contents of the template
directly into the report.
Parameters:

templateName: String - the name of the·

template to use

InsertText
(string text,
string style)

Boolean
Notes: Inserts static text into the report at
the current location.
A carriage return is not included; if you
need to use one, you can add it manually.
Parameters:

text: String - the static text to be·

inserted
style: String - the name of the style in·

the template; defaults to Normal style

InsertTOCDo
cument
(string name)

Boolean
Notes: Inserts the Table of Contents into
the document at the current location.
Note: The stylesheet is applied to the
document before it is insert into the

(c) Sparx Systems 2019 Page 540 of 985

User Guide - Automation 20 January, 2020

generated document.
Parameters:

name: String - the name of the Table of·

Contents document found in the
Resource tree

LoadDocume
nt(string
FileName)

Boolean
Notes: Inserts an external document into
the currently generated file.
Parameters:

FileName: String - the filename of an·

external document file to insert into the
document.

NewDocume
nt (string
templateNam
e)

Boolean
Notes: Starts a new document; you call
this before attempting to document
anything else.
Parameters:

templateName: String - the name of a·

template to use when documenting
elements; this can be blank

ReplaceField
(string
fieldname,
string
fieldvalue)

Boolean
Notes: Replaces the 'Section' field
identified by the fieldname parameter
with the value provided in fieldvalue. For
example:

(c) Sparx Systems 2019 Page 541 of 985

User Guide - Automation 20 January, 2020

 ReplaceField ("Element.Alias",
"MyAlias")
If you call this function more than once
with the same fieldname, the field only
has the most recent value set.
Parameters:

fieldname: String - the field name to·

find (this does not include the {}
braces)
fieldvalue: String - the value to insert·

into the field; this can be a constant or
a derived value

SaveDocume
nt (string
filename,
long
nDocType)

Boolean
Notes: Saves the document to disk.
Parameters:

filename: String - the filename to save·

the file to
nDocType: Long - 0 = RTF, 1 =·

HTML, 2 = PDF,
3 = DOCX

SetPageOrien
tation (long
pageOrientati
on)

Boolean
Notes: Sets the current page orientation.
Parameters:

pageOrientation: Long - 0 = Portrait, 1·

= Landscape

(c) Sparx Systems 2019 Page 542 of 985

User Guide - Automation 20 January, 2020

SetProjectCo
nstant (string
newNameVal
, string
newValue)

Boolean
Notes: Sets a Project Constant for the
documentation generator; this is saved in
the current model.
Parameters:

newNameVal: String - the name of the·

Project Constant
newValue: String - the value of the·

Project Constant

SetStyleSheet
Document
(string name)

Boolean
Notes: Sets the Stylesheet to be used for
TOC, Coverpage and templates used.
This can be called before NewDocument.
Parameters:

name: String - the name of the·

stylesheet found in the Resource tree

SetSuppressP
rofile (name)

Boolean
Notes: Sets the Suppress Profile to be
used during report generation.
Parameters:

Name: String - The name of the·

Suppress Profile, as created on the
'Suppress Sections' tab of the
'Document Generation' dialog.

(c) Sparx Systems 2019 Page 543 of 985

User Guide - Automation 20 January, 2020

(c) Sparx Systems 2019 Page 544 of 985

User Guide - Automation 20 January, 2020

Data Miner Package

The Data Miner Package provides the Automation Interface
to the Data Miner elements. It contains these Classes:

CDataMinerManager

- Actions: Collection*
- Connections: Collection*
- DataMiners: Collection*
- Scripts: Collection*

+ FindActiveDataMiner(string): DataMiner
+ FindDataMinerScript(string): DMScript
+ GetActiveAction(): DataMinerAction
+ GetActiveDataMiner(): DataMinerAction
+ GetActiveVisualizerData(string): DataMiner
+ GetCurrentDBBuilderData(): DMArray

DataMiner

+ Connections: Collection*
+ Name: String
+ Query: String
+ Scripts: Collection*
+ Type: String

+ GetData(DMConnection): DataSet

DataMinerConnection

+ Name: String
+ Path: String
+ Type: String

CDataMinerScript

+ Actions: Collection*
+ GUID: String
+ Name: String

DataMinerAction

+ Code: String
+ DataMiners: Collection*
+ Name: String

+ Run(): bool

DataSet

+ Type: long

+ GetAST()
+ GetDMArray(DMArray): DMArray
+ GetString(String): String

DMArray

+ GetData(long, long): Variant

For an overview of using the Data Miner see the Data Miner
Help topic under the Model Exchange group of topics.

Notes

The Data Miner is available in the Unified and Ultimate·

editions

(c) Sparx Systems 2019 Page 545 of 985

User Guide - Automation 20 January, 2020

(c) Sparx Systems 2019 Page 546 of 985

User Guide - Automation 20 January, 2020

DataMinerManager Class

DataMinerManager Attributes

Attribute Remarks

Actions Collection
Notes: Returns a pointer to the
EA.DMAction objects.

Connections Collection
Notes: Returns a Collection of
EA.DMConnection objects.

DataMiners Collection
Notes: Returns a Collection of
EA.DataMiner objects

Scripts Collection
Notes: Returns a Collection of
EA.DMScript objects.

DataMinerManager Methods

(c) Sparx Systems 2019 Page 547 of 985

User Guide - Automation 20 January, 2020

Method Remarks

FindActiveD
ataMiner
(string guid)

DataMiner Object
Loads the DataMiner object from the
model specified by its GUID.
Returns an EA.DataMiner object or
NULL if the current selected object isn't a
DataMiner object.
Parameters:

GUID: string - GUID of the Data·

Miner object to look up

FindDataMin
erScript
(string guid)

DMScript object
Returns an EA.DMScript object in the
model.
Parameters:

GUID: string - GUID of DMScript·

object.

GetActiveAct
ion ()

DMAction Object
When you run an Action (operation),
from a diagram, this returns the Action's
EA.DMAction object.
NOTE: This is generally used for an
Action to work out what DataMiner and
DMConnections it is linked to.

GetActiveDat

(c) Sparx Systems 2019 Page 548 of 985

User Guide - Automation 20 January, 2020

aMiner () DataMiner Object
Returns a pointer to an EA.DataMiner
object, or NULL if the currently selected
object is not a DataMiner object.

GetActiveVis
ualizerData
(string name)

DataSet Object
Get the EA.DataSet of the currently open
Visualizer.
Parameters:

Name: string - Name of Open·

Visualizer
Note: Passing in a blank name will return
the first Visualizer tab.

GetCurrentD
BBuilderData
()

DMArray Object
Get the current data from the Database
Builder's latest SQL query. Returns the
current output of the SQL scratch
window. Accessible via:
 Ribbon: Develop > Data Modeling >
Database Builder > SQL Scratch Pad.
Return Type: DMArray
Returns a pointer to an EA.DMArray
object, or NULL if there is not a current
Database Builder window with returned
data.
See The Database Builder Help topic for
more information on how to get data into

(c) Sparx Systems 2019 Page 549 of 985

http://www.sparxsystems.com/enterprise_architect_user_guide/15.1/model_domains/dbexplorer.html

User Guide - Automation 20 January, 2020

this window.

(c) Sparx Systems 2019 Page 550 of 985

User Guide - Automation 20 January, 2020

DataMiner Class

DataMiner Attributes

Attribute Remarks

Connections Collection
A collection of EA.DMConnection's,
Notes: Read Only

Name String
Name of the Script object.
Notes: Read Only

Query String
Query of the Data miner object
Notes: Read Only

Scripts Collection
A collection of EA.DMScript's,
Notes: Read Only

Type String
Type of the Data miner object
Notes: Read Only

(c) Sparx Systems 2019 Page 551 of 985

User Guide - Automation 20 January, 2020

DataMiner Methods

Method Remarks

GetData
(DMCconnec
tion
Connection)

DataSet
Returns an EA.DataSet object that
represents the query on the connection.
Parameters:

connection: DMConnection - A·

DMConnection object

(c) Sparx Systems 2019 Page 552 of 985

User Guide - Automation 20 January, 2020

DataSet Class

DataSet Attributes

Attribute Remarks

Type long
Type of data contained in this data set.
1. Safe Array
2. Abstract Data type
3. JSon
4. Text
Notes: Read Only

DataSet Methods

Method Remarks

GetAST () Currently not supported

GetDMArray
()

DMArray
Returns an EA.DMArray object
NOTE: Only supported when Type = 1

(c) Sparx Systems 2019 Page 553 of 985

User Guide - Automation 20 January, 2020

GetString () String
Returns a string of the data.
NOTE: Only supported when Type = 3 or
4.

(c) Sparx Systems 2019 Page 554 of 985

User Guide - Automation 20 January, 2020

DMArray Class

DMArray Attributes

Attribute Remarks

ColumnCoun
t

long
Notes: Read Only
Number of Columns returned in this
dataset

RowCount long
Notes: Read Only
Number of rows returned in this dataset

DMArray Methods

GetData
(long row,
long column)

Variant
Notes: When the database returns a
NULL value, this will return an empty
string.

(c) Sparx Systems 2019 Page 555 of 985

User Guide - Automation 20 January, 2020

Return: Variant.
Parameters:

row: Row number of data·

column: Column number of data·

(c) Sparx Systems 2019 Page 556 of 985

User Guide - Automation 20 January, 2020

DMAction Class

DMAction Attributes

Attribute Remarks

Code String
The code on the Action
Notes: Read Only

DataMiners Collection
A Collection of DMDataminer objects
Notes: Read Only

Name String
Name of the Action.
Notes: Read Only

DMAction Methods

Run () Boolean

(c) Sparx Systems 2019 Page 557 of 985

User Guide - Automation 20 January, 2020

Returns TRUE if the script was run
successfully.

(c) Sparx Systems 2019 Page 558 of 985

User Guide - Automation 20 January, 2020

DMScript Class

DMScript Attributes

Attribute Remarks

Actions Collection
returns a Collection of EA.DMAction's

GUID String
Guid of the Script object.
Notes: Read Only

Name String
Name of the Script object.
Notes: Read Only

(c) Sparx Systems 2019 Page 559 of 985

User Guide - Automation 20 January, 2020

DMConnection Class

DMConnection Attributes

String

Sets the type that the connect object is.

Notes: Read Only

Attribute Remarks

Name Type: String
Notes: Read Only
Name of the Connection object.

Path Type: String
Path to the data we are connecting to.
Notes: Read Only

Type Type: String
Notes: Read Only
Type of Connection. Options:

ODBC·

EA Repository·

File·

URL·

(c) Sparx Systems 2019 Page 560 of 985

User Guide - Automation 20 January, 2020

(c) Sparx Systems 2019 Page 561 of 985

User Guide - Automation 20 January, 2020

TypeInfoProperties Package

The TypeInfoProperties Package provides an interface to the
properties of an object from the perspective of the
technology rather than the Enterprise Architect database,
allowing read and write access to those properties. It
effectively shows the properties contained in the
technology-specific and custom categories of the Properties
window for the object (and omits the Enterprise Architect
specific properties such as the General and Project
properties). The interface hides the origin of the properties -
whether they are from the base object directly, a Tagged
Value, or are MOF properties.

You can see this interface in action in the EA.Example
model ('Start > Help > Help > Open the Example Model').
When you open this model:

Select the 'Specialize > Manage Addin' ribbon option.1.

Select the checkbox against 'Type Info' and click on the2.
OK button. An icon for 'Type Info' displays on the right of
the Add-Ins panel.

Click on the drop-down arrow and select the 'Show Type3.
Info' option. The Add-Ins window displays, showing the
type information (properties) for the currently-selected
object.

If you also want to display custom properties in the4.
Add-Ins window, click on the 'Type-Info' icon again and
select the 'Include Custom Properties option'. The window
resembles this illustration, which is for a UML

(c) Sparx Systems 2019 Page 562 of 985

User Guide - Automation 20 January, 2020

Component element.

Browse the EA.Example model, clicking on different5.
types of object. You will see a different list of properties
for, say, an Action than for a Class. Then you can both
read and write to those properties. Also compare the list
with the Properties window for the same objects.

(c) Sparx Systems 2019 Page 563 of 985

User Guide - Automation 20 January, 2020

TypeInfoProperties Class

TypeInfoProperties Attributes

Attribute Remarks

Count long
Returns the number of TypeInfo
Properties.

ObjectType ObjectType
Notes: Read only
Distinguishes objects referenced through
a Dispatch interface.

TypeInfoProperties Methods

Method Remarks

GetLastError
()

String
Notes: Returns a string value describing
the most recent error that occurred in
relation to this object.

(c) Sparx Systems 2019 Page 564 of 985

User Guide - Automation 20 January, 2020

GetProperty
(String
PropName)

Returns the property value as a string.
Parameters:

PropName : String - Name of the·

property

HasProperty
(String
PropName)

Returns True if the object has the
property.
Parameters:

PropName : String - Name of the·

property

Items (object
Index)

TypeInfoProperty collection
Notes: Accesses an individual
TypeInfoProperty.
Parameters:

Index: Object - Either a string·

representing the title text or an integer
representing the zero-based index of
the TypeInfoProperty to get

SetProperty
(String
PropName,
String Value)

Returns True if the property was set.
Parameters:

PropName : String - Name of property·

Value : String - Value of property·

(c) Sparx Systems 2019 Page 565 of 985

User Guide - Automation 20 January, 2020

(c) Sparx Systems 2019 Page 566 of 985

User Guide - Automation 20 January, 2020

TypeInfoProperty Class

TypeInfoProperty Attributes

Attribute Remarks

Name String
Notes: Readonly.
Name of the property.

ObjectType ObjectType
Notes: Read only
Distinguishes objects referenced through
a Dispatch interface.

Value String
Get/Sets the Property value.

TypeInfoProperty Methods

<None.>

Method Remarks

(c) Sparx Systems 2019 Page 567 of 985

User Guide - Automation 20 January, 2020

(c) Sparx Systems 2019 Page 568 of 985

User Guide - Automation 20 January, 2020

Mail Interface Package

The MailInterface Package contains:

A function to retrieve a pointer to the interface·

Functions to create and send a mail message within the·

current mode

Utility functions for creating hyperlinks to selected model·

elements

You can get a pointer to this interface using the method
Repository.GetMailInterface.

(c) Sparx Systems 2019 Page 569 of 985

User Guide - Automation 20 January, 2020

MailInterface Class

The MailInterface interface can be accessed from the
Repository using GetMailInterface(). The returned interface
provides access to the Enterprise Architect Model Mail
Interface. Use this interface to automate the process of
creating and sending messages using Enterprise Architect's
Model Mail system.

MailInterface Attributes

Attribute Remarks

MessagingEn
abled

Boolean
Notes: Read Only
Advises whether messaging is enabled on
the current model.

ObjectType ObjectType
Notes: Read Only
Distinguishes objects referenced through
a dispatch interface.

MailInterface Methods

(c) Sparx Systems 2019 Page 570 of 985

User Guide - Automation 20 January, 2020

Method Remarks

ComposeMai
lMessage(stri
ng
InitialRecipie
ntGUID,
string
InitialSubject
, messageflag
InitialFlag,
string
InitialMessag
eText)

Boolean
Notes: Creates a new mail message using
the values specified in the input
parameters; the message is displayed in
the composition window, ready for
sending.
This method does NOT send the
message.
Parameters:

InitialRecipientGUID: String - Initial·

value for the GUID of the addressee
user (an Enterprise Architect user
defined in the current model)
InitialSubject: String - Initial value for·

the Subject text to display for this
message
InitialFlag: MessageFlag - Initial value·

for the flag type/color to attach to this
message
InitialMessageText: String - Initial·

value for the text that is the body of the
message

GetAttribute
Hyperlink(str

String
Notes: Returns a string containing a

(c) Sparx Systems 2019 Page 571 of 985

User Guide - Automation 20 January, 2020

ing
AttributeGUI
D, string
LinkText)

hyperlink to the attribute specified by the
input parameter AttributeGUID.
Parameters:

AttributeGUID: String - The GUID of·

the attribute for which a hyperlink is
required
LinkText: String - The text to display·

for the hyperlink (such as the attribute
name)

GetDiagram
Hyperlink
(string
DiagramGUI
D, string
LinkText)

String
Notes: Returns a string containing a
hyperlink to the diagram specified by the
input parameter DiagramGUID.
Parameters:

DiagramGUID: String - The GUID of·

the diagram for which a hyperlink is
required
LinkText: String - The text to display·

for the hyperlink (such as the diagram
name)

GetElementH
yperlink
(string
ElementGUI
D, string
LinkText)

String
Notes: Returns a string containing a
hyperlink to the element specified by the
input parameter ElementGUID.
Parameters:

ElementGUID: String - The GUID of·

(c) Sparx Systems 2019 Page 572 of 985

User Guide - Automation 20 January, 2020

the element for which a hyperlink is
required
LinkText: String - The text to display·

for the hyperlink (such as the element
name)

GetFileHyper
link (string
FilePath,
string
LinkText)

String
Notes: Returns a string containing a
hyperlink to the file specified by the input
parameter FilePath.
Parameters:

FilePath: String - The path name of the·

file for which a hyperlink is required
LinkText: String - The text to display·

for the hyperlink (such as the file
name)

GetLastError
()

String
Notes: Returns the last error message set
for the MailInterface.

GetMethodH
yperlink
(string
MethodGUI
D, string
LinkText)

String
Notes: Returns a string containing a
hyperlink to the method specified by the
input parameter MethodGUID.
Parameters:

MethodGUID: String - The GUID of·

the method for which a hyperlink is

(c) Sparx Systems 2019 Page 573 of 985

User Guide - Automation 20 January, 2020

required
LinkText: String - The text to display·

for the hyperlink (such as the method
name)

GetPackageH
yperlink
(string
PackageGUI
D, string
LinkText)

String
Notes: Returns a string containing a
hyperlink to the Package specified by the
input parameter PackageGUID.
Parameters:

PackageGUID: String - The GUID of·

the Package for which a hyperlink is
required
LinkText: String - The text to display·

for the hyperlink (such as the Package
name)

GetRecipient
GUID (string
UserName)

String
Notes: Returns the GUID of the specified
Enterprise Architect user.
Parameters:

UserName: String - The name of a user·

defined in the current model

GetWebHype
rlink (string
URL, string
LinkText)

String
Notes: Returns a string containing a
hyperlink to the URL specified by the
input parameter URL.

(c) Sparx Systems 2019 Page 574 of 985

User Guide - Automation 20 January, 2020

Parameters:
URL: String - The URL of the item for·

which a hyperlink is required
LinkText: String - The text to display·

for the hyperlink

SendMailMe
ssage (string
RecipientGU
ID, string
Subject,
messageflag
Flag, string
MessageText
)

Boolean
Notes: Creates and sends a new mail
message using the values specified in the
input parameters.
Parameters:

RecipientGUID: String - The GUID of·

the addressee user (an Enterprise
Architect user defined in the current
model)
Subject: String - The Subject text to·

display for this message
Flag: MessageFlag - The flag·

type/color to attach to this message
MessageText: String - The text that is·

the body of the message

(c) Sparx Systems 2019 Page 575 of 985

User Guide - Automation 20 January, 2020

Search Window Package

The Search Window Package contains:

The EAContext Class, which provides a description of a·

single selected item

The EASelection Class, which provides optimized·

functions to access information about the current selection

The SearchWindow Class, which provides a method for·

displaying the results of your operation using the Search
Window

(c) Sparx Systems 2019 Page 576 of 985

User Guide - Automation 20 January, 2020

EAContext Class

The EAContext Class provides a description of a single
selected item. The fields with values depend on the location
of the selected item.

EAContext Attributes

Atttribute Remarks

Alias String
Notes: Read only
The Alias of the context item.

BaseType String
Notes: Read only
Returns the base UML type of the context
item.

ContextType ContextType
Notes: Read only
Distinguishes objects referenced through
a Dispatch interface.

ElementGUI
D

String
Notes: Read only

(c) Sparx Systems 2019 Page 577 of 985

User Guide - Automation 20 January, 2020

The Element GUID of the current
element; empty if an element isn't
selected.

ElementID Long
Notes: Read only
The Element ID of the current element; 0
if an element isn't selected.

Locked Boolean
Notes: Read only
Indicates if the context item is locked.

MetaType String
Notes: Read only
Returns the metatype of the context item.

Name String
Notes: Read only
The name of the context item.

ObjectType ObjectType
Notes: Read only
Distinguishes objects referenced through
a Dispatch interface.

(c) Sparx Systems 2019 Page 578 of 985

User Guide - Automation 20 January, 2020

EAContext Methods

Method Remarks

HasStereotyp
e (String
stereo)

Boolean
Returns: True if the stereotype is applied
to an object.
Parameters

stereo: String - the stereotype to check·

against the context object, to see if has
been applied

(c) Sparx Systems 2019 Page 579 of 985

User Guide - Automation 20 January, 2020

EASelection Class

The EASelection Class provides optimized functions to
access information on the current selection. It should be
used when building Add-In menus and setting the menu
state, as almost all properties can be used without any
database queries being made.

EASelection Attributes

Attribute Remarks

Context EAContext
Notes:
Describes the currently focused element
without requiring any database calls.

ElementSet Collection
Notes:
When the selection consists of one or
more objects of type otElement, this
provides a collection giving optimized
access to all of those elements.

List Collection
Notes:

(c) Sparx Systems 2019 Page 580 of 985

User Guide - Automation 20 January, 2020

For any window where multiple selection
is supported, this provides a list
describing the type of every selected
element without requiring any database
calls.

Location String
Notes:
Provides the type of window that contains
the current selection.
Possible values are:

Calendar·

Diagram·

Dialog·

Element List·

Gantt·

Model View·

Browser window·

Project View·

Relationship Matrix·

Reviews·

Search·

Specification Manager·

ObjectType ObjectType
Notes: Read only
Distinguishes objects referenced through

(c) Sparx Systems 2019 Page 581 of 985

User Guide - Automation 20 January, 2020

a Dispatch interface.

EASelection Methods

None.

(c) Sparx Systems 2019 Page 582 of 985

User Guide - Automation 20 January, 2020

SearchWindow Class

The SearchWindow Class provides a method for displaying
the results of your operation using the Search Window.

SearchWindow Attributes

Attribute Remarks

FieldChooser
Visible

Boolean
Shows or hides the search Field Chooser.

FiltersVisible Boolean
Shows or hides the search filters.

ObjectType ObjectType
Notes: Read only
Distinguishes objects referenced through
a Dispatch interface.

SearchWindow Methods

Method Remarks

(c) Sparx Systems 2019 Page 583 of 985

User Guide - Automation 20 January, 2020

AddColumn
(string Name,
long Width)

Adds the column into the current Search
window.
Returns the column number, or -1 on
error.
Parameters:

Name: String - Name of the column·

Width: Long - Width of the column·

AddRow
(ObjectType
ot, String
ElementGUI
D, Long
ElementID,
String
ClassType,
VARIANT
Values)

Returns the row inserted into the search.
Parameters:

ot: ObjectType - the Object Type·

ElementGUID: String - GUID of the·

element
ElementID: long - Object ID of the·

element
ClassType: String - the type of object·

Values: an array of values·

ClearGroupin
g ()

Clear all groupings in the search.
Returns FALSE on error.

ClearSorting
()

Clear all column sorting in the search.
Returns FALSE on error.

EnsureVisibl
e ()

Make the Search window visible.
Returns FALSE, if the Search window

(c) Sparx Systems 2019 Page 584 of 985

User Guide - Automation 20 January, 2020

isn't open.

GetCell (long
Row, long
Column)

Returns the value of the cell.
Parameters:

Row: long - Row number·

Column: long - Column number·

GroupByCol
umn (long
Column)

Sets the group order by column.
Returns FALSE if it cannot group by the
specified column.
Parameters:

Column: Long - Column number·

LoadLayout
(string
LayoutGUID
)

Set the layout of the Search window.
Returns FALSE if the layout cannot be
set.
Parameters:

LayoutGUID: String - Layout GUID·

NewLayout
(string
LayoutGUID
)

Saves the layout of the Search window.
Parameters:

LayoutGUID: String - Layout GUID·

SetCellString
(long Row,
long Column,

Sets a value in a cell.
Parameters:

Row: long - Row number·

(c) Sparx Systems 2019 Page 585 of 985

User Guide - Automation 20 January, 2020

String Data) Column: long - Column number·

Data: String - Value to set the cell to·

SetCellVaria
nt (long Row,
long Column,
VARIANT
Data)

Sets an alternative value in a cell.
Parameters:

Row : long - Row number·

Column : long - Column number·

Data: Value to set the cell to·

SortByColum
n (long
Column)

Sets the column to sort by.
Returns FALSE if it cannot sort by the
specified column.
Parameters:

Column: Long - Column number·

(c) Sparx Systems 2019 Page 586 of 985

User Guide - Automation 20 January, 2020

Simulation Package

The Simulation Package contains:

An attribute to set, increase and decrease the speed of the·

simulation

A function to check if a simulation is currently running·

Functions to Start, Stop, Step Into, Step Out of, Step Over·

and Pause a simulation

A function to send a broadcast signal to the simulation·

that is currently running

(c) Sparx Systems 2019 Page 587 of 985

User Guide - Automation 20 January, 2020

Simulation Class

The Simulation Class provides an interface to the Enterprise
Architect Model Simulation facilities.

Simulation Attributes

Attribute Description

ObjectType ObjectType
Notes: Read only
Distinguishes objects referenced through
a Dispatch interface.

Speed Long
Notes: Read/Write
Retrieve or set the current simulation
running speed.

Simulation Methods

Method Description

(c) Sparx Systems 2019 Page 588 of 985

User Guide - Automation 20 January, 2020

BroadcastSig
nal(string
sSignalName
,
string
sParameters)

Boolean
Notes: Send a signal into the running
simulation. If the simulation is stopped,
do nothing.
Parameters:

sSignalName: String - the name of the·

signal OR the GUID of the Signal
element
sParameters: String - a string of one or·

more signal parameters, in this format:
{parameter1: 5, parameter2: "test",
parameter3: 3.2}

IsSimulatorR
unning()

Boolean
Notes: Check the state of the simulation.
Returns True if the simulation is running;
returns False if the simulation is stopped.

Pause() Boolean
Notes: Pause the simulation if it is
running.

Start() Boolean
Notes: Start the simulation based on the
current selection. If the current simulation
is in a paused state, then the simulation is
resumed.

(c) Sparx Systems 2019 Page 589 of 985

User Guide - Automation 20 January, 2020

StepIn() Boolean
Notes: Step In to the routine in the
current simulation.

StepOut() Boolean
Notes: Step Out of the routine in the
current simulation.

StepOver() Boolean
Notes: Step Over the routine in the
current simulation.

Stop() Boolean
Notes: Stop the simulation.

(c) Sparx Systems 2019 Page 590 of 985

User Guide - Automation 20 January, 2020

Schema Composer Package

The Schema Composer can be accessed from the Enterprise
Architect automation interface. A client (script or Add-In)
can obtain access to the interface using the
SchemaComposer property of the Repository object. This
interface is available when a Schema Composer has a
profile loaded.

(c) Sparx Systems 2019 Page 591 of 985

User Guide - Automation 20 January, 2020

SchemaProperty Class

SchemaProperty Attributes

Attribute Description

TypeID long
Notes: Read only
The classifier ID of the property.

PropID long
Notes: Read only
The property ID.

Guid string
Notes: Read only
The unique model GUID of the property.

Name string
Notes: Read only
The name of the property.

Cardinality string
Notes: Read only
The cardinality of the element.

(c) Sparx Systems 2019 Page 592 of 985

User Guide - Automation 20 January, 2020

UMLType string
Notes: Read only
The UML type, such as attribute,
association or aggregation.

Parent long
Notes: Read only
The classifier of the owner Class.

PrimitiveTyp
e

string
Notes: Read only
The property's primitive type if property
represents a simple type.

Annotation string
Notes: Read only
The model notes for the property.

Stereotype string
Notes: Read only
The stereotype of the property.

Choices SchemaTypeEnum
Returns an iterator allowing navigation of
choice elements in model, defined for this
property in the Schema Composer.
Combine with SchemaChoices attribute

(c) Sparx Systems 2019 Page 593 of 985

User Guide - Automation 20 January, 2020

to obtain all available choices.

SchemaChoic
es

SchemaTypeEnum
Returns an iterator allowing navigation of
choice elements in schema, defined for
this property in the Schema Composer.
Combine with Choices attribute to obtain
all available choices.

TypeName string
Returns a string naming the type of the
property

Type SchemaType
Returns an interface to the property's type
for complex types.

SchemaProperty Methods

Method Description

IsInline boolean
If true, the property is marked as 'Inline'.
XML schema generators would emit an
inline definition when detecting this

(c) Sparx Systems 2019 Page 594 of 985

User Guide - Automation 20 January, 2020

attribute.

IsPrimitive boolean
Returns true for a property whose type is
maps to a built in type such as xs:integer,
xs:string, xs:date or other XML Schema
built-in type.

IsByReferenc
e

boolean
Returns true for a property marked as 'By
Reference' in the profile.

(c) Sparx Systems 2019 Page 595 of 985

User Guide - Automation 20 January, 2020

SchemaProfile Class

The interface representing the technology governing the
naming and design rules on which the schema is built.

SchemaProfile Methods

Method Description

AddExportFo
rmat(string
description)

void
Notes: Use this function to add entries
that are offered by the Schema Composer
when the user clicks on the Generate
button.
Parameters:

description: describes the export format·

provided by the Add-In

SetCapability
(string
name,boolea
n enabled)

void
Notes: Use this function to enable/disable
capabilities.
Parameters:

name: name of the capability·

enabled: True or False·

Capabilities:

(c) Sparx Systems 2019 Page 596 of 985

User Guide - Automation 20 January, 2020

'allowCardinality' - allows/denies
restrictions to cardinality
'allowRootElement' - allows/denies
setting root element
'allowPropByRef' - allows/denies By
Reference restriction
'allowRedefine' - allows/denies ability to
redefine an element

SetProperty(s
tring name,
string value)

void
Notes: Sets properties displayed in the
Schema Composer.
Parameters:

name: property name·

value: property value·

Properties:
'Namespace' - Target namespace for
XML schema
'Namespace Prefix' - Namespace prefix
for XML schema
'Qualifier' - string qualifier that prepends
schema type names

(c) Sparx Systems 2019 Page 597 of 985

User Guide - Automation 20 January, 2020

SchemaComposer Class

The SchemaComposer Class provides the interface to the
Enterprise Architect Schema Composer facility.

SchemaComposer Attributes

Attribute Description

ModelRefere
nce

String
Notes: The model ref listed in the
Schema Composer for the current profile.

Namespace String
Notes: The namespace listed in the
Schema Composer for the current profile.

NamespacePr
efix

String
Notes: The namespace prefix listed in the
Schema Composer for the current profile.

TargetDirect
ory

String
Notes: The target directory selected by
the user after clicking on the Generate
button.

(c) Sparx Systems 2019 Page 598 of 985

User Guide - Automation 20 January, 2020

SchemaName String
Notes: Returns the name of the schema
profile currently being generated.

SchemaSet String
Notes: Returns the schema set used when
the schema was created.

SchemaType String
Notes: The schema type listed in the
Schema Composer for the current profile,
either 'schema' or 'transform'.

SchemaType
s

SchemaTypeEnum
Notes: Read only
Enumerator for the type collection
represented in the currently open schema.

Namespaces SchemaNamespaceEnum
Notes: Read only
Enumerator for the namespaces
referenced by schema

SchemaComposer Methods

(c) Sparx Systems 2019 Page 599 of 985

User Guide - Automation 20 January, 2020

Method Description

FindInSchem
a(long
typeID)

SchemaType
Notes: Obtains an interface to a Class as
represented in the schema for a given
model Class ID.
Parameters:

typeID: the model Class ID·

FindInModel
(long typeID)

ModelType
Notes: Obtains an interface to a Class as
represented in the UML model for a
given model Class ID
Parameters:

typeID: the model Class ID·

FindSchema
TypeByNam
e(string
typename)

SchemaType
Notes: Returns an interface to the schema
type that matches the type specified or
null if no type exists.
Parameters:

name : the name of the type·

GetNamespa
cePrefixForT
ype(long
typeID)

String
Notes: Returns the schema namespace
prefix for a given type
Parameters:

(c) Sparx Systems 2019 Page 600 of 985

User Guide - Automation 20 January, 2020

typeID: the model Class ID·

GetNamespa
ceForPrefix(
string prefix)

String
Notes: Returns the URI for a given
schema namespace prefix
Parameters:

name: the namespace prefix·

(c) Sparx Systems 2019 Page 601 of 985

User Guide - Automation 20 January, 2020

ModelTypeEnum Class

An enumerator interface for schema types as represented in
the UML model.

ModelTypeEnum Methods

Method Description

GetCount() long
Returns the number of types present in
the collection.

GetFirst() ModelType
Returns the first type interface in a
collection of types.

GetNext() ModelType
Returns the next type in the collection of
types or null if end is reached.

(c) Sparx Systems 2019 Page 602 of 985

User Guide - Automation 20 January, 2020

ModelType Class

Provides an interface to the Class of a schema type as
represented in the model.

ModelType Attributes

Attribute Description

PropertyCou
nt

long
Notes: Read only
The total number of properties for this
Class available in the Properties
collection.

Properties SchemaPropEnum
Notes: Enumerator
Collection of properties for the Class as
defined in the model.

TypeID long
Notes: Read only
The Class ID of the type.

Guid string
Notes: Read only

(c) Sparx Systems 2019 Page 603 of 985

User Guide - Automation 20 January, 2020

A GUID that uniquely identifies a type in
the model.

Typename string
Notes: Read only
The name of the type as represented in
the model.

ClassifierPat
h

string
Notes: Read only
The qualified path of the type in the
model.

ClassifierPat
hID

string
Notes: Read only
A GUID that uniquely identifies a
ClassifierPath in the model.

Stereotype string
Notes: Read only
The stereotype of the Class as defined in
the model.

Annotation string
Notes: Read only
Any notes present in the model
describing the Class.

(c) Sparx Systems 2019 Page 604 of 985

User Guide - Automation 20 January, 2020

ModelType Methods

Method Description

GetSuperClas
sEnum(Searc
hType
searchtype)

ModelTypeEnum
Notes: Enumerator
Returns an enumerator that can be used to
traverse the Class ancestry.
Parameters:

searchtype: the type of traversal to use,·

breadth first or depth first

GetSubClass
Enum(Search
Type
searchType)

ModelTypeEnum
Notes: Enumerator
Returns an enumerator that can be used to
iterate over any descendents of the Class.
Parameters:

searchtype: the type of traversal to use,·

breadth first or depth first

IsEnumeratio
n

True where type represents an
enumeration element

(c) Sparx Systems 2019 Page 605 of 985

User Guide - Automation 20 January, 2020

(c) Sparx Systems 2019 Page 606 of 985

User Guide - Automation 20 January, 2020

SchemaTypeEnum Class

An enumerator interface for schema types as represented in
XML schema.

Methods

Method Description

GetCount() Returns the number of properties for an
element.

GetFirst() Returns the first property for the element
in alphabetical order.

GetNext() Returns the first property for the element
in alphabetical order or null if no more
are present.

(c) Sparx Systems 2019 Page 607 of 985

User Guide - Automation 20 January, 2020

SchemaType Class

Represents a type as it is defined in the schema.

Methods

Method Description

GetFacet(BS
TR name)

Returns the value of the named facet.
'Root', for example' returns a value
indicating whether a type is a root
element.

GetRestrictio
n(BSTR
guid)

Returns the restriction as a string for the
property having the supplied guid.

IsRoot() True if Class is marked as 'root' in the
Composer.

IsEnumeratio
n()

True if the type represents an
enumeration element

Properties

(c) Sparx Systems 2019 Page 608 of 985

User Guide - Automation 20 January, 2020

Property Description

PropertyCou
nt [type:
long]

Returns the number of properties held by
'type'.

Properties
[type:
IEASchemaP
ropEnum]

Returns an enumerator for 'type's'
properties.

TypeID The model Class ID.

Guid The unique model GUID of the type.

Typename The type's name.

Parent The parent type - if any - that this Class
extends. Could be null depending on
composition method.

(c) Sparx Systems 2019 Page 609 of 985

User Guide - Automation 20 January, 2020

SchemaPropEnum Class

An enumerator for properties of a UML model type or XML
schema type.

Methods

Method Description

GetCount() Returns the number of properties for an
element.

GetFirst() Returns the first property for the element
in alphabetical order.

GetNext() Returns the first property for the element
in alphabetical order or null if no more
are present.

(c) Sparx Systems 2019 Page 610 of 985

User Guide - Automation 20 January, 2020

SearchType Enumeration

SearchType Attributes

Attribute Description

searchDepthF
irst

Navigate children before siblings.

searchBreadt
hFirst

Navigate siblings before children.

(c) Sparx Systems 2019 Page 611 of 985

User Guide - Automation 20 January, 2020

SchemaNamespace Class

An interface presenting namespace information

SchemaNamespace Attributes

Name string
Notes: Read only
The namespace prefix.

URI string
Notes: Read only
The URI of the namespace.

(c) Sparx Systems 2019 Page 612 of 985

User Guide - Automation 20 January, 2020

SchemaNamespaceEnum Class

An enumerator interface for namespaces referenced by
schema.

SchemaNamespaceEnum Methods

GetFirst() SchemaNamespace
Returns the first namespace interface in a
collection of namespaces.

GetNext() SchemaNamespace
Returns the next namespace interface in a
collection of namespaces

(c) Sparx Systems 2019 Page 613 of 985

User Guide - Automation 20 January, 2020

Code Samples

As you write or edit code for using the Automation
Interface, you might want to review these public Object
examples, written in VB.Net.

Examples

Name

Open the Repository

Iterate Through a .eap File

Add and Manage Packages

Add and Manage Elements

Add a Connector

Add and Manage Diagrams

Add and Delete Features

Element Extras

(c) Sparx Systems 2019 Page 614 of 985

User Guide - Automation 20 January, 2020

Repository Extras

Stereotypes

Work with Attributes

Work with Methods

(c) Sparx Systems 2019 Page 615 of 985

User Guide - Automation 20 January, 2020

Open the Repository

This is an example of the VB.Net code to open an Enterprise
Architect repository.

Public Class AutomationExample

 ''Class level variable for Repository

 Public m_Repository As Object

 Public Sub Run()

 try

 ''create the repository object

 m_Repository = CreateObject("EA.Repository")

 ''open an EAP file

 m_Repository.OpenFile("F:\Test\EAAuto.EAP")

 ''use the Repository in any way required

 ''DumpModel

 ''close the repository and tidy up

 m_Repository.Exit()

 m_Repository = Nothing

(c) Sparx Systems 2019 Page 616 of 985

User Guide - Automation 20 January, 2020

 catch e as exception

 Console.WriteLine(e)

 End try

 End Sub

end Class

(c) Sparx Systems 2019 Page 617 of 985

User Guide - Automation 20 January, 2020

Iterate Through a .EAP File

This is an example of the VB.Net code to iterate through a
.eap file starting at the Model level, after the repository has
been opened.

Sub DumpModel()

 Dim idx as Integer

 For idx=0 to m_Repository.Models.Count-1

 DumpPackage("",m_Repository.Models.GetAt(idx))

 Next

End Sub

''output Package name, then element contents, then process
child Packages

Sub DumpPackage(Indent as String, Package as Object)

 Dim idx as Integer

 Console.WriteLine(Indent + Package.Name)

 DumpElements(Indent + "", Package)

 For idx = 0 to Package.Packages.Count-1

 DumpPackage(Indent + "",
Package.Packages.GetAt(idx))

 Next

End Sub

(c) Sparx Systems 2019 Page 618 of 985

User Guide - Automation 20 January, 2020

''dump element name

Sub DumpElements(Indent as String, Package as Object)

 Dim idx as Integer

 For idx = 0 to Package.Elements.Count-1

 Console.WriteLine(Indent + "::" +
Package.Elements.GetAt(idx).Name)

 Next

End Sub

(c) Sparx Systems 2019 Page 619 of 985

User Guide - Automation 20 January, 2020

Add and Manage Packages

This example illustrates how to add a Model or a Package to
the project.

Sub TestPackageLifecycle

 Dim idx as integer

 Dim idx2 as integer

 Dim package as object

 Dim model as object

 Dim o as object

 ''first add a new Model

 model =
m_Repository.Models.AddNew("AdvancedModel","")

 If not model.Update() Then

 Console.WriteLine(model.GetLastError())

 End If

 ''refresh the models collection

 m_Repository.Models.Refresh

 ''now work through models collection and add a package

(c) Sparx Systems 2019 Page 620 of 985

User Guide - Automation 20 January, 2020

 For idx = 0 to m_Repository.Models.Count -1

 o = m_Repository.Models.GetAt(idx)

 Console.WriteLine(o.Name)

 If o.Name = "AdvancedModel" Then

 package =
o.Packages.Addnew("Subpackage","Nothing")

 If not package.Update() Then

 Console.WriteLine(package.GetLastError())

 End If

 package.Element.Stereotype = "system"

 package.Update

 ''for testing purposes just delete the

 ''newly created Model and its contents

 "m_Repository.Models.Delete(idx)

 End If

 Next

End Sub

(c) Sparx Systems 2019 Page 621 of 985

User Guide - Automation 20 January, 2020

Add and Manage Elements

This is an example of the code for adding and deleting
elements in a Package.

 Sub ElementLifeCycle

 Dim package as Object

 Dim element as Object

 package = m_Repository.GetPackageByID(2)

 element = package.elements.AddNew("Login to
Website","UseCase")

 element.Stereotype = "testcase"

 element.Update

 package.elements.Refresh()

 Dim idx as integer

 ''Note the repeated calls to "package.elements.GetAt."

 ''In general you should make this call once and assign
to a local

 ''variable - in this example, Enterprise Architect loads
the

 ''element required every time a call is made - rather
than loading once

(c) Sparx Systems 2019 Page 622 of 985

User Guide - Automation 20 January, 2020

 ''and keeping a local reference.

 For idx = 0 to package.elements.count-1

Console.WriteLine(package.elements.GetAt(idx).Name)

 If (package.elements.GetAt(idx).Name = "Login to
Website" and _

 package.elements.GetAt(idx).Type =
"UseCase") Then

 package.elements.deleteat(idx, false)

 End If

 Next

 End Sub

(c) Sparx Systems 2019 Page 623 of 985

User Guide - Automation 20 January, 2020

Add a Connector

This is an example of code to add a connector and set its
values.

Sub ConnectorTest

 Dim source as object

 Dim target as object

 Dim con as object

 Dim o as object

 Dim client as object

 Dim supplier as object

 ''Use ElementIDs to quickly load an element in this
example

 ''... you must find suitable IDs in your model

 source = m_Repository.GetElementByID(129)

 target = m_Repository.GetElementByID(169)

 con = source.Connectors.AddNew ("test link 2",
"Association")

 ''again, replace ID with a suitable one from your model

(c) Sparx Systems 2019 Page 624 of 985

User Guide - Automation 20 January, 2020

 con.SupplierID = 169

 If not con.Update Then

 Console.WriteLine(con.GetLastError)

 End If

 source.Connectors.Refresh

 Console.WriteLine("Connector Created")

 o = con.Constraints.AddNew ("constraint2","type")

 If not o.Update Then

 Console.WriteLine(o.GetLastError)

 End If

 o = con.TaggedValues.AddNew ("Tag","Value")

 If not o.Update Then

 Console.WriteLine(o.GetLastError)

 End If

 ''Use the client and supplier ends to set

 ''additional information

 client = con.ClientEnd

 client.Visibility = "Private"

 client.Role = "m_client"

(c) Sparx Systems 2019 Page 625 of 985

User Guide - Automation 20 January, 2020

 client.Update

 supplier = con.SupplierEnd

 supplier.Visibility = "Protected"

 supplier.Role = "m_supplier"

 supplier.Update

 Console.WriteLine("Client and Supplier set")

 Console.WriteLine(client.Role)

 Console.WriteLine(supplier.Role)

End Sub

(c) Sparx Systems 2019 Page 626 of 985

User Guide - Automation 20 January, 2020

Add and Manage Diagrams

This is an example of the code for creating a diagram and
adding an element to it. Note the optional use of the element
rectangle setting, using left, right, top and bottom
dimensions in the AddNew call.

 Sub DiagramLifeCycle

 Dim diagram as object

 Dim v as object

 Dim o as object

 Dim package as object

 Dim idx as Integer

 Dim idx2 as integer

 package = m_Repository.GetPackageByID(5)

 diagram = package.Diagrams.AddNew("Logical
Diagram","Logical")

 If not diagram.Update Then

 Console.WriteLine(diagram.GetLastError)

 End if

(c) Sparx Systems 2019 Page 627 of 985

User Guide - Automation 20 January, 2020

 diagram.Notes = "Hello there this is a test"

 diagram.update()

 o =
package.Elements.AddNew("ReferenceType","Class")

 o.Update

 '' add element to diagram - supply optional rectangle
co-ordinates

 v =
diagram.DiagramObjects.AddNew("l=200;r=400;t=200;b=6
00;","")

 v.ElementID = o.ElementID

 v.Update

 Console.WriteLine(diagram.DiagramID)

 End Sub

(c) Sparx Systems 2019 Page 628 of 985

User Guide - Automation 20 January, 2020

Add and Delete Features

An example of code to add and delete Features of an object.

 Dim element as object

 Dim idx as integer

 Dim attribute as object

 Dim method as object

 'just load an element by ID - you must

 'substitute a valid ID from your model

 element = m_Repository.GetElementByID(246)

 ''create a new method

 method = element.Methods.AddNew("newMethod",
"int")

 method.Update

 element.Methods.Refresh

 'now loop through methods for Element - and delete our
addition

 For idx = 0 to element.Methods.Count-1

 method =element.Methods.GetAt(idx)

 Console.Writeline(method.Name)

 If(method.Name = "newMethod") Then

(c) Sparx Systems 2019 Page 629 of 985

User Guide - Automation 20 January, 2020

 element.Methods.Delete(idx)

 End if

 Next

 'create an attribute

 attribute = element.attributes.AddNew("NewAttribute",
"int")

 attribute.Update

 element.attributes.Refresh

 'loop through and delete our new attribute

 For idx = 0 to element.attributes.Count-1

 attribute =element.attributes.GetAt(idx)

 Console.Writeline(attribute.Name)

 If(attribute.Name = "NewAttribute") Then

 element.attributes.Delete(idx)

 End If

 Next

(c) Sparx Systems 2019 Page 630 of 985

User Guide - Automation 20 January, 2020

Element Extras

These are examples of code to access and use element
extras, such as scenarios, constraints and requirements.

Sub ElementExtras

 Dim element as object

 Dim o as object

 Dim idx as Integer

 Dim bDel as boolean

 bDel = true

 try

 element = m_Repository.GetElementByID(129)

 'manage constraints for an element

 'demonstrate addnew and delete

 o =
element.Constraints.AddNew("Appended","Type")

 If not o.Update Then

 Console.WriteLine("Constraint error:" +
o.GetLastError())

 End if

 element.Constraints.Refresh

(c) Sparx Systems 2019 Page 631 of 985

User Guide - Automation 20 January, 2020

 For idx = 0 to element.Constraints.Count -1

 o = element.Constraints.GetAt(idx)

 Console.WriteLine(o.Name)

 If(o.Name="Appended") Then

 If bDel Then element.Constraints.Delete (idx)

 End if

 Next

 'efforts

 o = element.Efforts.AddNew("Appended","Type")

 If not o.Update Then

 Console.WriteLine("Efforts error:" +
o.GetLastError())

 End if

 element.Efforts.Refresh

 For idx = 0 to element.Efforts.Count -1

 o = element.Efforts.GetAt(idx)

 Console.WriteLine(o.Name)

 If(o.Name="Appended") Then

 If bDel Then element.Efforts.Delete (idx)

 End if

 Next

 'Risks

 o = element.Risks.AddNew("Appended","Type")

(c) Sparx Systems 2019 Page 632 of 985

User Guide - Automation 20 January, 2020

 If not o.Update Then

 Console.WriteLine("Risks error:" +
o.GetLastError())

 End if

 element.Risks.Refresh

 For idx = 0 to element.Risks.Count -1

 o = element.Risks.GetAt(idx)

 Console.WriteLine(o.Name)

 If(o.Name="Appended") Then

 If bDel Then element.Risks.Delete (idx)

 End if

 Next

 'Metrics

 o = element.Metrics.AddNew("Appended","Change")

 If not o.Update Then

 Console.WriteLine("Metrics error:" +
o.GetLastError())

 End if

 element.Metrics.Refresh

 For idx = 0 to element.Metrics.Count -1

 o = element.Metrics.GetAt(idx)

 Console.WriteLine(o.Name)

 If(o.Name="Appended") Then

 If bDel Then element.Metrics.Delete (idx)

(c) Sparx Systems 2019 Page 633 of 985

User Guide - Automation 20 January, 2020

 End if

 Next

 'TaggedValues

 o =
element.TaggedValues.AddNew("Appended","Change")

 If not o.Update Then

 Console.WriteLine("TaggedValues error:" +
o.GetLastError())

 End if

 element.TaggedValues.Refresh

 For idx = 0 to element.TaggedValues.Count -1

 o = element.TaggedValues.GetAt(idx)

 Console.WriteLine(o.Name)

 If(o.Name="Appended") Then

 If bDel Then element.TaggedValues.Delete
(idx)

 End if

 Next

 'Scenarios

 o =
element.Scenarios.AddNew("Appended","Change")

 If not o.Update Then

 Console.WriteLine("Scenarios error:" +

(c) Sparx Systems 2019 Page 634 of 985

User Guide - Automation 20 January, 2020

o.GetLastError())

 End if

 element.Scenarios.Refresh

 For idx = 0 to element.Scenarios.Count -1

 o = element.Scenarios.GetAt(idx)

 Console.WriteLine(o.Name)

 If(o.Name="Appended") Then

 If bDel Then element.Scenarios.Delete (idx)

 End if

 Next

 'Files

 o = element.Files.AddNew("MyFile","doc")

 If not o.Update Then

 Console.WriteLine("Files error:" +
o.GetLastError())

 End if

 element.Files.Refresh

 For idx = 0 to element.Files.Count -1

 o = element.Files.GetAt(idx)

 Console.WriteLine(o.Name)

 If(o.Name="MyFile") Then

 If bDel Then element.Files.Delete (idx)

 End if

 Next

(c) Sparx Systems 2019 Page 635 of 985

User Guide - Automation 20 January, 2020

 'Tests

 o = element.Tests.AddNew("TestPlan","Load")

 If not o.Update Then

 Console.WriteLine("Tests error:" +
o.GetLastError())

 End if

 element.Tests.Refresh

 For idx = 0 to element.Tests.Count -1

 o = element.Tests.GetAt(idx)

 Console.WriteLine(o.Name)

 If(o.Name="TestPlan") Then

 If bDel Then element.Tests.Delete (idx)

 End if

 Next

 'Defect

 o = element.Issues.AddNew("Broken","Defect")

 If not o.Update Then

 Console.WriteLine("Issues error:" +
o.GetLastError())

 End if

 element.Issues.Refresh

 For idx = 0 to element.Issues.Count -1

 o = element.Issues.GetAt(idx)

(c) Sparx Systems 2019 Page 636 of 985

User Guide - Automation 20 January, 2020

 Console.WriteLine(o.Name)

 If(o.Name="Broken") Then

 If bDel Then element.Issues.Delete (idx)

 End if

 Next

 'Change

 o = element.Issues.AddNew("Change","Change")

 If not o.Update Then

 Console.WriteLine("Issues error:" +
o.GetLastError())

 End if

 element.Issues.Refresh

 For idx = 0 to element.Issues.Count -1

 o = element.Issues.GetAt(idx)

 Console.WriteLine(o.Name)

 If(o.Name="Change") Then

 If bDel Then element.Issues.Delete (idx)

 End if

 Next

 catch e as exception

 Console.WriteLine(element.Methods.GetLastError())

 Console.WriteLine(e)

 End try

(c) Sparx Systems 2019 Page 637 of 985

User Guide - Automation 20 January, 2020

End Sub

(c) Sparx Systems 2019 Page 638 of 985

User Guide - Automation 20 January, 2020

Repository Extras

These are examples of code for accessing repository
collections for system-level information.

Sub RepositoryExtras

 Dim o as object

 Dim idx as integer

 'issues

 o = m_Repository.Issues.AddNew("Problem","Type")

 If(o.Update=false) Then

 Console.WriteLine (o.GetLastError())

 End if

 o = nothing

 m_Repository.Issues.Refresh

 For idx = 0 to m_Repository.Issues.Count-1

Console.Writeline(m_Repository.Issues.GetAt(idx).Name)

 If(m_Repository.Issues.GetAt(idx).Name =
"Problem") then

 m_Repository.Issues.DeleteAt(idx,false)

 Console.WriteLine("Delete Issues")

 End if

(c) Sparx Systems 2019 Page 639 of 985

User Guide - Automation 20 January, 2020

 Next

 ''tasks

 o = m_Repository.Tasks.AddNew("Task 1","Task type")

 If(o.Update=false) Then

 Console.WriteLine ("error - " + o.GetLastError())

 End if

 o = nothing

 m_Repository.Tasks.Refresh

 For idx = 0 to m_Repository.Tasks.Count-1

Console.Writeline(m_Repository.Tasks.GetAt(idx).Name)

 If(m_Repository.Tasks.GetAt(idx).Name = "Task 1")
then

 m_Repository.Tasks.DeleteAt(idx,false)

 Console.WriteLine("Delete Tasks")

 End if

 Next

 ''glossary

 o = m_Repository.Terms.AddNew("Term 1","business")

 If(o.Update=false) Then

 Console.WriteLine ("error - " + o.GetLastError())

 End if

 o = nothing

(c) Sparx Systems 2019 Page 640 of 985

User Guide - Automation 20 January, 2020

 m_Repository.Terms.Refresh

 For idx = 0 to m_Repository.Terms.Count-1

Console.Writeline(m_Repository.Terms.GetAt(idx).Term)

 If(m_Repository.Terms.GetAt(idx).Term = "Term 1")
then

 m_Repository.Terms.DeleteAt(idx,false)

 Console.WriteLine("Delete Terms")

 End if

 Next

 'authors

 o = m_Repository.Authors.AddNew("Joe B","Writer")

 If(o.Update=false) Then

 Console.WriteLine (o.GetLastError())

 End if

 o = nothing

 m_Repository.Authors.Refresh

 For idx = 0 to m_Repository.authors.Count-1

Console.Writeline(m_Repository.Authors.GetAt(idx).Name
)

 If(m_Repository.authors.GetAt(idx).Name = "Joe B")
then

 m_Repository.authors.DeleteAt(idx,false)

 Console.WriteLine("Delete Authors")

(c) Sparx Systems 2019 Page 641 of 985

User Guide - Automation 20 January, 2020

 End if

 Next

 o = m_Repository.Clients.AddNew("Joe
Sphere","Client")

 If(o.Update=false) Then

 Console.WriteLine (o.GetLastError())

 End if

 o = nothing

 m_Repository.Clients.Refresh

 For idx = 0 to m_Repository.Clients.Count-1

Console.Writeline(m_Repository.Clients.GetAt(idx).Name)

 If(m_Repository.Clients.GetAt(idx).Name = "Joe
Sphere") then

 m_Repository.Clients.DeleteAt(idx,false)

 Console.WriteLine("Delete Clients")

 End if

 Next

 o = m_Repository.Resources.AddNew("Joe
Worker","Resource")

 If(o.Update=false) Then

 Console.WriteLine (o.GetLastError())

 End if

 o = nothing

(c) Sparx Systems 2019 Page 642 of 985

User Guide - Automation 20 January, 2020

 m_Repository.Resources.Refresh

 For idx = 0 to m_Repository.Resources.Count-1

Console.Writeline(m_Repository.Resources.GetAt(idx).Na
me)

 If(m_Repository.Resources.GetAt(idx).Name = "Joe
Worker") then

 m_Repository.Resources.DeleteAt(idx,false)

 Console.WriteLine("Delete Resources")

 End if

 Next

End Sub

(c) Sparx Systems 2019 Page 643 of 985

User Guide - Automation 20 January, 2020

Stereotypes

This is some example code for adding and deleting
stereotypes.

 Sub TestStereotypes

 Dim o as object

 Dim idx as integer

 ''add a new stereotype to the Stereotypes collection

 o =
m_Repository.Stereotypes.AddNew("funky","class")

 If(o.Update=false) Then

 Console.WriteLine (o.GetLastError())

 End if

 o = nothing

 ''make sure you refresh

 m_Repository.Stereotypes.Refresh

 ''then iterate through - deleting our new entry in the
process

 For idx = 0 to m_Repository.Stereotypes.Count-1

(c) Sparx Systems 2019 Page 644 of 985

User Guide - Automation 20 January, 2020

Console.Writeline(m_Repository.Stereotypes.GetAt(idx).Na
me)

 If(m_Repository.Stereotypes.GetAt(idx).Name =
"funky") then

 m_Repository.Stereotypes.DeleteAt(idx,false)

 Console.WriteLine("Delete element")

 End if

 Next

 End Sub

(c) Sparx Systems 2019 Page 645 of 985

User Guide - Automation 20 January, 2020

Work With Attributes

This is an example of code for working with attributes.

 Sub AttributeLifecycle

 Dim element as object

 Dim o as object

 Dim t as object

 Dim idx as Integer

 Dim idx2 as integer

 try

 element = m_Repository.GetElementByID(129)

 For idx = 0 to element.Attributes.Count -1

 Console.WriteLine("attribute=" +
element.Attributes.GetAt(idx).Name)

 o = element.Attributes.GetAt(idx)

 t = o.Constraints.AddNew("> 123","Precision")

 t.Update()

 o.Constraints.Refresh

 For idx2 = 0 to o.Constraints.Count-1

(c) Sparx Systems 2019 Page 646 of 985

User Guide - Automation 20 January, 2020

 t = o.Constraints.GetAt(idx2)

 Console.WriteLine("Constraint: " + t.Name)

 If(t.Name="> 123") Then

 o.Constraints.DeleteAt(idx2, false)

 End if

 Next

 For idx2 = 0 to o.TaggedValues.Count-1

 t = o.TaggedValues.GetAt(idx2)

 If(t.Name = "Type2") Then

 'Console.WriteLine("deleteing")

 o.TaggedValues.DeleteAt(idx2, true)

 End if

 Next

 t =
o.TaggedValues.AddNew("Type2","Number")

 t.Update

 o.TaggedValues.Refresh

 For idx2 = 0 to o.TaggedValues.Count-1

 t = o.TaggedValues.GetAt(idx2)

 Console.WriteLine("Tagged Value: " +
t.Name)

 Next

(c) Sparx Systems 2019 Page 647 of 985

User Guide - Automation 20 January, 2020

 If(element.Attributes.GetAt(idx).Name =
"m_Tootle") Then

 Console.WriteLine("delete attribute")

 element.Attributes.DeleteAt(idx, false)

 End If

 Next

 catch e as exception

Console.WriteLine(element.Attributes.GetLastError())

 Console.WriteLine(e)

 End try

 End Sub

(c) Sparx Systems 2019 Page 648 of 985

User Guide - Automation 20 January, 2020

Work With Methods

This is an example of code for working with the Methods
collection of an element and with Method collections.

 Sub MethodLifeCycle

 Dim element as object

 Dim method as object

 Dim t as object

 Dim idx as Integer

 Dim idx2 as integer

 try

 element = m_Repository.GetElementByID(129)

 For idx = 0 to element.Methods.Count -1

 method = element.Methods.GetAt(idx)

 Console.WriteLine(method.Name)

 t =
method.PreConditions.AddNew("TestConstraint","somethin
g")

 If t.Update = false Then

 Console.WriteLine("PreConditions: " +

(c) Sparx Systems 2019 Page 649 of 985

User Guide - Automation 20 January, 2020

t.GetLastError)

 End if

 method.PreConditions.Refresh

 For idx2 = 0 to method.PreConditions.Count-1

 t = method.PreConditions.GetAt(idx2)

 Console.WriteLine("PreConditions: " +
t.Name)

 If t.Name = "TestConstraint" Then

method.PreConditions.DeleteAt(idx2,false)

 End If

 Next

 t =
method.PostConditions.AddNew("TestConstraint","somethi
ng")

 If t.Update = false Then

 Console.WriteLine("PostConditions: " +
t.GetLastError)

 End if

 method.PostConditions.Refresh

 For idx2 = 0 to method.PostConditions.Count-1

 t = method.PostConditions.GetAt(idx2)

 Console.WriteLine("PostConditions: " +

(c) Sparx Systems 2019 Page 650 of 985

User Guide - Automation 20 January, 2020

t.Name)

 If t.Name = "TestConstraint" Then

 method.PostConditions.DeleteAt(idx2,
false)

 End If

 Next

 t =
method.TaggedValues.AddNew("TestTaggedValue","somet
hing")

 If t.Update = false Then

 Console.WriteLine("Tagged Values: " +
t.GetLastError)

 End if

 For idx2 = 0 to method.TaggedValues.Count-1

 t = method.TaggedValues.GetAt(idx2)

 Console.WriteLine("Tagged Value: " +
t.Name)

 If(t.Name= "TestTaggedValue") Then

method.TaggedValues.DeleteAt(idx2,false)

 End If

 Next

 t =

(c) Sparx Systems 2019 Page 651 of 985

User Guide - Automation 20 January, 2020

method.Parameters.AddNew("TestParam","string")

 If t.Update = false Then

 Console.WriteLine("Parameters: " +
t.GetLastError)

 End if

 method.Parameters.Refresh

 For idx2 = 0 to method.Parameters.Count-1

 t = method.Parameters.GetAt(idx2)

 Console.WriteLine("Parameter: " + t.Name)

 If(t.Name="TestParam") Then

 method.Parameters.DeleteAt(idx2, false)

 End If

 Next

 method = nothing

 Next

 catch e as exception

Console.WriteLine(element.Methods.GetLastError())

 Console.WriteLine(e)

 End try

 End Sub

(c) Sparx Systems 2019 Page 652 of 985

User Guide - Automation 20 January, 2020

Enterprise Architect Add-In Model

The Add-In facility provides a means of extending
Enterprise Architect, allowing the programmer to enhance
the user interface by adding new menus, sub menus,
windows and other controls to perform a variety of
functions. An Add-In is an ActiveX COM object that is
notified of events in the user interface, such as mouse clicks
and element selections, and has access to the repository
content through the Object Model. Add-Ins can also be
integrated with the license management system.

Using this powerful facility, you can extend Enterprise
Architect to create new features not available in the core
product, and these can be compiled and easily distributed to
a community of users within an organization, or more
broadly to an entire industry. Using the Add-In facility it is
even possible to create support for modeling languages and
frameworks not supported in the core product.

Add-Ins have several advantages over stand-alone
automation clients:

Add-Ins can (and should) be written as in-process (DLL)·

components; this provides lower call overhead and better
integration into the Enterprise Architect environment

Because a current version of Enterprise Architect is·

(c) Sparx Systems 2019 Page 653 of 985

User Guide - Automation 20 January, 2020

already running there is no requirement to start a second
copy of Enterprise Architect via the automation interface

Because the Add-In receives object handles associated·

with the currently running copy of Enterprise Architect,
more information is available about the current user's
activity; for example, which diagram objects are selected

You are not required to do anything other than to install·

the Add-In to make it usable; that is, you do not have to
configure Add-Ins to run on your systems

Because Enterprise Architect is constantly evolving in·

response to customer requests, the Add-In interface is
flexible

The Add-In interface does not have its own version, rather·

it is identified by the version of Enterprise Architect it
first appeared in; for example, the current version of the
Enterprise Architect Add-In interface is version 2.1

When creating your Add-In, you do not have to subscribe·

to a type-library (Add-Ins created before 2004 are no
longer supported - if an Add-In subscribes to the
Addn_Tmpl.tlb interface (2003 style), it fails on load; in
this event, contact the vendor or author of the Add-In and
request an upgrade)

Add-Ins do not have to implement methods that they·

never use

Add-Ins prompt users via context menus in the tree view·

and the diagram

Menu check and disable states can be controlled by the·

Add-In

(c) Sparx Systems 2019 Page 654 of 985

User Guide - Automation 20 January, 2020

Add-Ins enhance the existing functionality of Enterprise
Architect through a variety of mechanisms, such as Scripts,
UML Profiles and the Automation Interface. Once an
Add-In is registered, it can be managed using the Add-In
Manager.

(c) Sparx Systems 2019 Page 655 of 985

User Guide - Automation 20 January, 2020

The Add-In Manager

If you want to check what Add-Ins are available on your
system, and enable or disable them for use, you can review
the 'Add-In Manager' dialog. This dialog lists the Add-Ins
that have been registered on your system, and their current
status (Enabled or Disabled).

Access

Ribbon Specialize > Add-Ins > Manage-Addin

Enable/disable Add-Ins

Action Detail

Enable an
Add-In

To enable an Add-In so that it is available
for use, select the 'Load on Startup'
checkbox corresponding to the name.
Click on the OK button.

Any Add-In specific features, facilities·

and Help are made available through
the 'Specialize | <add-in name>' context

(c) Sparx Systems 2019 Page 656 of 985

User Guide - Automation 20 January, 2020

menu option
Any defined Add-In windows are·

populated with information; select the
'Specialize > Add-Ins > Windows'
menu option

Disable an
Add-In

To disable an Add-In so that it is not
available for use, clear the 'Load on
Startup' checkbox corresponding to the
name.
Click on the OK button.
All menu options, features and facilities
specific to the Add-In are hidden and
made inactive.

Notes

When you enable or disable an Add-In, you must re-start·

Enterprise Architect to action the change

(c) Sparx Systems 2019 Page 657 of 985

User Guide - Automation 20 January, 2020

Add-In Tasks

This topic provides instructions on how to create, test,
deploy and manage Add-Ins.

Create an Add-In

Task

Create an Add-In.

Define Menu Items.

Respond to Menu Events.

Handle Add-In Events.

Deploy your Add-In

Task

Potential Pitfalls.

(c) Sparx Systems 2019 Page 658 of 985

User Guide - Automation 20 January, 2020

Manage Add-Ins

Task

Register an Add-In (developed in-house or brought-in).

The Add-In Manager.

(c) Sparx Systems 2019 Page 659 of 985

User Guide - Automation 20 January, 2020

Create Add-Ins

Before you start you must have an application development
tool that is capable of creating ActiveX COM objects
supporting the IDispatch interface, such as:

Borland Delphi·

Microsoft Visual Basic·

Microsoft Visual Studio .NET·

You should consider how to define menu items. To help
with this, you could review some examples of Automation
Interfaces - examples of code used to create Add-Ins for
Enterprise Architect - on the Sparx Systems web page.

Create an Enterprise Architect Add-In

Ste
p

Action

1 Use a development tool to create an ActiveX COM
DLL project.
Visual Basic users, for example, choose File-Create
New Project-ActiveX DLL.

2 Connect to the interface using the syntax appropriate
to the language.

(c) Sparx Systems 2019 Page 660 of 985

User Guide - Automation 20 January, 2020

3 Create a COM Class and implement each of the
general Add-In Events applicable to your Add-In.
You only have to define methods for events to
respond to.

4 Add a registry key that identifies your Add-In to
Enterprise Architect, as described in the Deploy
Add-Ins topic.

(c) Sparx Systems 2019 Page 661 of 985

User Guide - Automation 20 January, 2020

Define Menu Items

Tasks

Task Detail

Define Menu
Items

Menu items are defined by responding to
the GetMenuItems event.
The first time this event is called,
MenuName is an empty string,
representing the top-level menu. For a
simple Add-In with just a single menu
option you can return a string.
 Function
EA_GetMenuItems(Repository as
EA.Repository, MenuLocation As String,
MenuName As String) As Variant
 EA_GetMenuItems = "&Joe's
Add-In"
 End Function

Define
Sub-Menus

To define sub-menus, prefix a parent
menu with a dash. Parent and sub-items
are defined in this way:
Function EA_GetMenuItems(Repository
as EA.Repository, MenuLocation As
String, MenuName As String) As Variant

(c) Sparx Systems 2019 Page 662 of 985

User Guide - Automation 20 January, 2020

 Select Case MenuName
 Case ""
 'Parent Menu Item
 EA_GetMenuItems = "-&Joe's
Add-In"
 Case "-&Joe's Add-In"
 'Define Sub-Menu Items using the
Array notation.
 'In this example, "Diagram" and
"Treeview" compose the "Joe's Add-In"
sub-menu.
 EA_GetMenuItems =
Array("&Diagram", "&Treeview")
 Case Else
 MsgBox "Invalid Menu",
vbCritical
 End Select
End Function

Define
Further
Sub-Menus

Similarly, you can define further
sub-items:
Function EA_GetMenuItems(Repository
as EA.Repository, MenuLocation As
String, MenuName As String) As Variant
 Select Case MenuName
 Case ""
 EA_GetMenuItems = "-Joe's

(c) Sparx Systems 2019 Page 663 of 985

User Guide - Automation 20 January, 2020

Add-In"
 Case "-Joe's Add-In"
 EA_GetMenuItems =
Array("-&Diagram", "&TreeView")
 Case "-&Diagram"
 EA_GetMenuItems =
"&Properties"
 Case Else
 MsgBox "Invalid Menu",
vbCritical
 End Select
End Function

Enable/Disab
le menu
options

To enable or disable menu options by
default, you can use this method to show
particular items to the user:
Sub EA_GetMenuState(Repository As
EA.Repository, Location As String,
MenuName As String, ItemName As
String, IsEnabled As Boolean, IsChecked
As Boolean)
 Select Case Location
 Case "TreeView"
 'Always enable
 Case "Diagram"
 'Always enable
 Case "MainMenu"

(c) Sparx Systems 2019 Page 664 of 985

User Guide - Automation 20 January, 2020

 Select Case ItemName
 Case "&Translate", "Save
&Project"
 If GetIsProjectSelected() Then
 IsEnabled = False
 End If
 End Select
 End Select
 IsChecked = GetIsCurrentSelection()
End Sub

(c) Sparx Systems 2019 Page 665 of 985

User Guide - Automation 20 January, 2020

Deploy Add-Ins

Deploy Add-Ins to users' sites

Step Action

1 Add the Add-In DLL file to an
appropriate directory on the user's
computer; that is:
 C:\Program Files\(new dir)

2 Register the DLL as appropriate to your
platform:

If compiled as a native Win32 DDL,·

such as VB6 or C++, register the DDL
using the regsvr32 command from the
command prompt
 regsvr32 "C:\Program
Files\MyCompany\EAAddin\EAAddin
.dll"
If compiled as a .NET DLL, such as C#·

or VB.NET, register the DLL using the
RegAsm command from the command
prompt

C:\WINDOWS\Microsoft.NET\Frame
work\v2.0.50727\RegAsm.exe
 "C:\Program

(c) Sparx Systems 2019 Page 666 of 985

User Guide - Automation 20 January, 2020

Files\MyCompany\EAAddin\EAAddin
.dll" /codebase

3 Place a new entry into the registry using
the registry editor (run regedit) so that
Enterprise Architect recognizes the
presence of your Add-In.

4 Add a new key 'EAAddIns' under one of
these locations:

For the current user only·

[HKEY_CURRENT_USER\Software\
Sparx Systems]
For multiple users on a machine·

 - Under 32-bit versions of
Windows

[HKEY_LOCAL_MACHINE\Softwar
e\Sparx Systems]
 - Under 64-bit versions of
Windows

[HKEY_LOCAL_MACHINE\Softwar
e\Wow6432Node\Sparx Systems]

5 Add a new key under this key with the

(c) Sparx Systems 2019 Page 667 of 985

User Guide - Automation 20 January, 2020

project name.

(ProjectName) is not necessarily the
name of your DLL, but the name of the
Project; in Visual Basic, this is the value
for the property Name corresponding to
the project file.

6 Specify the default value by modifying
the default value of the key.

7 Enter the value of the key by typing in the
(project name).(class name), such as:
 EaRequirements.Requirements
where EaRequirements is the project

(c) Sparx Systems 2019 Page 668 of 985

User Guide - Automation 20 January, 2020

name, as shown in this example:

(c) Sparx Systems 2019 Page 669 of 985

User Guide - Automation 20 January, 2020

Tricks and Traps

Considerations

Item Detail

Visual Basic
5/6 Users
Note

Visual Basic 5/6 users should note that
the version number of the Enterprise
Architect interface is stored in the VBP
project file in a form similar to this:
Reference=*\G{64FB2BF4-9EFA-11D2-
8307-C45586000000}#2.2#0#..\..\..\..\Pro
gram Files\Sparx
Systems\EA\EA.TLB#Enterprise
Architect Object Model 2.02
If you experience problems moving from
one version of Enterprise Architect to
another, open the VBP file in a text editor
and remove this line. Then open the
project in Visual Basic and use
Project-References to create a new
reference to the Enterprise Architect
Object model.

Add-In Fails
to Load

From Enterprise Architect release 7.0,
Add-Ins created before 2004 are no
longer supported. If an Add-In subscribes

(c) Sparx Systems 2019 Page 670 of 985

User Guide - Automation 20 January, 2020

to the Addn_Tmpl.tlb interface (2003
style), it fails on load. In this event,
contact the vendor or author of the
Add-In and request an upgrade.

Holding State
Information

It is possible for an Add-In to hold state
information, meaning that data can be
stored in member variables in response to
one event and retrieved in another. There
are some dangers in doing this:

Enterprise Architect Automation·

Objects do not update themselves in
response to user activity, to activity on
other workstations, or even to the
actions of other objects in the same
automation client; retaining handles to
such objects between calls can result in
the second event querying objects that
have no relationship with the current
state of Enterprise Architect
When you close Enterprise Architect,·

all Add-Ins are asked to shut down; if
there are any external automation
clients Enterprise Architect must stay
active, in which case all the Add-Ins
are reloaded, losing all the data
Enterprise Architect acting as an·

automation client does not close if an
Add-In still holds a reference to it

(c) Sparx Systems 2019 Page 671 of 985

User Guide - Automation 20 January, 2020

(releasing all references in the
Disconnect() event avoids this
problem)

It is recommended that unless there is a
specific reason for doing so, the Add-In
should use the repository parameter and
its method and properties to provide the
necessary data.

Enterprise
Architect Not
Closing

.NET Specific Issues
Automation checks the use of objects and
will not allow any of them to be
destroyed until they are no longer being
used.
As noted in the Automation Interface
topic, if your automation controller was
written using the .NET framework,
Enterprise Architect does not close even
after you release all your references to it.
To force the release of the COM pointers,
call the memory management functions
as shown:
 GC.Collect();
 GC.WaitForPendingFinalizers();
Additionally, because automation clients
hook into Enterprise Architect, which
creates Add-Ins that in turn hook back
into Enterprise Architect, it is possible to
get into a deadlock situation where

(c) Sparx Systems 2019 Page 672 of 985

User Guide - Automation 20 January, 2020

Enterprise Architect and the Add-Ins will
not let go of one another and keep each
other active. An Add-In might retain
hooks into Enterprise Architect because:

It keeps a private reference to an·

Enterprise Architect object (see the
earlier Holding State Information), or
It has been created by .NET and the·

GC mechanism has not yet released it
There are two actions required to avoid
deadlock situations:

Automation controllers must call·

Repository.CloseAddins() at some
point (perhaps at the end of processing)
Add-Ins must release all references to·

Enterprise Architect in the
Disconnect() event; see the Add-In
Events topic for details

It is possible that your Automation client
controls a running instance of Enterprise
Architect where the Add-Ins have not
complied with the rules. In this case you
could call Repository.Exit() to terminate
Enterprise Architect.

Miscellaneous
In developing Add-Ins using the .NET
framework you must select COM

(c) Sparx Systems 2019 Page 673 of 985

User Guide - Automation 20 January, 2020

Interoperability in the project's properties
in order for it to be recognized as an
Add-In.
Some development environments do not
automatically register COM DLLs on
creation. You might have to do that
manually before Enterprise Architect
recognizes the Add-In.
You can use your private Add-In key (as
required for Add-In deployment) to store
configuration information pertinent to
your Add-In.

Concurrent
Calls

In Enterprise Architect releases up to
release 7.0, there is a possibility that
Enterprise Architect could call two
Add-In methods concurrently if the
Add-In calls:

A message box·

A modal dialog·

VB DoEvents, .NET Application·

DoEvents or the equivalent in other
languages

In such cases, Enterprise Architect could
initiate a second Add-In method before
the first returns (re-entrancy). In release
7.0. and subsequent releases, Enterprise
Architect cannot make such concurrent

(c) Sparx Systems 2019 Page 674 of 985

User Guide - Automation 20 January, 2020

calls.
If developing Add-Ins, ensure that the
Add-In users are running Enterprise
Architect release 7.0 or a later release to
avoid any risk of concurrent method
calls.

(c) Sparx Systems 2019 Page 675 of 985

User Guide - Automation 20 January, 2020

Add-In Search

Enterprise Architect enables Extensions to integrate with the
Model Search. Searches can be defined that execute a
method within your Add-In and display your results in an
integrated way.

Details

Item

The method that runs the search must be structured in this
way.

Defines the XML structure expected by Enterprise
Architect to specify search results.

In addition to the displayed results, two additional hidden
fields can be passed into the XML that provide special
functionality.

CLASSTYPE - Returning a field of CLASSTYPE,·

containing the Object_Type value from the t_object
table, displays the appropriate icon in the column in
which you place the field
CLASSGUID - Returning a field of CLASSGUID,·

containing an ea_guid value, enables the Model Search
to track the object in the Browser window and open the

(c) Sparx Systems 2019 Page 676 of 985

User Guide - Automation 20 January, 2020

Properties window for the element by double-clicking
in the Model Search

(c) Sparx Systems 2019 Page 677 of 985

User Guide - Automation 20 January, 2020

EA_SampleSearch

This defines the signature required for the function
Enterprise Architect calls when executing an Add-In search.
The name can be changed to any valid function name in
your target programming language.

Syntax

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the Enterprise Architect
model about to be closed. Poll its
members to retrieve model data and user
interface status information.

SearchText String
Direction: IN
Description: Provides the value (if any)
entered by the user in the search term
field in the model search window.

XMLResults String

(c) Sparx Systems 2019 Page 678 of 985

User Guide - Automation 20 January, 2020

Direction: OUT
Description: Provides the value (if any)
entered by the user in the search term
field in the model search window.

Return Value

The method must return any non-empty value for the results
to be displayed.

(c) Sparx Systems 2019 Page 679 of 985

User Guide - Automation 20 January, 2020

XML Format (Search Data)

This example XML provides the format for the sSearchData
parameter of the RunModelSearch method.

 <ReportViewData UID=\"MySearchID\">

 <!--

 //The UID attribute enables XML type searches to
persist column information. That is, if you run the search,
group by column or adjust

 //column widths, then close the window and run the
search again, the format/organization changes are retained.
To avoid persisting column

 //arrangements, leave the attribute value blank or
remove it altogether. Use this section to declare all possible
fields - columns that appear

 //in Enterprise Architect's Search window - that are
used below in <Rows/>. The order of the columns of
information to be appended here must

 //match the order that the search run in Enterprise
Architect would normally display. Furthermore, if you
append results onto a custom SQL

 //Search, then the order used in your Custom SQL
must match the order used here.

 -->

 <Fields>

 <Field name=""/>

(c) Sparx Systems 2019 Page 680 of 985

User Guide - Automation 20 January, 2020

 <Field name=""/>

 <Field name=""/>

 <Field name=""/>

 </Fields>

 <Rows>

 <Row>

 <Field name="" value=""/>

 <Field name="" value=""/>

 <Field name="" value=""/>

 <Field name="" value=""/>

 </Row>

 <Row>

 <Field name="" value=""/>

 <Field name="" value=""/>

 <Field name="" value=""/>

 <Field name="" value=""/>

 </Row>

 <Row>

 <Field name="" value=""/>

 <Field name="" value=""/>

 <Field name="" value=""/>

 <Field name="" value=""/>

 </Row>

 </Rows>

</ReportViewData>

(c) Sparx Systems 2019 Page 681 of 985

User Guide - Automation 20 January, 2020

(c) Sparx Systems 2019 Page 682 of 985

User Guide - Automation 20 January, 2020

Add-In Events

All Enterprise Architect Add-Ins can choose to respond to
general Add-In events.

Events

Event

EA_Connect - Add-Ins can use this to identify their type
and to respond to Enterprise Architect start up.

EA_Disconnect - Add-Ins can use this to respond to user
requests to disconnect the model branch from an external
project.

EA_GetMenuItems - Add-Ins can use this to provide the
Enterprise Architect user interface with additional Add-In
menu options in various context menus.

EA_GetMenuState - Add-Ins can use this to set a
particular menu option to either enabled or disabled.

EA_GetRibbonCategory - Add-Ins can use this to identify
the Ribbon panel in which to house their calling icon.

EA_MenuClick - received by an Add-In in response to

(c) Sparx Systems 2019 Page 683 of 985

User Guide - Automation 20 January, 2020

user selection of a menu option.

EA_OnOutputItemClicked - informs Add-Ins that the user
has clicked on a list entry in the system tab or one of the
user defined output tabs.

EA_OnOutputItemDoubleClicked - informs Add-Ins that
the user has used the mouse to double-click on a list entry
in one of the user-defined output tabs.

EA_ShowHelp - Add-Ins can use this to show a Help
topic for a particular menu option.

(c) Sparx Systems 2019 Page 684 of 985

User Guide - Automation 20 January, 2020

EA_OnAddinPropertiesTabChanging

Indicates that a value in a properties list added via
Repository.AddPropertiesTab has been changed by the user.

Syntax

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

Info EA.EventProperties
Direction: IN
Description: Contains these
EventProperty objects describing the field
changed:

TabName: The name of the Add-Ins·

window tab changing
PropID: Unique ID assign to Property·

item within the xml definition.

(c) Sparx Systems 2019 Page 685 of 985

User Guide - Automation 20 January, 2020

ChangeValue: The value the Property·

is changing to.
OriginalValue: The original value·

assigned to the Property

Return Value

Return false to indicate that this change was rejected.

Return true to indicate that the change is accepted.

(c) Sparx Systems 2019 Page 686 of 985

User Guide - Automation 20 January, 2020

EA_Connect

Add-Ins can use EA_Connect events to identify their type
and to respond to Enterprise Architect start up.

This event occurs when Enterprise Architect first loads your
Add-In. Enterprise Architect itself is loading at this time so
that while a Repository object is supplied, there is limited
information that you can extract from it.

The chief uses for EA_Connect are in initializing global
Add-In data and for identifying the Add-In as an MDG
Add-In.

Syntax

Function EA_Connect (Repository As EA.Repository) As
String

The EA_Connect function syntax has this parameter:

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

(c) Sparx Systems 2019 Page 687 of 985

User Guide - Automation 20 January, 2020

Return Value

A string identifying a specialized type of Add-In:

Type Details

"MDG" MDG Add-Ins receive MDG Events and
extra menu options.

"Workflow" Workflow add-ins receive additional
events to control user ability to change
specific fields.

"" A non-specialized Add-In.

(c) Sparx Systems 2019 Page 688 of 985

User Guide - Automation 20 January, 2020

EA_Disconnect

Add-Ins can use the EA_Disconnect event to respond to
user requests to disconnect the model branch from an
external project.

This function is called when Enterprise Architect closes. If
you have stored references to Enterprise Architect objects
(not recommended anyway), you must release them here.

In addition, .NET users must call memory management
functions as shown:

 GC.Collect();

 GC.WaitForPendingFinalizers();

Syntax

Sub EA_Disconnect()

Return Value

None.

(c) Sparx Systems 2019 Page 689 of 985

User Guide - Automation 20 January, 2020

EA_GetMenuItems

The EA_GetMenuItems event enables the Add-In to provide
the Enterprise Architect user interface with additional
Add-In menu options in various context menus. When a user
selects an Add-In menu option, an event is raised and passed
back to the Add-In that originally defined that menu option.

This event is raised just before Enterprise Architect has to
show particular menu options to the user, and its use is
described in the Define Menu Items topic.

Syntax

Function EA_GetMenuItems (Repository As
EA.Repository, MenuLocation As String, MenuName As
String) As Variant

The EA_GetMenuItems function syntax has these
parameters.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

(c) Sparx Systems 2019 Page 690 of 985

User Guide - Automation 20 January, 2020

MenuLocatio
n

String
Direction: IN
Description: A string representing the
part of the user interface that brought up
the menu. This can be TreeView,
MainMenu or Diagram.

MenuName String
Direction: IN
Description: The name of the parent
menu for which sub-items are to be
defined. In the case of the top-level menu
this is an empty string.

Return Value

One of these types:

A string indicating the label for a single menu option·

An array of strings indicating a multiple menu options·

Empty (Visual Basic/VB.NET) or null (C#) to indicate·

that no menu should be displayed

In the case of the top-level menu it should be a single string
or an array containing only one item, or empty/null.

(c) Sparx Systems 2019 Page 691 of 985

User Guide - Automation 20 January, 2020

(c) Sparx Systems 2019 Page 692 of 985

User Guide - Automation 20 January, 2020

EA_GetMenuState

Add-Ins can use the EA_GetMenuState event to set a
particular menu option to either enabled or disabled. This is
useful when dealing with locked Packages and other
situations where it is convenient to show a menu option, but
not enable it for use.

This event is raised just before Enterprise Architect has to
show particular menu options to the user. Its use is further
described in the Define Menu Items topic.

Syntax

Sub EA_GetMenuState (Repository as EA.Repository,
MenuLocation As String, MenuName as String, ItemName
as String, IsEnabled as Boolean, IsChecked as Boolean)

The EA_GetMenuState function syntax has these
parameters.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

(c) Sparx Systems 2019 Page 693 of 985

User Guide - Automation 20 January, 2020

MenuLocatio
n

String
Direction: IN
Description: A string representing the
part of the user interface that brought up
the menu. This can be TreeView,
MainMenu or Diagram.

MenuName String
Direction: IN
Description: The name of the parent
menu for which sub-items must be
defined. In the case of the top-level menu
it is an empty string.

ItemName String
Direction: IN
Description: The name of the option
actually clicked; for example, 'Create a
New Invoice'.

IsEnabled Boolean
Direction: OUT
Description: Set to False to disable this
particular menu option.

IsChecked Boolean
Direction: OUT

(c) Sparx Systems 2019 Page 694 of 985

User Guide - Automation 20 January, 2020

Description: Set to True to check this
particular menu option.

Return Value

None.

(c) Sparx Systems 2019 Page 695 of 985

User Guide - Automation 20 January, 2020

EA_GetRibbonCategory

Add-Ins can use EA_GetRibbonCategory events to identify
the Ribbon in which the Add-In should place its menu icon.

This event occurs when Enterprise Architect first loads your
Add-In. Enterprise Architect itself is loading at this time so
that while a Repository object is supplied, there is limited
information that you can extract from it.

The chief use for EA_GetRibbonCategory is in initializing
the Add-In access point.

Syntax

Function EA_GetRibbonCategory (Repository As
EA.Repository) As String

The EA_GetRibbonCategory function syntax has this
parameter:

Parameter Description

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

(c) Sparx Systems 2019 Page 696 of 985

User Guide - Automation 20 January, 2020

Return Value

A string matching the name of the selected ribbon (in
English if you are using a translated version). The possible
names are:

Start·

Design·

Layout·

Publish·

Specialize·

Construct·

Code·

Simulate·

Execute·

Manage·

It is not possible to include Add-Ins in the 'Specification -
Specify' ribbon or 'Documentation - Edit' ribbon.

If the function isn't implemented (or if an invalid name is
returned) the 'Add-In' menu will be available from the
'Specialize' ribbon, 'Add-Ins' panel.

(c) Sparx Systems 2019 Page 697 of 985

User Guide - Automation 20 January, 2020

EA_MenuClick

EA_MenuClick events are received by an Add-In in
response to user selection of a menu option.

The event is raised when the user clicks on a particular
menu option. When a user clicks on one of your non-parent
menu options, your Add-In receives a MenuClick event,
defined as:

 Sub EA_MenuClick(Repository As EA.Repository,
ByVal MenuLocation As String, ByVal MenuName As
String, ByVal ItemName As String)

This code is an example of use:

 If MenuName = "-&Diagram" And ItemName =
"&Properties" then

 MsgBox Repository.GetCurrentDiagram.Name,
vbInformation

 Else

 MsgBox "Not Implemented", vbCritical

 End If

Notice that your code can directly access Enterprise
Architect data and UI elements using Repository methods.

Syntax

Sub EA_MenuClick (Repository As EA.Repository,
MenuLocation As String, MenuName As String, ItemName

(c) Sparx Systems 2019 Page 698 of 985

User Guide - Automation 20 January, 2020

As String)

The EA_GetMenuClick function syntax has these
parameters.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

MenuLocatio
n

String
Direction: IN
Description: A string representing the
part of the user interface that brought up
the menu. This can be TreeView,
MainMenu or Diagram.

MenuName String
Direction: IN
Description: The name of the parent
menu for which sub-items are to be
defined. In the case of the top-level menu
this is an empty string.

ItemName String

(c) Sparx Systems 2019 Page 699 of 985

User Guide - Automation 20 January, 2020

Direction: IN
Description: The name of the option
actually clicked; for example, 'Create a
New Invoice'.

Return Value

None.

(c) Sparx Systems 2019 Page 700 of 985

User Guide - Automation 20 January, 2020

EA_OnOutputItemClicked

EA_OnOutputItemClicked events inform Add-Ins that the
user has clicked on a list entry in the system tab or one of
the user defined output tabs.

Usually an Add-In responds to this event in order to capture
activity on an output tab they had previously created
through a call to Repository.AddTab().

Note that every loaded Add-In receives this event for every
click on an output tab in Enterprise Architect, irrespective of
whether the Add-In created that tab. Add-Ins should
therefore check the TabName parameter supplied by this
event to ensure that they are not responding to other
Add-Ins' events.

Syntax

EA_OnOutputItemClicked (Repository As EA.Repository,
TabName As String, LineText As String, ID As Long)

The EA_OnOutputItemClicked function syntax has these
parameters.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise

(c) Sparx Systems 2019 Page 701 of 985

User Guide - Automation 20 January, 2020

Architect model. Poll its members to
retrieve model data and user interface
status information.

TabName String
Direction: IN
Description: The name of the tab that the
click occurred in. Usually this would
have been created through
'Repository.AddTab()'.

LineText String
Direction: IN
Description: The text that had been
supplied as the String parameter in the
original call to
'Repository.WriteOutput()'.

ID Long
Direction: IN
Description: The ID value specified in the
original call to Repository.WriteOutput().

Return Value

(c) Sparx Systems 2019 Page 702 of 985

User Guide - Automation 20 January, 2020

None.

(c) Sparx Systems 2019 Page 703 of 985

User Guide - Automation 20 January, 2020

EA_OnOutputItemDoubleClicked

EA_OnOutputItemDoubleClicked events inform Add-Ins
that the user has used the mouse to double-click on a list
entry in one of the user-defined output tabs.

Usually an Add-In responds to this event in order to capture
activity on an output tab they had previously created
through a call to Repository.AddTab().

Note that every loaded Add-In receives this event for every
double-click on an output tab in Enterprise Architect,
irrespective of whether the Add-In created that tab; Add-Ins
should therefore check the TabName parameter supplied by
this event to ensure that they are not responding to other
Add-Ins' events.

Syntax

EA_OnOutputItemDoubleClicked (Repository As
EA.Repository, TabName As String, LineText As String, ID
As Long)

The EA_OnOutputItemClicked function syntax contains
these parameters.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object

(c) Sparx Systems 2019 Page 704 of 985

User Guide - Automation 20 January, 2020

representing the currently open Enterprise
Architect model; poll its members to
retrieve model data and user interface
status information.

TabName String
Direction: IN
Description: The name of the tab that the
click occurred in; usually this would have
been created through
'Repository.AddTab()'.

LineText String
Direction: IN
Description: The text that had been
supplied as the String parameter in the
original call to
'Repository.WriteOutput()'.

ID Long
Direction: IN
Description: The ID value specified in the
original call to Repository.WriteOutput().

Return Value

(c) Sparx Systems 2019 Page 705 of 985

User Guide - Automation 20 January, 2020

None.

(c) Sparx Systems 2019 Page 706 of 985

User Guide - Automation 20 January, 2020

EA_ShowHelp

Add-Ins can use the EA_ShowHelp event to show a Help
topic for a particular menu option. When the user has an
Add-In menu option selected, pressing F1 can be related to
the required Help topic by the Add-In and a suitable Help
message shown.

This event is raised when the user presses F1 on a menu
option that is not a parent menu.

Syntax

Sub EA_ShowHelp (Repository as EA.Repository,
MenuLocation As String, MenuName as String, ItemName
as String)

The EA_ShowHelp function syntax contains these
parameters.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

(c) Sparx Systems 2019 Page 707 of 985

User Guide - Automation 20 January, 2020

MenuLocatio
n

String
Direction:
Description: A string representing the
part of the user interface that brought up
the menu. This can be Treeview,
MainMenu or Diagram.

MenuName String
Direction:
Description: The name of the parent
menu for which sub-items are to be
defined. In the case of the top-level menu
this is an empty string.

ItemName String
Direction:
Description: The name of the option
actually clicked; for example, 'Create a
New Invoice'.

Return Value

None.

(c) Sparx Systems 2019 Page 708 of 985

User Guide - Automation 20 January, 2020

Broadcast Events

Overview

Broadcast events are sent to all loaded Add-Ins. For an
Add-In to receive the event, they must first implement the
required automation event interface. If Enterprise Architect
detects that the Add-In has the required interface, the event
is dispatched to the Add-In.

MDG Events add a number of additional events, but the
Add-In must first have registered as an MDG-style Add-In,
rather than as a generic Add-In.

Event Type

Add-In License Management Events

Custom Table Events

Compartment Events

Context Item Events

File Close Event

File New Event

File Open Event

(c) Sparx Systems 2019 Page 709 of 985

User Guide - Automation 20 January, 2020

Model Validation Events

On Tab Changed Event

Post Close Diagram Event

Post Initialization Event

Post New Events

Post Open Diagram Event

Pre-Deletion Events

Pre-Exit Instance (not currently used)

On the creation of new objects

Retrieve Model Template Event

Schema Composer Events

Tagged Value Events

Technology Events

Transformation Event

(c) Sparx Systems 2019 Page 710 of 985

User Guide - Automation 20 January, 2020

(c) Sparx Systems 2019 Page 711 of 985

User Guide - Automation 20 January, 2020

Custom Table Events

The Custom Table element has an Operation called 'script',
reserved for script execution, that can be used in two
different, mutually exclusive ways, either:

To contain a script in JavaScript that can be executed·

from the element context menu; see the Custom Table
Artifact Help topic, or

To contain RaiseEvent broadcast calls to trigger actions·

from an Add-In written to read or update the Custom
Table

Broadcasts

There are four reserved Add-In broadcast events that can
only be enabled by listing the event in the 'script' Operation
of the Custom Table element. To raise the broadcast events,
list any or all of these broadcast calls in the operation named
'script'.

Syntax:

RaiseEvent::EA_OnCustomTableBeginEdit

(c) Sparx Systems 2019 Page 712 of 985

User Guide - Automation 20 January, 2020

(c) Sparx Systems 2019 Page 713 of 985

User Guide - Automation 20 January, 2020

EA_OnCustomTableBeginEdit

EA_OnCustomTableBeginEdit notifies Add-Ins that the
Custom Table is beginning edit mode. This broadcast event
can only be enabled by the Custom Table's operation 'script'
behavior.

Syntax

Function EA_OnCustomTableBeginEdit (Repository As
EA.Repository, Info As EA.EventProperties)

The EA_OnCustomTableBeginEdit function syntax contains
these parameters.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

Info EA.EventProperties
Direction: IN
Description: Contains this EventProperty
object for the Custom Table that is under

(c) Sparx Systems 2019 Page 714 of 985

User Guide - Automation 20 January, 2020

edit:
ObjectID - A long value corresponding·

to the ElementID of the object

(c) Sparx Systems 2019 Page 715 of 985

User Guide - Automation 20 January, 2020

EA_OnCustomTableEndEdit

EA_OnCustomTableEndEdit notifies Add-Ins that a Custom
Table element is ending edit mode. This broadcast event can
only be enabled by the Custom Table's operation 'script'
behavior.

Syntax

Function EA_OnCustomTableEndEdit (Repository As
EA.Repository, Info As EA.EventProperties)

The EA_OnCustomTableEndEdit function syntax contains
these parameters.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

Info EA.EventProperties
Direction: IN
Description: Contains this EventProperty
object for the Custom Table that is under

(c) Sparx Systems 2019 Page 716 of 985

User Guide - Automation 20 January, 2020

edit:
ObjectID - A long value corresponding·

to the ElementID of the object

Return Value

This function allows validation of the table data, and returns
a Boolean value:

true to save the current data in the grid, or·

false to abandon the current data·

(c) Sparx Systems 2019 Page 717 of 985

User Guide - Automation 20 January, 2020

EA_OnCustomTableSelectionChanged

EA_OnCustomTableSelectionChanged notifies Add-Ins that
a cell of the Custom Table has changed. This broadcast
event can only be enabled by the Custom Table's operation
'script' behavior.

Syntax

Function EA_OnCustomTableSelectionChanged
(Repository As EA.Repository, Info As
EA.EventProperties)

The EA_OnCustomTableSelectionChanged function syntax
contains these parameters.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

Info EA.EventProperties
Direction: IN
Description: Contains these

(c) Sparx Systems 2019 Page 718 of 985

User Guide - Automation 20 January, 2020

EventProperty objects for the Custom
Table that has been changed:

ObjectID - A long value corresponding·

to the ElementID of the object
RowID - A long value corresponding·

to the selected row id
ColID - A long value corresponding to·

the selected column id

(c) Sparx Systems 2019 Page 719 of 985

User Guide - Automation 20 January, 2020

EA_OnCustomTableCellUpdated

EA_OnCustomTableCellUpdated notifies Add-Ins that a
cell value has been updated. This broadcast event can only
be enabled by the Custom Table's operation 'script' behavior.

Syntax

Function EA_OnCustomTableCellUpdated (Repository As
EA.Repository, Info As EA.EventProperties)

The EA_OnCustomTableCellUpdated function syntax
contains these parameters.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

Info EA.EventProperties
Direction: IN
Description: Contains these
EventProperty objects for the Custom

(c) Sparx Systems 2019 Page 720 of 985

User Guide - Automation 20 January, 2020

Table cell that has been changed:
ObjectID - A long value corresponding·

to the ElementID of the object
RowID - A long value corresponding·

to the selected row id
ColID - A long value corresponding to·

the selected column id
Value - A variant value of the changed·

cell data

(c) Sparx Systems 2019 Page 721 of 985

User Guide - Automation 20 January, 2020

Schema Composer Events

Enterprise Architect Add-Ins can respond to events
associated with the Schema Composer to provide custom
schema export formats.

The requirements for an Add-In to participate consist of
implementing these three functions:

EA_IsSchemaExporter·

EA_GetProfileInfo·

EA_GenerateFromSchema·

(c) Sparx Systems 2019 Page 722 of 985

User Guide - Automation 20 January, 2020

EA_GenerateFromSchema

Respond to a 'Generate' request from the Schema Composer
when using the profile type specified by the
EA_IsSchemaExporter event. The SchemaComposer object
can be used to traverse the schema. Export formats that have
been requested by the user for generation will be listed in
the exports parameter.

Syntax

Sub EA_GenerateFromSchema (Repository as
EA.Repository, composer as EA.SchemaComposer, exports
as String)

Parameter Details

Repository Type: EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open model.
Poll its members to retrieve model data
and user interface status information.

composer Type: EA.SchemaComposer
Direction: IN
Description: Provides access to the types
defined in the schema currently being

(c) Sparx Systems 2019 Page 723 of 985

User Guide - Automation 20 January, 2020

generated. Use the SchemaTypes attribute
to enumerate through the types and
output to the appropriate export format.

exports Type: String
Direction: IN
Description: Comma-separated list of
export formats that the user has requested
in the 'Generate' dialog.

Return Value

None.

(c) Sparx Systems 2019 Page 724 of 985

User Guide - Automation 20 January, 2020

EA_GetProfileInfo

Add-Ins can optionally implement this function to define the
capabilities of the Schema Composer when working with
the profile type specified by the EA_IsSchemaExporter
event.

Syntax

Sub EA_GetProfileInfo (Repository as EA.Repository,
profile as EA.SchemaProfile)

Parameter Details

Repository Type: EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open model.
Poll its members to retrieve model data
and user interface status information.

profile Type: EA.SchemaProfile
Direction: IN
Description: An EA.SchemaProfile object
representing the currently active profile
type. Call the SetCapability function to
enable or disable various capabilities of
the Schema Composer. Call the

(c) Sparx Systems 2019 Page 725 of 985

User Guide - Automation 20 January, 2020

AddExportFormat function to define
additional export formats that this profile
will support.

Return Value

None.

(c) Sparx Systems 2019 Page 726 of 985

User Guide - Automation 20 January, 2020

EA_IsSchemaExporter

Enterprise Architect Add-Ins can integrate with the Schema
Composer by providing alternatives to offer users for the
generation of schemas and sub models.

The Add-In must implement this function to be listed in the
Schema Composer.

Syntax

Function EA_IsSchemaExporter(Repository as
EA.Repository, ByRef displayName as String) As Boolean

Parameter Details

Repository Type: EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open model.
Poll its members to retrieve model data
and user interface status information.

displayName Type: String
Direction: OUT
Description: The name of the custom
schema set that will be provided by this
Add-In.

(c) Sparx Systems 2019 Page 727 of 985

User Guide - Automation 20 January, 2020

Return Value

Return True to indicate that this Add-In will provide schema
export functionality and be listed as a Schema Set when
defining a new profile in the Schema Composer.

(c) Sparx Systems 2019 Page 728 of 985

User Guide - Automation 20 January, 2020

Add-In License Management Events

Enterprise Architect Add-Ins can respond to events
associated with Add-In License Management.

License Management Events

Event

EA_AddinLicenseValidate

EA_AddinLicenseGetDescription

EA_GetSharedAddinName

(c) Sparx Systems 2019 Page 729 of 985

User Guide - Automation 20 January, 2020

EA_AddinLicenseValidate

When a user directly enters into the 'License Management'
dialog a license key that doesn't match a Sparx Systems key,
EA_AddInLicenseValidate is broadcast to all Enterprise
Architect Add-Ins, providing them with a chance to use the
Add-In key to determine the level of functionality to
provide. When a key is retrieved from the Sparx Systems
Keystore only the target Add-In will be called with the key.

For the Add-In to validate itself against this key, the
Add-In's EA_AddinLicenseValidate handler should return
confirmation that the license has been validated. As the
EA_AddinLicenseValidate event is broadcast to all Add-Ins,
one license can validate many Add-Ins.

If an Add-In elects to handle a license key by returning a
confirmation to EA_AddinLicenseValidate, it is called upon
to provide a description of the license key through the
EA_AddinLicenseGetDescription event. If more than one
Add-In elects to handle a license key, the first Add-In that
returns a confirmation to EA_AddinLicenseValidate is
queried for the license key description.

Syntax

Function EA_AddInLicenseValidate (Repository As
EA.Repository, AddinKey As String) As Boolean

Parameter Type

(c) Sparx Systems 2019 Page 730 of 985

User Guide - Automation 20 January, 2020

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

AddinKey String
Direction: IN
Description: The Add-In license key that
has been entered in the 'License
Management' dialog.

Return Value

Returns True if the license key is validated for the current
Add-In. Returns False otherwise.

(c) Sparx Systems 2019 Page 731 of 985

User Guide - Automation 20 January, 2020

EA_AddinLicenseGetDescription

Before the Enterprise Architect 'License Management'
dialog is displayed, EA_AddInLicenseGetDescription is
sent once for each Add-In key to the first Add-In that
elected to handle that key.

The value returned by EA_AddinLicenseGetDescription is
used as the key's plain text description.

Syntax

Function EA_AddinLicenseGetDescription (Repository as
EA.Repository, AddinKey as String) As String

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open model.
Poll its members to retrieve model data
and user interface status information.

AddinKey String
Direction: IN
Description: The Add-In license key that
Enterprise Architect requires a

(c) Sparx Systems 2019 Page 732 of 985

User Guide - Automation 20 January, 2020

description for.

Return Value

A String containing a plain text description of the provided
AddinKey.

(c) Sparx Systems 2019 Page 733 of 985

User Guide - Automation 20 January, 2020

EA_GetSharedAddinName

As an Add-In writer you can distribute keys to your Add-In
via the Enterprise Architect Keystore, provided that your
keys are added using a prefix that allows the system to
identify the Add-In to which they belong.
EA_GetSharedAddinName is called to determine what
prefix the Add-In is using. If a matching key is found in the
keystore the 'License Management' dialog will display the
name returned by EA_AddinLicenseGetDescription to your
users. Finally, when the user selects a key, that key will be
passed to your Add-In to validate by calling
EA_AddinLicenseValidate.

Syntax

Function EA_GetSharedAddinName (Repository as
EA.Repository) As String

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open model.
Poll its members to retrieve model data
and user interface status information.

(c) Sparx Systems 2019 Page 734 of 985

User Guide - Automation 20 January, 2020

Return Value

A String containing a product name code for the provided
Add-In, such as MYADDIN. This will be shown in plain
text in any keys added to the keystore.

Notes

Shared Add-In keys have the format:

 EASK-YOURCODE-REALKEY

EASK - Constant string that identifies a shared key for an·

Enterprise Architect Add-In

YOURCODE - The code you select and verify with us:·

 - Displayed to the administrator of the keystore
 - Recommended length of 6-10 characters
 - Contains ASCII characters 33-126, except for '-' (45)

REALKEY - Encoding of the actual key or checksums·

 - Recommended length of 8-32 characters
 - Contains ASCII characters 33-126

We recommend that you contact Sparx Systems directly
with proposed values to ensure that you don't clash with any
other Add-Ins.

For example, these keys would all be interpreted as
belonging to an Add-In returning MYADDIN from this

(c) Sparx Systems 2019 Page 735 of 985

User Guide - Automation 20 January, 2020

function:

EASK-MYADDIN-Test·

EASK-MYADDIN-{7AC4D426-9083-4fa2-93B7-25E2B·

7FB8DC5}

EASK-MYADDIN-7AC4D426-9083-4fa2-93B7·

EASK-MYADDIN-25E2B7FB8DC5·

EASK-MYADDIN-2hDfHKA5jf0GAjn92UvqAnxwC13·

dxQGJtH7zLHJ9Ym8=

(c) Sparx Systems 2019 Page 736 of 985

User Guide - Automation 20 January, 2020

Compartment Events

Enterprise Architect Add-Ins can respond to various events
associated with user-generated element compartments.

Compartment Broadcast Events

Event

EA_QueryAvailableCompartments

EA_GetCompartmentData

(c) Sparx Systems 2019 Page 737 of 985

User Guide - Automation 20 January, 2020

EA_QueryAvailableCompartments

This event occurs when Enterprise Architect's diagrams are
refreshed. It is a request for the Add-In to provide a list of
user-defined compartments.

The EA_GetCompartmentData event then queries each
object for the data to display in each user-defined
compartment.

Syntax

Function EA_QueryAvailableCompartments (Repository As
EA.Repository) As Variant

The EA_QueryAvailableCompartments function syntax
contains this parameter.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

(c) Sparx Systems 2019 Page 738 of 985

User Guide - Automation 20 January, 2020

Return Value

A String containing a comma-separated list of user-defined
compartments.

Example

Function EA_QueryAvailableCompartments(Repository As
EA.Repository) As Variant

 Dim sReturn As String

 sReturn = ""

 If m_FirstCompartmentVisible = True Then

 sReturn = sReturn + "first,"

 End If

 If m_SecondCompartmentVisible = True Then

 sReturn = sReturn + "second,"

 End If

 If m_ThirdCompartmentVisible = True Then

 sReturn = sReturn + "third,"

 End If

 If Len(sReturn) > 0 Then

 sReturn = Left(sReturn, Len(sReturn)-1)

 End If

(c) Sparx Systems 2019 Page 739 of 985

User Guide - Automation 20 January, 2020

 EA_QueryAvailableCompartments = sReturn

End Function

(c) Sparx Systems 2019 Page 740 of 985

User Guide - Automation 20 January, 2020

EA_GetCompartmentData

This event occurs when Enterprise Architect is instructed to
redraw an element. It requests that the Add-In provide the
data to populate the element's compartment.

Syntax

Function EA_GetCompartmentData (Repository As
EA.Repository, sCompartment As String, sGUID As String,
oType As EA.ObjectType) As Variant

The EA_QueryAvailableCompartments function syntax
contains these parameters.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

sCompartme
nt

String
Direction: IN
Description: The name of the
compartment for which data is being

(c) Sparx Systems 2019 Page 741 of 985

User Guide - Automation 20 January, 2020

requested.

sGUID String
Direction: IN
Description: The GUID of the element
for which data is being requested.

oType ObjectType
Direction: IN
Description: The type of the element for
which data is being requested.

Return Value

A variant containing a formatted string. The format is
illustrated in this example:

Example

 Function EA_GetCompartmentData(Repository As
EA.Repository, sCompartment As String, sGUID As String,
oType As EA.ObjectType) As Variant

 If Repository Is Nothing Then

(c) Sparx Systems 2019 Page 742 of 985

User Guide - Automation 20 January, 2020

 Exit Function

 End If

 Dim sCompartmentData As String

 Dim oXML As MSXML2.DOMDocument

 Dim Nodes As MSXML2.IXMLDOMNodeList

 Dim Node1 As MSXML2.IXMLDOMNode

 Dim Node As MSXML2.IXMLDOMNode

 Dim sData As String

 sCompartmentData = ""

 Set oXML = New MSXML2.DOMDocument

 sData = ""

 On Error GoTo ERR_GetCompartmentData

 oXML.loadXML
(Repository.GetTreeXMLByGUID(sGUID))

 Set Node1 = oXML.selectSingleNode("//ModelItem")

 If Node1 Is Nothing Then

 Exit Function

 End If

 sCompartmentData = sCompartmentData + "Name=" +
sCompartment + ";"

 sCompartmentData = sCompartmentData +
"OwnerGUID=" + sGUID + ";"

(c) Sparx Systems 2019 Page 743 of 985

User Guide - Automation 20 January, 2020

 sCompartmentData = sCompartmentData +
"Options=SkipIfOnDiagram&_eq_^1&_sc_^"

 Select Case sCompartment

 Case "parts"

 Set Nodes =
Node1.selectNodes("ModelItem(@Metatype=""Part"")")

 For Each Node In Nodes

 sData = sData + "Data&_eq_^" +
Node.Attributes.getNamedItem("Name").nodeValue +
"&_sc_^"

 sData = sData + "GUID&_eq_^" +
Node.Attributes.getNamedItem("GUID").nodeValue +
"&_sc_^,"

 Next

 Case "ports"

 Set Nodes =
Node1.selectNodes("ModelItem(@Metatype=""Port"")")

 For Each Node In Nodes

 sData = sData + "Data&_eq_^" +
Node.Attributes.getNamedItem("Name").nodeValue +
"&_sc_^"

 sData = sData + "GUID&_eq_^" +
Node.Attributes.getNamedItem("GUID").nodeValue +
"&_sc_^,"

 Next

 End Select

 If there is no data to display, then don't return any

(c) Sparx Systems 2019 Page 744 of 985

User Guide - Automation 20 January, 2020

compartment data

 If sData <> "" Then

 sCompartmentData = sCompartmentData +
"CompartmentData=" + sData + ";"

 Else

 sCompartmentData = ""

 End If

 EA_GetCompartmentData = sCompartmentData

 Exit Function

 ERR_GetCompartmentData:

 EA_GetCompartmentData = ""

 End Function

(c) Sparx Systems 2019 Page 745 of 985

User Guide - Automation 20 January, 2020

Context Item Events

Enterprise Architect Add-Ins can respond to events
associated with changing context.

Context Item Broadcast Events

Event

EA_OnContextItemChanged

EA_OnContextItemDoubleClicked

EA_OnNotifyContextItemModified

(c) Sparx Systems 2019 Page 746 of 985

User Guide - Automation 20 January, 2020

EA_OnContextItemChanged

EA_OnContextItemChanged notifies Add-Ins that a
different item is now in context.

This event occurs after a user has selected an item anywhere
in the Enterprise Architect GUI. Add-Ins that require
knowledge of the current item in context can subscribe to
this broadcast function. If ot = otRepository, then this
function behaves in the same way as EA_FileOpen.

Syntax

Sub EA_OnContextItemChanged (Repository As
EA.Repository, GUID As String, ot as EA.ObjectType)

The EA_OnContextItemChanged function syntax contains
these parameters.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

GUID String

(c) Sparx Systems 2019 Page 747 of 985

User Guide - Automation 20 January, 2020

Direction: IN
Description: Contains the GUID of the
new context item. The value corresponds
to these properties, depending on the
value of the ot parameter:

ot (ObjectType) - GUID value·

otElement - Element.ElementGUID·

otPackage - Package.PackageGUID·

otDiagram - Diagram.DiagramGUID·

otAttribute - Attribute.AttributeGUID·

otMethod - Method.MethodGUID·

otConnector -·

Connector.ConnectorGUID
otRepository - NOT APPLICABLE,·

the GUID is an empty string

ot EA.ObjectType
Direction: IN
Description: Specifies the type of the new
context item.

Return Value

None.

(c) Sparx Systems 2019 Page 748 of 985

User Guide - Automation 20 January, 2020

(c) Sparx Systems 2019 Page 749 of 985

User Guide - Automation 20 January, 2020

EA_OnContextItemDoubleClicked

EA_OnContextItemDoubleClicked notifies Add-Ins that the
user has double-clicked the item currently in context.

This event occurs when a user has double-clicked (or
pressed the Enter key) on the item in context, either in a
diagram, in the Browser window or in a custom
compartment. Add-Ins to handle events can subscribe to this
broadcast function.

Syntax

Function EA_OnContextItemDoubleClicked (Repository As
EA.Repository, GUID As String, ot as EA.ObjectType)

The EA_OnContextItemDoubleClicked function syntax
contains these parameters.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

GUID String

(c) Sparx Systems 2019 Page 750 of 985

User Guide - Automation 20 January, 2020

Direction: IN
Description: Contains the GUID of the
new context item. The value corresponds
to these properties, depending on the
value of the ot parameter:

otElement - Element.ElementGUID·

otPackage - Package.PackageGUID·

otDiagram - Diagram.DiagramGUID·

otAttribute - Attribute.AttributeGUID·

otMethod - Method.MethodGUID·

otConnector -·

Connector.ConnectorGUID

ot EA.ObjectType
Direction: IN
Description: Specifies the type of the new
context item.

Return Value

Return True to notify Enterprise Architect that the
double-click event has been handled by an Add-In.

Return False to enable Enterprise Architect to continue
processing the event.

(c) Sparx Systems 2019 Page 751 of 985

User Guide - Automation 20 January, 2020

(c) Sparx Systems 2019 Page 752 of 985

User Guide - Automation 20 January, 2020

EA_OnNotifyContextItemModified

EA_OnNotifyContextItemModified notifies Add-Ins that
the current context item has been modified.

This event occurs when a user has modified the context
item. Add-Ins that require knowledge of when an item has
been modified can subscribe to this broadcast function.

Syntax

Sub EA_OnNotifyContextItemModified (Repository As
EA.Repository, GUID As String, ot as EA.ObjectType)

The EA_OnNotifyContextItemModified function syntax
contains these parameters.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

GUID String
Direction: IN

(c) Sparx Systems 2019 Page 753 of 985

User Guide - Automation 20 January, 2020

Description: Contains the GUID of the
new context item. The value corresponds
to these properties, depending on the
value of the ot parameter:

ot(ObjectType) - GUID value·

otElement - Element.ElementGUID·

otPackage - Package.PackageGUID·

otDiagram - Diagram.DiagramGUID·

otAttribute - Attribute.AttributeGUID·

otMethod - Method.MethodGUID·

otConnector -·

Connector.ConnectorGUID

ot EA.ObjectType
Direction: IN
Description: Specifies the type of the new
context item.

Return Value

None.

(c) Sparx Systems 2019 Page 754 of 985

User Guide - Automation 20 January, 2020

EA_FileClose

The EA_FileClose event enables the Add-In to respond to a
File Close event. When Enterprise Architect closes an
opened Model file, this event is raised and passed to all
Add-Ins implementing this method.

This event occurs when the model currently opened within
Enterprise Architect is about to be closed (when another
model is about to be opened or when Enterprise Architect is
about to shutdown).

Syntax

Sub EA_FileClose (Repository As EA.Repository)

The EA_FileClose function syntax contains this parameter:

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the Enterprise Architect
model about to be closed. Poll its
members to retrieve model data and user
interface status information.

(c) Sparx Systems 2019 Page 755 of 985

User Guide - Automation 20 January, 2020

Return Value

None.

(c) Sparx Systems 2019 Page 756 of 985

User Guide - Automation 20 January, 2020

EA_FileNew

The EA_FileNew event enables the Add-In to respond to a
File New event. When Enterprise Architect creates a new
model file, this event is raised and passed to all Add-Ins
implementing this method.

The event occurs when the model being viewed by the
Enterprise Architect user changes, for whatever reason
(through user interaction or Add-In activity).

Syntax

Sub EA_FileNew (Repository As EA.Repository)

The EA_FileNew function syntax contains this parameter.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

(c) Sparx Systems 2019 Page 757 of 985

User Guide - Automation 20 January, 2020

Return Value

None.

(c) Sparx Systems 2019 Page 758 of 985

User Guide - Automation 20 January, 2020

EA_FileOpen

The EA_FileOpen event enables the Add-In to respond to a
File Open event. When Enterprise Architect opens a new
model file, this event is raised and passed to all Add-Ins
implementing this method.

The event occurs when the model being viewed by the
Enterprise Architect user changes, for whatever reason
(through user interaction or Add-In activity).

Syntax

Sub EA_FileOpen (Repository As EA.Repository)

The EA_FileOpen function syntax contains this parameter.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

(c) Sparx Systems 2019 Page 759 of 985

User Guide - Automation 20 January, 2020

Return Value

None.

(c) Sparx Systems 2019 Page 760 of 985

User Guide - Automation 20 January, 2020

EA_OnPostCloseDiagram

EA_OnPostCloseDiagram notifies Add-Ins that a diagram
has been closed.

Syntax

Function EA_OnPostCloseDiagram (Repository As
EA.Repository, DiagramID As Integer)

The EA_OnPostCloseDiagram function syntax contains
these parameters.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the Enterprise Architect
model about to be closed. Poll its
members to retrieve model data and user
interface status information.

DiagramID Integer
Direction: IN
Description: Contains the Diagram ID of
the diagram that was closed.

(c) Sparx Systems 2019 Page 761 of 985

User Guide - Automation 20 January, 2020

Return Value

None.

(c) Sparx Systems 2019 Page 762 of 985

User Guide - Automation 20 January, 2020

EA_OnPostInitialized

EA_OnPostInitialized notifies Add-Ins that the Repository
object has finished loading and any necessary initialization
steps can now be performed on the object.

For example, the Add-In can create an 'Output' tab using
Repository.CreateOutputTab.

Syntax

Sub EA_OnPostInitialized (Repository As EA.Repository)

The EA_OnPostInitialized function syntax contains this
parameter.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

Return Value

(c) Sparx Systems 2019 Page 763 of 985

User Guide - Automation 20 January, 2020

None.

(c) Sparx Systems 2019 Page 764 of 985

User Guide - Automation 20 January, 2020

EA_OnPostOpenDiagram

EA_OnPostOpenDiagram notifies Add-Ins that a diagram
has been opened.

Syntax

Function EA_OnPostOpenDiagram (Repository As
EA.Repository, DiagramID As Integer)

The EA_OnPostOpenDiagram function syntax contains
these parameters.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

DiagramID Integer
Direction: IN
Description: Contains the Diagram ID of
the diagram that was opened.

(c) Sparx Systems 2019 Page 765 of 985

User Guide - Automation 20 January, 2020

Return Value

None.

(c) Sparx Systems 2019 Page 766 of 985

User Guide - Automation 20 January, 2020

EA_OnPostTransform

EA_OnPostTransform notifies Add-Ins that an MDG
transformation has taken place with the output in the
specified target Package.

This event occurs when a user runs an MDG transform on
one or more target Packages; the notification is provided for
each transform/target Package immediately after all
transform processes have completed.

Syntax

Function EA_OnPostTransform (Repository As
EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPostTransform function syntax contains these
parameters.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

Info EA.EventProperties

(c) Sparx Systems 2019 Page 767 of 985

User Guide - Automation 20 January, 2020

Direction: IN
Description: Contains these
EventProperty Objects for the transform
performed:

Transform: A string value·

corresponding to the name of the
transform used
PackageID: A long value·

corresponding to Package.PackageID
of the destination Package

Return Value

Reserved for future use.

(c) Sparx Systems 2019 Page 768 of 985

User Guide - Automation 20 January, 2020

EA_OnPreExitInstance

EA_OnPreExitInstance is not currently used.

Syntax

Sub EA_OnPreExitInstance (Repository As EA.Repository)

The EA_OnPreExitInstance function syntax contains this
parameter.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

Return Value

None.

(c) Sparx Systems 2019 Page 769 of 985

User Guide - Automation 20 January, 2020

EA_OnRetrieveModelTemplate

EA_OnRetrieveModelTemplate requests that an Add-In
pass a model template to Enterprise Architect. This event
occurs when a user executes the 'Add a New Model Using
Wizard' command to add a model that has been defined by
an MDG Technology.

Syntax

Function EA_OnRetrieveModelTemplate (Repository As
EA.Repository, sLocation As String) As String

The EA_OnRetrieveModelTemplate function syntax
contains these parameters.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

sLocation String
Direction: IN
Description: The name of the template

(c) Sparx Systems 2019 Page 770 of 985

User Guide - Automation 20 January, 2020

requested; this should match the location
attribute in the <ModelTemplates>
section of an MDG Technology File.

Return Value

Return a string containing the XMI export of the model that
is being used as a template. Return an empty string if access
to the template is denied; the Add-In is to handle user
notification of the error.

Example

Public Function EA_OnRetrieveModelTemplate(ByRef Rep
As EA.Repository, ByRef sLocation As String) As String

Dim sTemplate As String

Select Case sLocation

Case "Templates\Template1.xml"

sTemplate = My.Resources.Template1

Case "Templates\Template2.xml"

sTemplate = My.Resources.Template2

Case "Templates\Template3.xml"

sTemplate = My.Resources.Template3

(c) Sparx Systems 2019 Page 771 of 985

User Guide - Automation 20 January, 2020

Case Else

MsgBox("Path for " & sLocation & " not found")

sTemplate = ""

End Select

EA_OnRetrieveModelTemplate = sTemplate

End Function

(c) Sparx Systems 2019 Page 772 of 985

User Guide - Automation 20 January, 2020

EA_OnTabChanged

EA_OnTabChanged notifies Add-Ins that the currently open
tab has changed.

Diagrams do not generate the message when they are first
opened - use the broadcast event EA_OnPostOpenDiagram
for this purpose.

Syntax

Function EA_OnTabChanged (Repository As
EA.Repository, TabName As String, DiagramID As Integer)

The EA_OnTabChanges function syntax contains these
parameters.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

TabName String
Direction: IN

(c) Sparx Systems 2019 Page 773 of 985

User Guide - Automation 20 January, 2020

Description: The name of the tab to
which focus has been switched.

DiagramID Long
Direction: IN
Description: The diagram ID, or 0 if
switched to an Add-In tab.

Return Value

None

(c) Sparx Systems 2019 Page 774 of 985

User Guide - Automation 20 January, 2020

Model Validation Events

Perform Model Validation from an Add-In

Using Enterprise Architect broadcasts, it is possible to
define a set of rules that are evaluated when the user
instructs Enterprise Architect to perform model validation.
An Add-In that performs model validation would involve
these broadcast events.

Command Detail

EA_OnInitial
izeUserRules

EA_OnInitializeUserRules is intercepted
in order to define rule categories and
rules.

EA_OnStart
Validation

EA_OnStartValidation can be intercepted
to perform any required processing prior
to validation.

EA_OnEndV
alidation

EA_OnEndValidation can be intercepted
to perform any required clean-up after
validation has completed.

Validate
Request

These functions intercept each request to
validate an individual element, Package,
diagram, connector, attribute and method.

(c) Sparx Systems 2019 Page 775 of 985

User Guide - Automation 20 January, 2020

Validate
Element

EA_OnRunElementRule

Validate
Package

EA_OnRunPackageRule

Validate
Diagram

EA_OnRunDiagramRule

Validate
Connector

EA_OnRunConnectorRule

Validate
Attribute

EA_OnRunAttributeRule

Validate
Method

EA_OnRunMethodRule

Validate
Parameter

EA_OnRunParameterRule

(c) Sparx Systems 2019 Page 776 of 985

User Guide - Automation 20 January, 2020

EA_OnInitializeUserRules

EA_OnInitializeUserRules is called on Enterprise Architect
start-up and requests that the Add-In provide Enterprise
Architect with a rule category and list of rule IDs for model
validation.

This function must be implemented by any Add-In that is to
perform its own model validation. It must call
Project.DefineRuleCategory once and Project.DefineRule
for each rule; these functions are described in the Project
Interface topic.

Syntax

Sub EA_OnInitializeUserRules (Repository As
EA.Repository)

The EA_OnInitializeUserRules function syntax contains this
parameter.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

(c) Sparx Systems 2019 Page 777 of 985

User Guide - Automation 20 January, 2020

(c) Sparx Systems 2019 Page 778 of 985

User Guide - Automation 20 January, 2020

EA_OnStartValidation

EA_OnStartValidation notifies Add-Ins that a user has
invoked the model validation command from Enterprise
Architect.

Syntax

Sub EA_OnStartValidation (Repository As EA.Repository,
ParamArray Args() as Variant)

The EA_OnStartValidation function syntax contains these
parameters.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

Args ParamArray of Variant
Direction: IN
Description: Contains a list of Rule
Categories that are active for the current

(c) Sparx Systems 2019 Page 779 of 985

User Guide - Automation 20 January, 2020

invocation of model validation.

(c) Sparx Systems 2019 Page 780 of 985

User Guide - Automation 20 January, 2020

EA_OnEndValidation

EA_OnEndValidation notifies Add-Ins that model
validation has completed.

Use this event to arrange any clean-up operations arising
from the validation.

Syntax

Sub EA_OnEndValidation (Repository As EA.Repository,
ParamArray Args() as Variant)

The EA_OnEndValidation function syntax contains these
parameters.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

Args ParamArray of Variant
Direction: IN
Description: Contains a list of Rule

(c) Sparx Systems 2019 Page 781 of 985

User Guide - Automation 20 January, 2020

Categories that were active for the
invocation of model validation that has
just completed.

(c) Sparx Systems 2019 Page 782 of 985

User Guide - Automation 20 January, 2020

EA_OnRunElementRule

This event is triggered once for each rule defined in
EA_OnInitializeUserRules to be performed on each element
in the selection being validated.

If you don't want to perform the rule defined by RuleID on
the given element, then simply return without performing
any action.

On performing any validation, if a validation error is found,
use the Repository.ProjectInterface.PublishResult method to
notify Enterprise Architect.

Syntax

Sub EA_OnRunElementRule (Repository As
EA.Repository, RuleID As String, Element As EA.Element)

The EA_OnRunElementRule function syntax contains these
parameters.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface

(c) Sparx Systems 2019 Page 783 of 985

User Guide - Automation 20 January, 2020

status information.

RuleID String
Direction: IN
Description: The ID that was passed into
the 'Project.DefineRule' command.

Element EA.Element
Direction: IN
Description: The element to potentially
perform validation on.

(c) Sparx Systems 2019 Page 784 of 985

User Guide - Automation 20 January, 2020

EA_OnRunPackageRule

This event is triggered once for each rule defined in
EA_OnInitializeUserRules to be performed on each Package
in the selection being validated.

If you don't want to perform the rule defined by RuleID on
the given Package, then simply return without performing
any action.

On performing any validation, if a validation error is found,
use the Repository.ProjectInterface.PublishResult method to
notify Enterprise Architect.

Syntax

Sub EA_OnRunPackageRule (Repository As
EA.Repository, RuleID As String, PackageID As Long)

The EA_OnRunElementRule function syntax contains these
parameters.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface

(c) Sparx Systems 2019 Page 785 of 985

User Guide - Automation 20 January, 2020

status information.

RuleID String
Direction: IN
Description: The ID that was passed into
the 'Project.DefineRule' method.

PackageID Long
Direction: IN
Description: The ID of the Package to
potentially perform validation on. Use the
'Repository.GetPackageByID' method to
retrieve the Package object.

(c) Sparx Systems 2019 Page 786 of 985

User Guide - Automation 20 January, 2020

EA_OnRunDiagramRule

This event is triggered once for each rule defined in
EA_OnInitializeUserRules to be performed on each diagram
in the selection being validated.

If you don't want to perform the rule defined by RuleID on
the given diagram, then simply return without performing
any action.

On performing any validation, if a validation error is found,
use the Repository.ProjectInterface.PublishResult method to
notify Enterprise Architect.

Syntax

Sub EA_OnRunDiagramRule (Repository As
EA.Repository, RuleID As String, DiagramID As Long)

The EA_OnRunDiagramRule function syntax contains these
parameters.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface

(c) Sparx Systems 2019 Page 787 of 985

User Guide - Automation 20 January, 2020

status information.

RuleID String
Direction: IN
Description: The ID that was passed into
the 'Project.DefineRule' command.

DiagramID Long
Direction: IN
Description: The ID of the diagram to
potentially perform validation on.
Use the Repository.GetDiagramByID
method to retrieve the diagram object.

(c) Sparx Systems 2019 Page 788 of 985

User Guide - Automation 20 January, 2020

EA_OnRunConnectorRule

This event is triggered once for each rule defined in
EA_OnInitializeUserRules to be performed on each
connector in the selection being validated.

If you don't want to perform the rule defined by RuleID on
the given connector, then simply return without performing
any action.

On performing any validation, if a validation error is found,
use the Repository.ProjectInterface.PublishResult method to
notify Enterprise Architect.

Syntax

Sub EA_OnRunConnectorRule (Repository As
EA.Repository, RuleID As String, ConnectorID As Long)

The EA_OnRunConnectorRule function syntax contains
these parameters.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface

(c) Sparx Systems 2019 Page 789 of 985

User Guide - Automation 20 January, 2020

status information.

RuleID String
Direction: IN
Description: The ID that was passed into
the 'Project.DefineRule' command.

ConnectorID Long
Direction: IN
Description: The ID of the connector to
potentially perform validation on.
Use the 'Repository.GetConnectorByID'
method to retrieve the connector object.

(c) Sparx Systems 2019 Page 790 of 985

User Guide - Automation 20 January, 2020

EA_OnRunAttributeRule

This event is triggered once for each rule defined in
EA_OnInitializeUserRules to be performed on each attribute
in the selection being validated.

If you don't want to perform the rule defined by RuleID on
the given attribute, then simply return without performing
any action.

On performing any validation, if a validation error is found,
use the Repository.ProjectInterface.PublishResult method to
notify Enterprise Architect.

Syntax

Sub EA_OnRunAttributeRule (Repository As
EA.Repository, RuleID As String, AttributeGUID As
String, ObjectID As Long)

The EA_OnRunAttributeRule function syntax contains
these parameters.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface

(c) Sparx Systems 2019 Page 791 of 985

User Guide - Automation 20 January, 2020

status information.

RuleID String
Direction: IN
Description: The ID that was passed into
the 'Project.DefineRule' command.

AttributeGUI
D

String
Direction: IN
Description: The GUID of the attribute to
potentially perform validation on.
Use the 'Repository.GetAttributeByGuid'
method to retrieve the attribute object.

ObjectID Long
Direction: IN
Description: The ID of the object that
owns the given attribute. Use the
'Repository.GetElementByID' method to
retrieve the object.

(c) Sparx Systems 2019 Page 792 of 985

User Guide - Automation 20 January, 2020

EA_OnRunMethodRule

This event is triggered once for each rule defined in
EA_OnInitializeUserRules to be performed on each method
in the selection being validated.

If you don't want to perform the rule defined by RuleID on
the given method, then simply return without performing
any action.

On performing any validation, if a validation error is found,
use the Repository.ProjectInterface.PublishResult method to
notify Enterprise Architect.

Syntax

Sub EA_OnRunMethodRule (Repository As EA.Repository,
RuleID As String, MethodGUID As String, ObjectID As
Long)

The EA_OnRunMethodRule function syntax contains these
parameters.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface

(c) Sparx Systems 2019 Page 793 of 985

User Guide - Automation 20 January, 2020

status information.

RuleID String
Direction: IN
Description: The ID that was passed into
the 'Project.DefineRule' command.

MethodGUI
D

String
Direction: IN
Description: The GUID of the method to
potentially perform validation on. Use the
'Repository.GetMethodByGuid' method
to retrieve the method object.

ObjectID Long
Direction: IN
Description: The ID of the object that
owns the given method. Use the
'Repository.GetElementByID' method to
retrieve the object.

(c) Sparx Systems 2019 Page 794 of 985

User Guide - Automation 20 January, 2020

EA_OnRunParameterRule

This event is triggered once for each rule defined in
EA_OnInitializeUserRules to be performed on each
parameter in the selection being validated.

If you don't want to perform the rule defined by RuleID on
the given parameter, then simply return without performing
any action.

On performing any validation, if a validation error is found,
use the Repository.ProjectInterface.PublishResult method to
notify Enterprise Architect.

Syntax

Sub EA_OnRunParameterRule (Repository As
EA.Repository, RuleID As String, ParameterGUID As
String, MethodGUID As String, ObjectID As Long)

The EA_OnRunMethodRule function syntax contains these
parameters.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface

(c) Sparx Systems 2019 Page 795 of 985

User Guide - Automation 20 January, 2020

status information.

RuleID String
Direction: IN
Description: The ID that was passed into
the 'Project.DefineRule' command.

ParameterGU
ID

String
Direction: IN
Description: The GUID of the parameter
to potentially perform validation on. Use
this to retrieve the parameter by iterating
through the 'Method.Parameters'
collection.

MethodGUI
D

String
Direction: IN
Description: The GUID of the method
that owns the given parameter. Use the
'Repository.GetMethodByGuid' method
to retrieve the method object.

ObjectID Long
Direction: IN
Description: The ID of the object that
owns the given parameter. Use the
'Repository.GetElementByID' method to
retrieve the object.

(c) Sparx Systems 2019 Page 796 of 985

User Guide - Automation 20 January, 2020

(c) Sparx Systems 2019 Page 797 of 985

User Guide - Automation 20 January, 2020

Model Validation Example

This example code is written in C# and provides a skeleton
model validation implementation that you might want to use
as a starting point in writing your own model validation
rules.

Main.cs

using System;

namespace myAddin

{

 public class Main

 {

 public Rules theRules;

 public Main()

 {

 theRules = new Rules();

 }

 public string EA_Connect(EA.Repository Repository)

 {

 return "";

 }

 public void EA_Disconnect()

 {

(c) Sparx Systems 2019 Page 798 of 985

User Guide - Automation 20 January, 2020

 GC.Collect();

 GC.WaitForPendingFinalizers();

 }

 private bool IsProjectOpen(EA.Repository
Repository)

 {

 try

 {

 EA.Collection c = Repository.Models;

 return true;

 }

 catch

 {

 return false;

 }

 }

 public object EA_GetMenuItems(EA.Repository
Repository, string MenuLocation, string MenuName)

 {

 switch (MenuName)

 {

 case "":

 return "-&myAddin";

 case "-&myAddin":

 string() ar = { "&Test" };

(c) Sparx Systems 2019 Page 799 of 985

User Guide - Automation 20 January, 2020

 return ar;

 }

 return "";

 }

 public void EA_GetMenuState(EA.Repository
Repository, string MenuLocation, string MenuName,

 string ItemName, ref bool IsEnabled, ref bool
IsChecked)

 {

 // if no open project, disable all menu options

 if (IsProjectOpen(Repository))

 IsEnabled = true;

 else

 IsEnabled = false;

 }

 public void EA_MenuClick(EA.Repository
Repository, string MenuLocation, string MenuName, string
ItemName)

 {

 switch (ItemName)

 {

 case "&Test";

 DoTest(Repository);

 break;

 }

(c) Sparx Systems 2019 Page 800 of 985

User Guide - Automation 20 January, 2020

 }

 public void
EA_OnInitializeUserRules(EA.Repository Repository)

 {

 if (Repository != null)

 {

 theRules.ConfigureCategories(Repository);

 theRules.ConfigureRules(Repository);

 }

 }

 public void EA_OnRunElementRule(EA.Repository
Repository, string RuleID, EA.Element element)

 {

 theRules.RunElementRule(Repository, RuleID,
element);

 }

 public void EA_OnRunDiagramRule(EA.Repository
Repository, string RuleID, long lDiagramID)

 {

 theRules.RunDiagramRule(Repository, RuleID,
lDiagramID);

 }

 public void
EA_OnRunConnectorRule(EA.Repository Repository,
string RuleID, long lConnectorID)

 {

(c) Sparx Systems 2019 Page 801 of 985

User Guide - Automation 20 January, 2020

 theRules.RunConnectorRule(Repository, RuleID,
lConnectorID);

 }

 public void EA_OnRunAttributeRule(EA.Repository
Repository, string RuleID, string AttGUID, long lObjectID)

 {

 return;

 }

 public void EA_OnDeleteTechnology(EA.Repository
Repository, EA.EventProperties Info)

 {

 return;

 }

 public void EA_OnImportTechnology(EA.Repository
Repository, EA.EventProperties Info)

 {

 return;

 }

 private void DoTest(EA.Repository Rep)

 {

 // TODO: insert test code here

 }

 }

}

(c) Sparx Systems 2019 Page 802 of 985

User Guide - Automation 20 January, 2020

Rules.cs

using System;

using System.Collections;

namespace myAddin

{

 public class Rules

 {

 private string m_sCategoryID;

 private System.Collections.ArrayList m_RuleIDs;

 private System.Collections.ArrayList m_RuleIDEx;

 private const string cRule01 = "Rule01";

 private const string cRule02 = "Rule02";

 private const string cRule03 = "Rule03";

 // TODO: expand this list as much as necessary

 public Rules()

 {

 m_RuleIDs = new System.Collections.ArrayList();

 m_RuleIDEx = new
System.Collections.ArrayList();

 }

 private string LookupMap(string sKey)

 {

 return DoLookupMap(sKey, m_RuleIDs,

(c) Sparx Systems 2019 Page 803 of 985

User Guide - Automation 20 January, 2020

m_RuleIDEx);

 }

 private string LookupMapEx(string sRule)

 {

 return DoLookupMap(sRule, m_RuleIDEx,
m_RuleIDs);

 }

 private string DoLookupMap(string sKey, ArrayList
arrValues, ArrayList arrKeys)

 {

 if (arrKeys.Contains(sKey))

 return
arrValues(arrKeys.IndexOf(sKey)).ToString();

 else

 return "";

 }

 private void AddToMap(string sRuleID, string sKey)

 {

 m_RuleIDs.Add(sRuleID);

 m_RuleIDEx.Add(sKey);

 }

 private string GetRuleStr(string sRuleID)

 {

 switch (sRuleID)

 {

(c) Sparx Systems 2019 Page 804 of 985

User Guide - Automation 20 January, 2020

 case cRule01:

 return "Error Message 01";

 case cRule02:

 return "Error Message 02";

 case cRule03:

 return "Error Message 03";

 // TODO: add extra cases as much as necessary

 }

 return "";

 }

 public void ConfigureCategories(EA.Repository
Repository)

 {

 EA.Project Project =
Repository.GetProjectInterface();

 m_sCategoryID =
Project.DefineRuleCategory("Enterprise Collaboration
Architecture (ECA) Rules");

 }

 public void ConfigureRules(EA.Repository
Repository)

 {

 EA.Project Project =
Repository.GetProjectInterface();

 AddToMap(Project.DefineRule(m_sCategoryID,
EA.EnumMVErrorType.mvError, GetRuleStr(cRule01)),

(c) Sparx Systems 2019 Page 805 of 985

User Guide - Automation 20 January, 2020

cRule01);

 AddToMap(Project.DefineRule(m_sCategoryID,
EA.EnumMVErrorType.mvError, GetRuleStr(cRule02)),
cRule02);

 AddToMap(Project.DefineRule(m_sCategoryID,
EA.EnumMVErrorType.mvError, GetRuleStr(cRule03)),
cRule03);

 // TODO: expand this list

 }

 public void RunConnectorRule(EA.Repository
Repository, string sRuleID, long lConnectorID)

 {

 EA.Connector Connector =
Repository.GetConnectorByID((int)lConnectorID);

 if (Connector != null)

 {

 switch (LookupMapEx(sRuleID))

 {

 case cRule02:

 // TODO: perform rule 2 check

 break;

 // TODO: add more cases

 }

 }

 }

 public void RunDiagramRule(EA.Repository

(c) Sparx Systems 2019 Page 806 of 985

User Guide - Automation 20 January, 2020

Repository, string sRuleID, long lDiagramID)

 {

 EA.Diagram Diagram =
Repository.GetDiagramByID((int)lDiagramID);

 if (Diagram != null)

 {

 switch (LookupMapEx(sRuleID))

 {

 case cRule03:

 // TODO: perform rule 3 check

 break;

 // TODO: add more cases

 }

 }

 }

 public void RunElementRule(EA.Repository
Repository, string sRuleID, EA.Element Element)

 {

 if (Element != null)

 {

 switch (LookupMapEx(sRuleID))

 {

 case cRule01:

 DoRule01(Repository, Element);

 break;

(c) Sparx Systems 2019 Page 807 of 985

User Guide - Automation 20 January, 2020

 // TODO: add more cases

 }

 }

 }

 private void DoRule01(EA.Repository Repository,
EA.Element Element)

 {

 if (Element.Stereotype != "myStereotype")

 return;

 // TODO: validation logic here

 // report validation errors

 EA.Project Project =
Repository.GetProjectInterface();

 Project.PublishResult(LookupMap(cRule01),
EA.EnumMVErrorType.mvError, GetRuleStr(cRule01));

 }

 }

}

(c) Sparx Systems 2019 Page 808 of 985

User Guide - Automation 20 January, 2020

Post-New Events

Enterprise Architect Add-Ins can respond to the creation of
new elements, connectors, objects, attributes, methods and
Packages using these broadcast events:

Post-New Broadcast Events

Event

EA_OnPostNewElement

EA_OnPostNewConnector

EA_OnPostNewDiagram

EA_OnPostNewDiagramObject

EA_OnPostNewAttribute

EA_OnPostNewMethod

EA_OnPostNewPackage

EA_OnPostNewGlossaryTerm

(c) Sparx Systems 2019 Page 809 of 985

User Guide - Automation 20 January, 2020

(c) Sparx Systems 2019 Page 810 of 985

User Guide - Automation 20 January, 2020

EA_OnPostNewElement

EA_OnPostNewElement notifies Add-Ins that a new
element has been created on a diagram. It enables Add-Ins
to modify the element upon creation.

This event occurs after a user has dragged a new element
from the Toolbox or Resources window onto a diagram. The
notification is provided immediately after the element is
added to the model.

Set Repository.SuppressEADialogs to True to suppress
Enterprise Architect from showing its default 'Properties'
dialog.

Syntax

Function EA_OnPostNewElement (Repository As
EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPostNewElement function syntax contains these
parameters.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface

(c) Sparx Systems 2019 Page 811 of 985

User Guide - Automation 20 January, 2020

status information.

Info EA.EventProperties
Direction: IN
Description: Contains this EventProperty
object for the new element:

ElementID: A long value·

corresponding to Element.ElementID

Return Value

Return True if the element has been updated during this
notification. Return False otherwise.

(c) Sparx Systems 2019 Page 812 of 985

User Guide - Automation 20 January, 2020

EA_OnPostNewConnector

EA_OnPostNewConnector notifies Add-Ins that a new
connector has been created on a diagram. It enables Add-Ins
to modify the connector upon creation.

This event occurs after a user has dragged a new connector
from the Toolbox or Resources window onto a diagram. The
notification is provided immediately after the connector is
added to the model.

Syntax

Function EA_OnPostNewConnector (Repository As
EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPostNewConnector function syntax contains
these parameters.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

Info EA.EventProperties

(c) Sparx Systems 2019 Page 813 of 985

User Guide - Automation 20 January, 2020

Direction: IN
Description: Contains this EventProperty
object for the new connector:

ConnectorID: A long value·

corresponding to
Connector.ConnectorID

Return Value

Return True if the connector has been updated during this
notification. Return False otherwise.

(c) Sparx Systems 2019 Page 814 of 985

User Guide - Automation 20 January, 2020

EA_OnPostNewDiagram

EA_OnPostNewDiagram notifies Add-Ins that a new
diagram has been created. It enables Add-Ins to modify the
diagram upon creation.

Syntax

Function EA_OnPostNewDiagram (Repository As
EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPostNewDiagram function syntax contains these
parameters.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

Info EA.EventProperties
Direction: IN
Description: Contains this EventProperty
object for the new diagram:

(c) Sparx Systems 2019 Page 815 of 985

User Guide - Automation 20 January, 2020

DiagramID: A long value·

corresponding to Diagram.PackageID

Return Value

Return True if the diagram has been updated during this
notification. Return False otherwise.

(c) Sparx Systems 2019 Page 816 of 985

User Guide - Automation 20 January, 2020

EA_OnPostNewDiagramObject

EA_OnPostNewDiagramObject notifies Add-Ins that a new
object has been created on a diagram. It enables Add-Ins to
modify the object upon creation.

This event occurs after a user has dragged a new object from
the Browser window or Resources window onto a diagram.
The notification is provided immediately after the object is
added to the diagram.

Syntax

Function EA_OnPostNewDiagramObject (Repository As
EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPostNewDiagramObject function syntax
contains these parameters.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

Info EA.EventProperties

(c) Sparx Systems 2019 Page 817 of 985

User Guide - Automation 20 January, 2020

Direction: IN
Description: Contains these
EventProperty objects for the new
element:

ID: A long value corresponding to the·

ElementID of the object that has been
added to the diagram
DiagramID: A long value·

corresponding to the DiagramID of the
diagram to which the object has been
added
DUID: A string value for the DUID;·

can be used with
Diagram.GetDiagramObjectByID to
retrieve the new DiagramObject

Return Value

Return True if the element has been updated during this
notification. Return False otherwise.

(c) Sparx Systems 2019 Page 818 of 985

User Guide - Automation 20 January, 2020

EA_OnPostNewAttribute

EA_OnPostNewAttribute notifies Add-Ins that a new
attribute has been created on a diagram. It enables Add-Ins
to modify the attribute upon creation.

This event occurs when a user creates a new attribute on an
element by either drag-and-dropping from the Browser
window, using the 'Attributes' tab of the Features window,
or using the in-place editor on the diagram. The notification
is provided immediately after the attribute is created.

Syntax

Function EA_OnPostNewAttribute (Repository As
EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPostNewAttribute function syntax contains
these parameters.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

(c) Sparx Systems 2019 Page 819 of 985

User Guide - Automation 20 January, 2020

Info EA.EventProperties
Direction: IN
Description: Contains this EventProperty
object for the new attribute:

AttributeID: A long value·

corresponding to Attribute.AttributeID

Return Value

Return True if the attribute has been updated during this
notification. Return False otherwise.

(c) Sparx Systems 2019 Page 820 of 985

User Guide - Automation 20 January, 2020

EA_OnPostNewMethod

EA_OnPostNewMethod notifies Add-Ins that a new method
has been created on a diagram. It enables Add-Ins to modify
the method upon creation.

This event occurs when a user creates a new method on an
element by either drag-dropping from the Browser window,
using the method's 'Properties' dialog, or using the in-place
editor on the diagram. The notification is provided
immediately after the method is created.

Syntax

Function EA_OnPostNewMethod (Repository As
EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPostNewMethod function syntax contains these
parameters.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

(c) Sparx Systems 2019 Page 821 of 985

User Guide - Automation 20 January, 2020

Info EA.EventProperties
Direction: IN
Description: Contains this EventProperty
object for the new method:

MethodID: A long value corresponding·

to Method.MethodID

Return Value

Return True if the method has been updated during this
notification. Return False otherwise.

(c) Sparx Systems 2019 Page 822 of 985

User Guide - Automation 20 January, 2020

EA_OnPostNewPackage

EA_OnPostNewPackage notifies Add-Ins that a new
Package has been created on a diagram. It enables Add-Ins
to modify the Package upon creation.

This event occurs when a user drags a new Package from
the Toolbox or Resources window onto a diagram, or by
selecting the New Package icon from the Browser window.

Syntax

Function EA_OnPostNewPackage (Repository As
EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPostNewPackage function syntax contains these
parameters.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

Info EA.EventProperties

(c) Sparx Systems 2019 Page 823 of 985

User Guide - Automation 20 January, 2020

Direction: IN
Description: Contains this EventProperty
object for the new Package:

PackageID: A long value·

corresponding to Package.PackageID

Return Value

Return True if the Package has been updated during this
notification. Return False otherwise.

(c) Sparx Systems 2019 Page 824 of 985

User Guide - Automation 20 January, 2020

EA_OnPostNewGlossaryTerm

EA_OnPostNewGlossaryTerm notifies Add-Ins that a new
glossary term has been created. It enables Add-Ins to modify
the glossary term upon creation.

The notification is provided immediately after the glossary
term is added to the model.

Syntax

Function EA_OnPostNewGlossaryTerm (Repository As
EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPostNewGlossaryTerm function syntax contains
these parameters.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

Info EA.EventProperties
Direction: IN

(c) Sparx Systems 2019 Page 825 of 985

User Guide - Automation 20 January, 2020

Description: Contains these
EventProperty objects for the new
glossary term:

TermID: A string value corresponding·

to Term.TermID
Term: A string value corresponding to·

the name of the glossary term being
created
Meaning: A string value corresponding·

to meaning of the glossary term being
created

Return Value

Return True if the glossary term has been updated during
this notification. Return False otherwise.

(c) Sparx Systems 2019 Page 826 of 985

User Guide - Automation 20 January, 2020

Pre-Deletion Events

Enterprise Architect Add-Ins can respond to requests to
delete elements, attributes, methods, connectors, diagrams,
Packages and glossary terms using these broadcast events:

Pre-Deletion Broadcast Events

Event

EA_OnPreDeleteElement

EA_OnPreDeleteAttribute

EA_OnPreDeleteMethod

EA_OnPreDeleteConnector

EA_OnPreDeleteDiagram

EA_OnPreDeletePackage

EA_OnPreDeleteGlossaryTerm

EA_OnPreDeleteTechnology (Deprecated)

(c) Sparx Systems 2019 Page 827 of 985

User Guide - Automation 20 January, 2020

(c) Sparx Systems 2019 Page 828 of 985

User Guide - Automation 20 January, 2020

EA_OnPreDeleteElement

EA_OnPreDeleteElement notifies Add-Ins that an element
is to be deleted from the model. It enables Add-Ins to permit
or deny deletion of the element.

This event occurs when a user deletes an element from the
Browser window or on a diagram. The notification is
provided immediately before the element is deleted, so that
the Add-In can disable deletion of the element.

Syntax

Function EA_OnPreDeleteElement (Repository As
EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPreDeleteElement function syntax contains
these parameters.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

Info EA.EventProperties

(c) Sparx Systems 2019 Page 829 of 985

User Guide - Automation 20 January, 2020

Direction: IN
Description: Contains this EventProperty
object for the element to be deleted:

ElementID: A long value·

corresponding to Element.ElementID

Return Value

Return True to enable deletion of the element from the
model. Return False to disable deletion of the element.

(c) Sparx Systems 2019 Page 830 of 985

User Guide - Automation 20 January, 2020

EA_OnPreDeleteAttribute

EA_OnPreDeleteAttribute notifies Add-Ins that an attribute
is to be deleted from the model. It enables Add-Ins to permit
or deny deletion of the attribute.

This event occurs when a user attempts to permanently
delete an attribute from the Browser window. The
notification is provided immediately before the attribute is
deleted, so that the Add-In can disable deletion of the
attribute.

Syntax

Function EA_OnPreDeleteAttribute (Repository As
EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPreDeleteAttribute function syntax contains
these parameters.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

(c) Sparx Systems 2019 Page 831 of 985

User Guide - Automation 20 January, 2020

Info EA.EventProperties
Direction: IN
Description: Contains this EventProperty
object for the attribute to be deleted:

AttributeID: A long value·

corresponding to Attribute.AttributeID

Return Value

Return True to enable deletion of the attribute from the
model. Return False to disable deletion of the attribute.

(c) Sparx Systems 2019 Page 832 of 985

User Guide - Automation 20 January, 2020

EA_OnPreDeleteMethod

EA_OnPreDeleteMethod notifies Add-Ins that a method
(operation) is to be deleted from the model. It enables
Add-Ins to permit or deny deletion of the method.

This event occurs when a user attempts to permanently
delete a method from the Browser window. The notification
is provided immediately before the method is deleted, so
that the Add-In can disable deletion of the method.

Syntax

Function EA_OnPreDeleteMethod (Repository As
EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPreDeleteMethod function syntax contains these
parameters.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

Info EA.EventProperties

(c) Sparx Systems 2019 Page 833 of 985

User Guide - Automation 20 January, 2020

Direction: IN
Description: Contains this EventProperty
object for the method to be deleted:

MethodID: A long value corresponding·

to Method.MethodID

Return Value

Return True to enable deletion of the method from the
model. Return False to disable deletion of the method.

(c) Sparx Systems 2019 Page 834 of 985

User Guide - Automation 20 January, 2020

EA_OnPreDeleteConnector

EA_OnPreDeleteConnector notifies Add-Ins that a
connector is to be deleted from the model. It enables
Add-Ins to permit or deny deletion of the connector.

This event occurs when a user attempts to permanently
delete a connector on a diagram. The notification is
provided immediately before the connector is deleted, so
that the Add-In can disable deletion of the connector.

Syntax

Function EA_OnPreDeleteConnector (Repository As
EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPreDeleteConnector function syntax contains
these parameters.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

Info EA.EventProperties

(c) Sparx Systems 2019 Page 835 of 985

User Guide - Automation 20 January, 2020

Direction: IN
Description: Contains this EventProperty
object for the connector to be deleted:

ConnectorID: A long value·

corresponding to
Connector.ConnectorID

Return Value

Return True to enable deletion of the connector from the
model. Return False to disable deletion of the connector.

(c) Sparx Systems 2019 Page 836 of 985

User Guide - Automation 20 January, 2020

EA_OnPreDeleteDiagram

EA_OnPreDeleteDiagram notifies Add-Ins that a diagram is
to be deleted from the model. It enables Add-Ins to permit
or deny deletion of the diagram.

This event occurs when a user attempts to permanently
delete a diagram from the Browser window. The notification
is provided immediately before the diagram is deleted, so
that the Add-In can disable deletion of the diagram.

Syntax

Function EA_OnPreDeleteDiagram (Repository As
EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPreDeleteDiagram function syntax contains
these parameters.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently-open
Enterprise Architect model. Poll its
members to retrieve model data and user
interface status information.

Info EA.EventProperties

(c) Sparx Systems 2019 Page 837 of 985

User Guide - Automation 20 January, 2020

Direction: IN
Description: Contains this EventProperty
object for the diagram to be deleted:

DiagramID: A long value·

corresponding to Diagram.DiagramID

Return Value

Return True to enable deletion of the diagram from the
model. Return False to disable deletion of the diagram.

(c) Sparx Systems 2019 Page 838 of 985

User Guide - Automation 20 January, 2020

EA_OnPreDeleteDiagramObject

EA_OnPreDeleteDiagramObject notifies Add-Ins that a
diagram object is to be deleted from the model. It enables
Add-Ins to permit or deny deletion of the element.

This event occurs when a user attempts to permanently
delete an element from a diagram. The notification is
provided immediately before the element is deleted, so that
the Add-In can disable deletion of the element.

Syntax

Function EA_OnPreDeleteDiagramObject (Repository As
EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPreDeleteDiagramObject function syntax
contains these parameters.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently-open
Enterprise Architect model. Poll its
members to retrieve model data and user
interface status information.

Info EA.EventProperties

(c) Sparx Systems 2019 Page 839 of 985

User Guide - Automation 20 January, 2020

Direction: IN
Description: Contains this EventProperty
object for the element to be deleted:

ID: A long value corresponding to·

DiagramObject.ElementID

Return Value

Return True to enable deletion of the element from the
model. Return False to disable deletion of the element.

(c) Sparx Systems 2019 Page 840 of 985

User Guide - Automation 20 January, 2020

EA_OnPreDeletePackage

EA_OnPreDeletePackage notifies Add-Ins that a Package is
to be deleted from the model. It enables Add-Ins to permit
or deny deletion of the Package.

This event occurs when a user attempts to permanently
delete a Package from the Browser window. The
notification is provided immediately before the Package is
deleted, so that the Add-In can disable deletion of the
Package.

Syntax

Function EA_OnPreDeletePackage (Repository As
EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPreDeletePackage function syntax contains
these parameters.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

(c) Sparx Systems 2019 Page 841 of 985

User Guide - Automation 20 January, 2020

Info EA.EventProperties
Direction: IN
Description: Contains this EventProperty
object for the Package to be deleted:

PackageID: A long value·

corresponding to Package.PackageID

Return Value

Return True to enable deletion of the Package from the
model. Return False to disable deletion of the Package.

(c) Sparx Systems 2019 Page 842 of 985

User Guide - Automation 20 January, 2020

EA_OnPreDeleteGlossaryTerm

EA_OnPreDeleteGlossaryTerm notifies Add-Ins that a
glossary term is to be deleted from the model. It enables
Add-Ins to permit or deny deletion of the glossary term.

The notification is provided immediately before the glossary
term is deleted, so that the Add-In can disable deletion of
the glossary term.

Syntax

Function EA_OnPreDeleteGlossaryTerm (Repository As
EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPreDeleteGlossaryTerm function syntax
contains these parameters.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

Info EA.EventProperties

(c) Sparx Systems 2019 Page 843 of 985

User Guide - Automation 20 January, 2020

Direction: IN
Description: Contains this EventProperty
object for the glossary term to be deleted:

TermID: A long value corresponding to·

Term.TermID

Return Value

Return True to enable deletion of the glossary term from the
model. Return False to disable deletion of the glossary term.

(c) Sparx Systems 2019 Page 844 of 985

User Guide - Automation 20 January, 2020

Pre New-Object Events

When you create an Add-In, you can include broadcast
events to intercept and respond to requests to create new
objects, including elements, connectors, diagram objects,
attributes, methods and Packages.

Events to intercept

Event

Creation of a new element

Creation of a new connector

Creation of a new diagram

Creation of a new diagram object

Creation of a new element by dropping onto a diagram
from the Browser window.

Creation of a new attribute

Creation of a new method

Creation of a new Package

(c) Sparx Systems 2019 Page 845 of 985

User Guide - Automation 20 January, 2020

Creation of a new glossary term

(c) Sparx Systems 2019 Page 846 of 985

User Guide - Automation 20 January, 2020

EA_OnPreNewElement

EA_OnPreNewElement notifies Add-Ins that a new element
is about to be created on a diagram. It enables Add-Ins to
permit or deny creation of the new element.

This event occurs when a user drags a new element from the
Toolbox or Resources window onto a diagram. The
notification is provided immediately before the element is
created, so that the Add-In can disable addition of the
element.

Syntax

Function EA_OnPreNewElement (Repository As
EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPreNewElement function syntax contains these
parameters.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

(c) Sparx Systems 2019 Page 847 of 985

User Guide - Automation 20 January, 2020

Info EA.EventProperties
Direction: IN
Description: Contains these
EventProperty objects for the element to
be created:

Type: A string value corresponding to·

Element.Type
FQStereotype: A string value·

corresponding to
Element.FQStereotype
Stereotype: A string value·

corresponding to Element.Stereotype
ParentID: A long value corresponding·

to Element.ParentID
DiagramID: A long value·

corresponding to the ID of the diagram
to which the element is being added

Return Value

Return True to enable addition of the new element to the
model. Return False to disable addition of the new element.

(c) Sparx Systems 2019 Page 848 of 985

User Guide - Automation 20 January, 2020

EA_OnPreNewConnector

EA_OnPreNewConnector notifies Add-Ins that a new
connector is about to be created on a diagram. It enables
Add-Ins to permit or deny creation of a new connector.

This event occurs when a user drags a new connector from
the Toolbox or Resources window, onto a diagram. The
notification is provided immediately before the connector is
created, so that the Add-In can disable addition of the
connector.

Syntax

Function EA_OnPreNewConnector (Repository As
EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPreNewConnector function syntax contains
these elements:

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

(c) Sparx Systems 2019 Page 849 of 985

User Guide - Automation 20 January, 2020

Info EA.EventProperties
Direction: IN
Description: Contains these
EventProperty objects for the connector
to be created:

Type: A string value corresponding to·

Connector.Type
Subtype: A string value corresponding·

to Connector.Subtype
Stereotype: A string value·

corresponding to Connector.Stereotype
ClientID: A long value corresponding·

to Connector.ClientID
SupplierID: A long value·

corresponding to Connector.SupplierID
DiagramID: A long value·

corresponding to
Connector.DiagramID

Return Value

Return True to enable addition of the new connector to the
model. Return False to disable addition of the new
connector.

(c) Sparx Systems 2019 Page 850 of 985

User Guide - Automation 20 January, 2020

(c) Sparx Systems 2019 Page 851 of 985

User Guide - Automation 20 January, 2020

EA_OnPreNewDiagram

EA_OnPreNewDiagram notifies Add-Ins that a new
diagram is about to be created. It enables Add-Ins to permit
or deny creation of the new diagram.

The notification is provided immediately before the diagram
is created, so that the Add-In can disable addition of the
diagram.

Syntax

Function EA_OnPreNewDiagram (Repository As
EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPreNewDiagram function syntax contains these
parameters.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

Info EA.EventProperties

(c) Sparx Systems 2019 Page 852 of 985

User Guide - Automation 20 January, 2020

Direction: IN
Description: Contains these
EventProperty objects for the diagram to
be created:

Type: A string value corresponding to·

Diagram.Type
ParentID: A long value corresponding·

to Diagram.ParentID
PackageID: A long value·

corresponding to Diagram.PackageID

Return Value

Return True to enable addition of the new diagram to the
model. Return False to disable addition of the new diagram.

(c) Sparx Systems 2019 Page 853 of 985

User Guide - Automation 20 January, 2020

EA_OnPreNewDiagramObject

EA_OnPreNewDiagramObject notifies Add-Ins that a new
diagram object is about to be dropped on a diagram. It
enables Add-Ins to permit or deny creation of the new
object.

This event occurs when a user drags an object from the
Enterprise Architect Browser window or Resources window
onto a diagram. The notification is provided immediately
before the object is created, so that the Add-In can disable
addition of the object.

Syntax

Function EA_OnPreNewDiagramObject (Repository As
EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPreNewDiagramObject function syntax contains
these parameters.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

(c) Sparx Systems 2019 Page 854 of 985

User Guide - Automation 20 January, 2020

Info EA.EventProperties
Direction: IN
Description: Contains these
EventProperty objects for the object to be
created:

Type: A string value corresponding to·

the Type of object being added to the
diagram
Stereotype: A string value·

corresponding to the Stereotype of the
object being added to the diagram
ID: A long value corresponding to the·

ID of the Element, Package or Diagram
being added to the diagram
DiagramID: A long value·

corresponding to the ID of the diagram
to which the object is being added

Return Value

Return True to enable addition of the object to the model.
Return False to disable addition of the object.

(c) Sparx Systems 2019 Page 855 of 985

User Guide - Automation 20 January, 2020

EA_OnPreDropFromTree

When a user drags any kind of element from the Browser
window onto a diagram, EA_OnPreDropFromTree notifies
the Add-In that a new item is about to be dropped onto a
diagram. The notification is provided immediately before
the element is dropped, so that the Add-In can override the
default action that would be taken for this drag.

Syntax

Function EA_OnPreDropFromTree (Repository As
EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPreDropFromTree function syntax contains
these parameters.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

Info EA.EventProperties
Direction: IN

(c) Sparx Systems 2019 Page 856 of 985

User Guide - Automation 20 January, 2020

Description: Contains these
EventProperty objects for the element to
be created:

ID: A long value of the type being·

dropped
Type: A string value corresponding to·

type of element being dropped
DiagramID: A long value·

corresponding to the ID of the diagram
to which the element is being added
PositionX: The X coordinate into·

which the element is being dropped
PositionY: The Y coordinate into·

which the element is being dropped
DroppedID: A long value·

corresponding to the ID of the element
the item has been dropped onto

Return Value

Return True to allow the default behavior to be executed.
Return False if you are overriding this behavior.

(c) Sparx Systems 2019 Page 857 of 985

User Guide - Automation 20 January, 2020

EA_OnPreNewAttribute

EA_OnPreNewAttribute notifies Add-Ins that a new
attribute is about to be created on an element. It enables
Add-Ins to permit or deny creation of the new attribute.

This event occurs when a user creates a new attribute on an
element by either drag-dropping from the Browser window,
using the 'Attributes' tab of the Features window, or using
the in-place editor on the diagram. The notification is
provided immediately before the attribute is created, so that
the Add-In can disable addition of the attribute.

Syntax

Function EA_OnPreNewAttribute (Repository As
EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPreNewAttribute function syntax contains these
parameters.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

(c) Sparx Systems 2019 Page 858 of 985

User Guide - Automation 20 January, 2020

Info EA.EventProperties
Direction: IN
Description: Contains these
EventProperty objects for the attribute to
be created:

Type: A string value corresponding to·

Attribute.Type
Stereotype: A string value·

corresponding to Attribute.Stereotype
ParentID: A long value corresponding·

to Attribute.ParentID
ClassifierID: A long value·

corresponding to Attribute.ClassifierID

Return Value

Return True to enable addition of the new attribute to the
model. Return False to disable addition of the new attribute.

(c) Sparx Systems 2019 Page 859 of 985

User Guide - Automation 20 January, 2020

EA_OnPreNewMethod

EA_OnPreNewMethod notifies Add-Ins that a new method
is about to be created on an element. It enables Add-Ins to
permit or deny creation of the new method.

This event occurs when a user creates a new method on an
element by either drag-dropping from the Browser window,
using the 'Operations' tab of the Features window, or using
the in-place editor on the diagram. The notification is
provided immediately before the method is created, so that
the Add-In can disable addition of the method.

Syntax

Function EA_OnPreNewMethod (Repository As
EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPreNewMethod function syntax contains these
parameters.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

(c) Sparx Systems 2019 Page 860 of 985

User Guide - Automation 20 January, 2020

Info EA.EventProperties
Direction: IN
Description: Contains these
EventProperty objects for the method to
be created:

ReturnType: A string value·

corresponding to Method.ReturnType
Stereotype: A string value·

corresponding to Method.Stereotype
ParentID: A long value corresponding·

to Method.ParentID
ClassifierID: A long value·

corresponding to Method.ClassifierID

Return Value

Return True to enable addition of the new method to the
model. Return False to disable addition of the new method.

(c) Sparx Systems 2019 Page 861 of 985

User Guide - Automation 20 January, 2020

EA_OnPreNewPackage

EA_OnPreNewPackage notifies Add-Ins that a new Package
is about to be created in the model. It enables Add-Ins to
permit or deny creation of the new Package.

This event occurs when a user drags a new Package from
the Toolbox or Resources window onto a diagram, or by
selecting the New Package icon from the Browser window.
The notification is provided immediately before the Package
is created, so that the Add-In can disable addition of the
Package.

Syntax

Function EA_OnPreNewPackage (Repository As
EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPreNewPackage function syntax contains these
parameters.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

(c) Sparx Systems 2019 Page 862 of 985

User Guide - Automation 20 January, 2020

Info EA.EventProperties
Direction: IN
Description: Contains these
EventProperty objects for the Package to
be created:

Stereotype: A string value·

corresponding to Package.Stereotype
ParentID: A long value corresponding·

to Package.ParentID
DiagramID: A long value·

corresponding to the ID of the diagram
to which the Package is being added

Return Value

Return True to enable addition of the new Package to the
model. Return False to disable addition of the new Package.

(c) Sparx Systems 2019 Page 863 of 985

User Guide - Automation 20 January, 2020

EA_OnPreNewGlossaryTerm

EA_OnPreNewGlossaryTerm notifies Add-Ins that a new
glossary term is about to be created. It enables Add-Ins to
permit or deny creation of the new glossary term.

The notification is provided immediately before the glossary
term is created, so that the Add-In can disable addition of
the element.

Syntax

Function EA_OnPreNewGlossaryTerm (Repository As
EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPreNewGlossaryTerm function syntax contains
these parameters.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

Info EA.EventProperties

(c) Sparx Systems 2019 Page 864 of 985

User Guide - Automation 20 January, 2020

Direction: IN
Description: Contains these
EventProperty objects for the glossary
term to be created:

TermID: A string value corresponding·

to Term.TermID
Term: A string value corresponding to·

the name of the glossary term being
created
Meaning: A string value corresponding·

to meaning of the glossary term being
created

Return Value

Return True to enable addition of the new glossary term to
the model. Return False to disable addition of the new
glossary term.

(c) Sparx Systems 2019 Page 865 of 985

User Guide - Automation 20 January, 2020

Tagged Value Events

Enterprise Architect includes the Addin Broadcast Tagged
Value type that allows an Add-In to respond to attempts to
edit it. The function that is called depends on the type of
object the Tagged Value is on.

Tagged Value Events

Event

EA_OnAttributeTagEdit

EA_OnConnectorTagEdit

EA_OnElementTagEdit

EA_OnMethodTagEdit

(c) Sparx Systems 2019 Page 866 of 985

User Guide - Automation 20 January, 2020

EA_OnAttributeTagEdit

EA_OnAttributeTagEdit is called when the user clicks the
 button for a Tagged Value of type AddinBroadcast on an

attribute.

The Add-In displays fields to show and change the value
and notes; this function provides the initial values for the
Tagged Value notes and value, and takes on any changes on
exit of the function.

Syntax

Sub EA_OnAttributeTagEdit (Repository As
EA.Repository, AttributeID As Long, String TagName,
String TagValue, String TagNotes)

The EA_OnAttributeTagEdit function syntax contains these
parameters.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

(c) Sparx Systems 2019 Page 867 of 985

User Guide - Automation 20 January, 2020

AttributeID Long
Direction: IN
Description: The ID of the attribute that
this Tagged Value is on.

TagName String
Direction: IN
Description: The name of the Tagged
Value to edit.

TagValue String
Direction: INOUT
Description: The current value of the tag;
if the value is updated, the new value is
stored in the repository on exit of the
function.

TagNotes String
Direction: INOUT
Description: The current value of the
Tagged Value notes; if the value is
updated, the new value is stored in the
repository on exit of the function.

(c) Sparx Systems 2019 Page 868 of 985

User Guide - Automation 20 January, 2020

EA_OnConnectorTagEdit

EA_OnConnectorTagEdit is called when the user clicks the
 button for a Tagged Value of type AddinBroadcast on a

connector.

The Add-In displays fields to show and change the value
and notes; this function provides the initial values for the
Tagged Value notes and value, and takes on any changes on
exit of the function.

Syntax

Sub EA_OnConnectorTagEdit (Repository As
EA.Repository, ConnectorID As Long, String TagName,
String TagValue, String TagNotes)

The EA_OnConnectorTagEdit function syntax contains
these parameters.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model.
Poll its members to retrieve model data
and user interface status information.

(c) Sparx Systems 2019 Page 869 of 985

User Guide - Automation 20 January, 2020

ConnectorID Long
Direction: IN
Description: The ID of the connector that
this Tagged Value is on.

TagName String
Direction: IN
Description: The name of the Tagged
Value to edit.

TagValue String
Direction: INOUT
Description: The current value of the tag;
if the value is updated, the new value is
stored in the repository on exit of the
function.

TagNotes String
Direction: INOUT
Description: The current value of the
Tagged Value notes; if the value is
updated, the new value is stored in the
repository on exit of the function.

(c) Sparx Systems 2019 Page 870 of 985

User Guide - Automation 20 January, 2020

EA_OnElementTagEdit

EA_OnElementTagEdit is called when the user clicks the
button for a Tagged Value of type AddinBroadcast on an
element.

The Add-In displays fields to show and change the value
and notes; this function provides the initial values for the
Tagged Value notes and value, and takes on any changes on
exit of the function.

Syntax

Sub EA_OnElementTagEdit (Repository As EA.Repository,
ObjectID As Long, String TagName, String TagValue,
String TagNotes)

The EA_OnElementTagEdit function syntax contains these
elements:

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

(c) Sparx Systems 2019 Page 871 of 985

User Guide - Automation 20 January, 2020

ObjectID Long
Direction: IN
Description: The ID of the object
(element) that this Tagged Value is on.

TagName String
Direction: IN
Description: The name of the Tagged
Value to edit.

TagValue String
Direction: INOUT
Description: The current value of the tag;
if the value is updated, the new value is
stored in the repository on exit of the
function.

TagNotes String
Direction: INOUT
Description: The current value of the
Tagged Value notes; if the value is
updated, the new value is stored in the
repository on exit of the function.

(c) Sparx Systems 2019 Page 872 of 985

User Guide - Automation 20 January, 2020

EA_OnMethodTagEdit

EA_OnMethodTagEdit is called when the user clicks the
button for a Tagged Value of type AddinBroadcast on an
operation.

The Add-In displays fields to show and change the value
and notes; this function provides the initial values for the
Tagged Value notes and value, and takes on any changes on
exit of the function.

Syntax

Sub EA_OnMethodTagEdit (Repository As EA.Repository,
MethodID As Long, String TagName, String TagValue,
String TagNotes)

The EA_OnMethodTagEdit function syntax contains these
elements:

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

(c) Sparx Systems 2019 Page 873 of 985

User Guide - Automation 20 January, 2020

MethodID Long
Direction: IN
Description: The ID of the method that
this Tagged Value is on.

TagName String
Direction: IN
Description: The name of the Tagged
Value to edit.

TagValue String
Direction: INOUT
Description: The current value of the tag;
if the value is updated, the new value is
stored in the repository on exit of the
function.

TagNotes String
Direction: INOUT
Description: The current value of the
Tagged Value notes; if the value is
updated, the new value is stored in the
repository on exit of the function.

(c) Sparx Systems 2019 Page 874 of 985

User Guide - Automation 20 January, 2020

Technology Events

Enterprise Architect Add-Ins can respond to events
associated with the use of MDG Technologies.

Technology Broadcast Events

Event

EA_OnInitializeTechnologies

EA_OnPreActivateTechnology

EA_OnPostActivateTechnology

EA_OnPreDeleteTechnology (Deprecated)

EA_OnDeleteTechnology (Deprecated)

EA_OnImportTechnology (Deprecated)

(c) Sparx Systems 2019 Page 875 of 985

User Guide - Automation 20 January, 2020

EA_OnInitializeTechnologies

EA_OnInitializeTechnologies requests that an Add-In pass
an MDG Technology to Enterprise Architect for loading.

This event occurs on Enterprise Architect start up. Return
your technology XML to this function and Enterprise
Architect loads and enables it.

Syntax

Function EA_OnInitializeTechnologies (Repository As
EA.Repository) As Object

The EA_OnInitializeTechnologies function syntax contains
this parameter:

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

(c) Sparx Systems 2019 Page 876 of 985

User Guide - Automation 20 January, 2020

Return Value

Return the MDG Technology as a single XML string.

Example

Public Function EA_OnInitializeTechnologies(ByVal
Repository As EA.Repository) As Object

 EA_OnInitializeTechnologies =
My.Resources.MyTechnology

End Function

(c) Sparx Systems 2019 Page 877 of 985

User Guide - Automation 20 January, 2020

EA_OnPreActivateTechnology

EA_OnPreActivateTechnology notifies Add-Ins that an
MDG Technology resource is about to be activated in the
model.

This event occurs when a user selects to activate an MDG
Technology resource in the model (by clicking on the Set
Active button on the 'MDG Technologies' dialog or by
selecting the technology in the list box in the Default Tools
toolbar).

The notification is provided immediately after the user
attempts to activate the MDG Technology, so that the
Add-In can permit or disable activation of the Technology.

Syntax

Function EA_OnPreActivateTechnology (Repository As
EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPreActivateTechnology function syntax
contains these parameters.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to

(c) Sparx Systems 2019 Page 878 of 985

User Guide - Automation 20 January, 2020

retrieve model data and user interface
status information.

Info EA.EventProperties
Direction: IN
Description: Contains these
EventProperty objects for the MDG
Technology to be activated:

TechnologyID: A string value·

corresponding to the MDG Technology
ID

Return Value

Return True to enable activation of the MDG Technology
resource in the model. Return False to disable activation of
the MDG Technology resource.

(c) Sparx Systems 2019 Page 879 of 985

User Guide - Automation 20 January, 2020

EA_OnPostActivateTechnology

EA_OnPostActivateTechnology notifies Add-Ins that an
MDG Technology resource has been activated in the model.

This event occurs when a user activates an MDG
Technology resource in the model (by clicking on the Set
Active button on the 'MDG Technologies' dialog, or by
selecting the technology in the list box in the Default Tools
toolbar).

The notification is provided immediately after the user
succeeds in activating the MDG Technology, so that the
Add-In can update the Technology if necessary.

Syntax

Function EA_OnPostActivateTechnology (Repository As
EA.Repository, Info As EA.EventProperties)

The EA_OnPostActivateTechnology function syntax
contains these parameters:

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface

(c) Sparx Systems 2019 Page 880 of 985

User Guide - Automation 20 January, 2020

status information.

Info EA.EventProperties
Direction: IN
Description: Contains these
EventProperty objects for the MDG
Technology to be activated:

TechnologyID: A string value·

corresponding to the MDG Technology
ID

Return Value

Return True if the MDG Technology resource is updated
during this notification. Return False otherwise.

(c) Sparx Systems 2019 Page 881 of 985

User Guide - Automation 20 January, 2020

EA_OnPreDeleteTechnology

Deprecated - refers to deleting a technology through the
Resources window; this process is no longer recommended.
See Deploy An MDG Technology for information on
recommended methods for using technologies.

EA_OnPreDeleteTechnology notifies Add-Ins that an MDG
Technology resource is about to be deleted from the model.

This event occurs when a user deletes an MDG Technology
resource from the model.

The notification is provided immediately after the user
confirms their request to delete the MDG Technology, so
that the Add-In can disable deletion of the MDG
Technology.

Related Broadcast Events

Event

EA_OnInitializeTechnologies

EA_OnPreActivateTechnology

EA_OnPostActivateTechnology

(c) Sparx Systems 2019 Page 882 of 985

User Guide - Automation 20 January, 2020

Syntax

Function EA_OnPreDeleteTechnology (Repository As
EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPreDeleteTechnology function syntax contains
these elements:

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

Info EA.EventProperties
Direction: IN
Description: Contains this EventProperty
object for the MDG Technology to be
deleted:

TechnologyID: A string value·

corresponding to the MDG Technology
ID

(c) Sparx Systems 2019 Page 883 of 985

User Guide - Automation 20 January, 2020

Return Value

Return True to enable deletion of the MDG Technology
resource from the model. Return False to disable deletion of
the MDG Technology resource.

(c) Sparx Systems 2019 Page 884 of 985

User Guide - Automation 20 January, 2020

EA_OnDeleteTechnology

Deprecated - refers to deleting a technology through the
Resources window; this process is no longer recommended.
See Deploy An MDG Technology for information of
recommended methods for using technologies.

EA_OnDeleteTechnology notifies Add-Ins that an MDG
Technology resource has been deleted from the model.

This event occurs after a user has deleted an MDG
Technology resource from the model. Add-Ins that require
an MDG Technology resource to be loaded can catch this
event to disable certain functionality.

Related Events

Event

EA_OnInitializeTechnologies

EA_OnPreActivateTechnology

EA_OnPostActivateTechnology

Syntax

(c) Sparx Systems 2019 Page 885 of 985

User Guide - Automation 20 January, 2020

Sub EA_OnDeleteTechnology (Repository As
EA.Repository, Info As EA.EventProperties)

The EA_OnDeleteTechnology function syntax contains
these parameters.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

Info EA.EventProperties
Direction: IN
Description: Contains these
EventProperty objects:

TechnologyID: A string value·

corresponding to the MDG Technology
ID

Return Value

(c) Sparx Systems 2019 Page 886 of 985

User Guide - Automation 20 January, 2020

None.

(c) Sparx Systems 2019 Page 887 of 985

User Guide - Automation 20 January, 2020

EA_OnImportTechnology

Deprecated - refers to importing a technology into the
Resources window; this process is no longer recommended.
See Deploy An MDG Technology for information of
recommended methods for using technologies.

EA_OnImportTechnology notifies Add-Ins that you have
imported an MDG Technology resource into the model.

This event occurs after you have imported an MDG
Technology resource into the model. Add-Ins that require an
MDG Technology resource to be loaded can catch this
Add-In to enable certain functionality.

Related Events

Event

EA_OnInitializeTechnologies

EA_OnPreActivateTechnology

EA_OnPostActivateTechnology

Syntax

(c) Sparx Systems 2019 Page 888 of 985

User Guide - Automation 20 January, 2020

Sub EA_OnImportTechnology (Repository As
EA.Repository, Info As EA.EventProperties)

The EA_OnImportTechnology function syntax contains
these parameters.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

Info EA.EventProperties
Direction: IN
Description: Contains these
EventProperty objects:

TechnologyID: A string value·

corresponding to the MDG Technology
ID

Return Value

(c) Sparx Systems 2019 Page 889 of 985

User Guide - Automation 20 January, 2020

None.

(c) Sparx Systems 2019 Page 890 of 985

User Guide - Automation 20 January, 2020

Custom Views

Enterprise Architect enables custom windows to be inserted
as a Diagram Tab within the Diagram View that appears at
the center of the Enterprise Architect frame.

Creating a custom view helps you to easily display a custom
interface within Enterprise Architect, alongside other
diagrams and built-in views for quick and easy access.

Uses for this facility include:

Reports and graphs showing summary data of the model·

Alternative views of a diagram·

Alternative views of the model·

Views of external data related to model data·

Documentation tools·

Bear in mind that the 'Open Diagrams in Single Window'
option in the 'Application Look' dialog will swap diagrams
in the Diagram View rather than open more diagram tabs.

(c) Sparx Systems 2019 Page 891 of 985

User Guide - Automation 20 January, 2020

Create a Custom View

A custom view must be designed as an ActiveX Custom
Control and inserted via the Automation Interface. ActiveX
Custom Controls can be created using most well-known
programming tools, including Microsoft Visual Studio. See
the documentation provided by the relevant vendor on how
to create a custom control to produce an OCX file.

Once the custom control has been created and registered on
the target system, it can be added through the AddTab()
method of the Repository object. While it is possible to call
AddTab() from any automation client, it is likely that you
would call it from an Add-In, and that the Add-In is defined
in the same OCX that provides the custom view.

This is a C# code example:

 public class Addin

 {

 UserControl1 m_MyControl;

 public void EA_Connect(EA.Repository Rep)

 {

 }

 public object EA_GetMenuItems(EA.Repository
Repository, string Location, string MenuName)

 {

 if(MenuName == "")

 return "-&C# Control Demo";

(c) Sparx Systems 2019 Page 892 of 985

User Guide - Automation 20 January, 2020

 else

 {

 String() ret = {"Show Custom View", "Show
Button"};

 return ret;

 }

 }

 public void EA_MenuClick(EA.Repository Rep,
string Location, string MenuName, string ItemName)

 {

 if(ItemName == "Show Custom View")

 m_MyControl = (UserControl1)
Rep.AddTab("C# Demo","ContDemo.UserControl1");

 else if(ItemName == "Show Button")

 m_MyControl.ShowButton();

 }

 }

(c) Sparx Systems 2019 Page 893 of 985

User Guide - Automation 20 January, 2020

Add a Portal

Enterprise Architect provides a set of Portals, each of which
is a collection of shortcuts and information on performing
specific areas of work on a project. The Portals help both
new and experienced users quickly identify and set up the
facilities they most often use in their assigned tasks.

You can add your own Portal to the system-installed set, to
provide a convenient and concise call-up of one or more
groups of facilities available in your Add-In.

Example Code

 public String EA_LoadWindowManager(EA.Repository
Repository)

 {

 return Resource1.WindowManager;

 }

Where Resource1.WindowManager is a resource file with
these contents:

 <?xml version="1.0" encoding="UTF-8"?>

 <perspectives>

 <perspective name="Add-In">

 <category name="Add-In" type="commandlist"
projectrequired="true">

 <item name="Hello World" command="CallAddin"

(c) Sparx Systems 2019 Page 894 of 985

User Guide - Automation 20 January, 2020

addin="CS_AddinFramework" function="HelloWorld"/>

 <item name="Model Dump" command="CallScript"
group="Local Scripts" script="JScript - Recursive Model
Dump Example"/>

 </category>

 <category name="Open Diagrams"
type="currentdiagramlist" state = "open"/>

 <category name="Recent Diagrams"
type="recentdiagramlist" state = "open"/>

 <category name="Other Windows"
type="otherwindowlist" state = "open"/>

 </perspective>

 </perspectives>

Note that the Add-In cannot specify the icon used.

(c) Sparx Systems 2019 Page 895 of 985

User Guide - Automation 20 January, 2020

Custom Docked Window

Custom docked windows can be added into the Enterprise
Architect user interface. Once added, they can be shown and
docked in the same way as other built-in Enterprise
Architect docked windows.

A custom docked window must be designed as an ActiveX
Custom Control and inserted via the Automation Interface.
ActiveX Custom Controls can be created using most
well-known programming tools, including Microsoft Visual
Studio. See the documentation provided by the relevant
vendor on how to create a custom control to produce an
OCX file.

Once the custom control has been created and registered on
the target system, it can be added using the AddWindow()
method of the Repository object. While it is possible to call
AddWindow() from any automation client, it is likely that
you would call it from an Add-In, and that the Add-In is
defined in the same OCX that provides the custom view.

To view custom docked windows that have been added,
select the 'Specialize > Add-Ins > Windows' ribbon option.

Custom docked windows can also be made visible by the
automation client or Add-In using the ShowAddinWindow()
method, or hidden by using the HideAddinWindow()
method.

This is an example in C# code:

 public class Addin

(c) Sparx Systems 2019 Page 896 of 985

User Guide - Automation 20 January, 2020

 {

 UserControl1 m_MyControl;

 public void EA_Connect(EA.Repository Rep)

 {

 m_MyControl = (UserControl1)
Rep.AddWindow

 ("C# Demo","ContDemo.UserControl1");

 }

 public object EA_GetMenuItems(EA.Repository
Repository, string Location, string MenuName)

 {

 if(MenuName == "")

 return "-&C# Control Demo";

 else

 {

 String() ret = {"Show Window", "Show
Button"};

 return ret;

 }

 }

 public void EA_MenuClick(EA.Repository Rep,
string Location, string MenuName, string ItemName)

 {

 if(ItemName == "Show Window")

 Rep.ShowAddinWindow("C# Demo");

(c) Sparx Systems 2019 Page 897 of 985

User Guide - Automation 20 January, 2020

 else if(ItemName == "Show Button")

 m_MyControl.ShowButton();

 }

 }

(c) Sparx Systems 2019 Page 898 of 985

User Guide - Automation 20 January, 2020

MDG Add-Ins

MDG Add-Ins are specialized types of Add-In that have
additional features and extra requirements, for Add-In
authors who want to contribute to Enterprise Architect's goal
of Model Driven Generation.

One of the additional responsibilities of an MDG Add-In is
to take ownership of a branch of an Enterprise Architect
model, which is done through the MDG_Connect event.
Unlike general Add-In events, MDG Add-In events are only
sent to the Add-In that has taken ownership of an Enterprise
Architect model branch on a particular workstation.

MDG Add-Ins identify themselves as such during
EA_Connect by returning the string 'MDG'.

Unlike ordinary Add-Ins, responding to MDG Add-In
events is not optional, and methods must be published for
each of the MDG Events.

(c) Sparx Systems 2019 Page 899 of 985

User Guide - Automation 20 January, 2020

MDG Events

An MDG Add-In must respond to all MDG Events. These
events usually identify processes such as Build, Run,
Synchronize, PreMerge and PostMerge, amongst others.

An MDG Link Add-In is expected to implement some form
of forward and reverse engineering capability within
Enterprise Architect, and as such requires access to a
specific set of events, all to do with generation,
synchronization and general processes concerned with
converting models to code and code to models.

MDGAdd-In Events

Event

MDG_BuildProject

MDG_Connect

MDG_Disconnect

MDG_GetConnectedPackages

MDG_GetProperty

MDG_Merge

(c) Sparx Systems 2019 Page 900 of 985

User Guide - Automation 20 January, 2020

MDG_NewClass

MDG_PostGenerate

MDG_PostMerge

MDG_PreGenerate

MDG_PreMerge

MDG_PreReverse

MDG_RunExe

MDG_View

(c) Sparx Systems 2019 Page 901 of 985

User Guide - Automation 20 January, 2020

MDG_BuildProject

Add-Ins can use MDG_BuildProject to handle file changes
caused by generation. This function is called in response to
a user selecting the 'Execute > Source > Build > Build'
ribbon option.

Respond to this event by compiling the project source files
into a running application.

Syntax

Sub MDG_BuildProject (Repository As EA.Repository,
PackageGuid As String)

The MDG_BuildProject function syntax contains these
parameters.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

PackageGuid String

(c) Sparx Systems 2019 Page 902 of 985

User Guide - Automation 20 January, 2020

Direction: IN
Description: The GUID identifying the
Enterprise Architect Package sub-tree
that is controlled by the Add-In.

Return Value

None.

(c) Sparx Systems 2019 Page 903 of 985

User Guide - Automation 20 January, 2020

MDG_Connect

An Add-In uses MDG_Connect to handle a user driven
request to connect a model branch to an external application.
The function is called when the user attempts to connect a
particular Enterprise Architect Package to an as yet
unspecified external project. The Add-In calls the event to
interact with the user to specify such a project.

The Add-In is responsible for retaining the connection
details, which should be stored on a per-user or
per-workstation basis. That is, users who share a common
Enterprise Architect model over a network should be able to
connect and disconnect to external projects independently of
one another.

The Add-In should therefore not store connection details in
an Enterprise Architect repository. A suitable place to store
such details would be:

 SHGetFolderPath(..CSIDL_APPDATA..)\AddinName

The PackageGuid parameter is the same identifier as is
required for most events relating to the MDG Add-In.
Therefore it is recommended that the connection details be
indexed using the PackageGuid value.

The PackageID parameter is provided to aid fast retrieval of
Package details from Enterprise Architect, should this be
required.

Syntax

(c) Sparx Systems 2019 Page 904 of 985

User Guide - Automation 20 January, 2020

Function MDG_Connect (Repository As EA.Repository,
PackageID as Long, PackageGuid As String) As Long

The MDG_Connect function syntax contains these
parameters.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

PackageID Long
Direction: IN
Description: The PackageID of the
Enterprise Architect Package the user has
requested to have connected to an
external project.

PackageGuid String
Direction: IN
Description: The unique ID identifying
the project provided by the Add-In when
a connection to a project branch of an
Enterprise Architect model was first

(c) Sparx Systems 2019 Page 905 of 985

User Guide - Automation 20 January, 2020

established.

Return Value

Returns a non-zero to indicate that a connection has been
made; a zero indicates that the user has not nominated a
project and connection should not proceed.

(c) Sparx Systems 2019 Page 906 of 985

User Guide - Automation 20 January, 2020

MDG_Disconnect

Add-Ins can use MDG_Disconnect to respond to user
requests to disconnect the model branch from an external
project.

This function is called when the user attempts to disconnect
an associated external project. The Add-In is required to
delete the details of the connection.

Syntax

Function MDG_Disconnect (Repository As EA.Repository,
PackageGuid As String) As Long

The MDG_Disconnect function syntax contains these
parameters.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

PackageGuid String

(c) Sparx Systems 2019 Page 907 of 985

User Guide - Automation 20 January, 2020

Direction: IN
Description: The GUID identifying the
Enterprise Architect Package sub-tree
that is controlled by the Add-In.

Return Value

Returns a non-zero to indicate that a disconnection has
occurred enabling Enterprise Architect to update the user
interface. A zero indicates that the user has not disconnected
from an external project.

(c) Sparx Systems 2019 Page 908 of 985

User Guide - Automation 20 January, 2020

MDG_GetConnectedPackages

Add-Ins can use MDG_GetConnectedPackages to return a
list of current connections between Enterprise Architect and
an external application.

This function is called when the Add-In is first loaded, and
is expected to return a list of the available connections to
external projects for this Add-In.

Syntax

Function MDG_GetConnectedPackages (Repository As
EA.Repository) As Variant

The MDG_GetConnectedPackages function syntax contains
this parameter.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

(c) Sparx Systems 2019 Page 909 of 985

User Guide - Automation 20 January, 2020

Return Value

Returns an array of GUID strings representing individual
Enterprise Architect Packages.

(c) Sparx Systems 2019 Page 910 of 985

User Guide - Automation 20 January, 2020

MDG_GetProperty

MDG_GetProperty provides miscellaneous Add-In details
to Enterprise Architect.

This function is called by Enterprise Architect to poll the
Add-In for information relating to the PropertyName. This
event should occur in as short a duration as possible, as
Enterprise Architect does not cache the information
provided by the function.

Values corresponding to these PropertyNames must be
provided:

IconID - Return the name of a DLL and a resource·

identifier in the format #ResID, where the resource ID
indicates an icon
 c:\program files\myapp\myapp.dlll#101

Language - Return the default language that Classes·

should be assigned when they are created in Enterprise
Architect

HiddenMenus - Return one or more values from the·

MDGMenus enumeration to hide menus that do not apply
to your Add-In
 if(PropertyName == "HiddenMenus")

 return mgBuildProject + mgRun;

Syntax

Function MDG_GetProperty (Repository As EA.Repository,

(c) Sparx Systems 2019 Page 911 of 985

User Guide - Automation 20 January, 2020

PackageGuid As String, PropertyName As String) As
Variant

The MDG_GetProperty function syntax contains these
parameters.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently-open
Enterprise Architect model. Poll its
members to retrieve model data and user
interface status information.

PackageGuid String
Direction: IN
Description: The GUID identifying the
Enterprise Architect Package sub-tree
that is controlled by the Add-In.

PropertyNam
e

String
Direction: IN
Description: The name of the property
that is used by Enterprise Architect. See
the start of this topic for the possible
values.

(c) Sparx Systems 2019 Page 912 of 985

User Guide - Automation 20 January, 2020

Return Value

See the start of this topic.

(c) Sparx Systems 2019 Page 913 of 985

User Guide - Automation 20 January, 2020

MDG_Merge

Add-Ins can use MDG_Merge to jointly handle changes to
both the model branch and the code project that the model
branch is connected to.

This event should be called whenever the user has asked to
merge their model branch with its connected code project, or
whenever the user has established a new connection to a
code project.

The purpose of this event is to make the Add-In interact
with the user to perform a merge between the model branch
and the connected project.

Syntax

Function MDG_Merge (Repository As EA.Repository,
PackageGuid As String, SynchObjects As Variant,
SynchType As String, ExportObjects As Variant,
ExportFiles As Variant, ImportFiles As Variant,
IgnoreLocked As String, Language As String) As Long

The MDG_Merge function syntax contains these
parameters.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object

(c) Sparx Systems 2019 Page 914 of 985

User Guide - Automation 20 January, 2020

representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

PackageGuid String
Direction: IN
Description: The GUID identifying the
Enterprise Architect Package sub-tree
that is controlled by the Add-In.

SynchObjects Variant
Direction: OUT
Description: A string array containing a
list of objects (Object ID format) to be
jointly synchronized between the model
branch and the project.
See Object ID Format for the format of
the Object IDs.

SynchType String
Direction: OUT
Description: The value determining the
user-selected type of synchronization to
take place.
See Synchronize Type for a list of valid
values.

(c) Sparx Systems 2019 Page 915 of 985

User Guide - Automation 20 January, 2020

ExportObject
s

Variant
Direction: OUT
Description: The string array containing
the list of new model objects (in Object
ID format) to be exported by Enterprise
Architect to the code project.

ExportFiles Variant
Direction: OUT
Description: A string array containing the
list of files for each model object chosen
for export by the Add-In.
Each entry in this array must have a
corresponding entry in the ExportObjects
parameter at the same array index, so
ExportFiles(2) must contain the filename
of the object by ExportObjects(2).

ImportFiles Variant
Direction: OUT
Description: A string array containing the
list of code files made available to the
code project to be newly imported to the
model.
Enterprise Architect imports each file
listed in this array for import into the
connected model branch.

(c) Sparx Systems 2019 Page 916 of 985

User Guide - Automation 20 January, 2020

IgnoreLocke
d

String
Direction: OUT
Description: A value indicating whether
to ignore any files locked by the code
project (that is, 'True' or False').

Language String
Direction: OUT
Description: The string value containing
the name of the code language supported
by the code project connected to the
model branch.

Object ID Format

Each of the Object IDs listed in the 'SynchObjects' string
arrays should have this format:

(@namespace)*(#class)*($attribute|%operation|:property)*

Return Value

Return a non-zero if the merge operation completed
successfully and a zero value when the operation has been
unsuccessful.

(c) Sparx Systems 2019 Page 917 of 985

User Guide - Automation 20 January, 2020

Merge

A merge consists of three major operations:

Export: where newly created model objects are exported·

into code and made available to the code project

Import: where newly created code objects, Classes and·

such things are imported into the model

Synchronize: where objects available both to the model·

and in code are jointly updated to reflect changes made in
either the model, code project or both

Synchronize Type

The Synchronize operation can take place in one of four
different ways. Each of these ways corresponds to a value
returned by 'SynchType':

None: (SynchType' = 0) No synchronization is to be·

performed

Forward: ('SynchType' = 1) Forward synchronization,·

between the model branch and the code project is to occur

Reverse: ('SynchType = 2) Reverse synchronization,·

between the code project and the model branch is to occur

Both: ('SynchType' = 3) Reverse, then Forward·

synchronizations are to occur

(c) Sparx Systems 2019 Page 918 of 985

User Guide - Automation 20 January, 2020

(c) Sparx Systems 2019 Page 919 of 985

User Guide - Automation 20 January, 2020

MDG_NewClass

Add-Ins can use MDG_NewClass to alter details of a Class
before it is created.

This method is called when Enterprise Architect generates a
new Class, and requires information relating to assigning the
language and file path. The file path should be passed back
as a return value and the language should be passed back via
the language parameter.

Syntax

Function MDG_NewClass (Repository As EA.Repository,
PackageGuid As String, CodeID As String, Language As
String) As String

The MDG_NewClass function syntax contains these
parameters.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

(c) Sparx Systems 2019 Page 920 of 985

User Guide - Automation 20 January, 2020

PackageGuid String
Direction: IN
Description: The GUID identifying the
Enterprise Architect Package sub-tree
that is controlled by the Add-In.

CodeID String
Direction: IN
Description: A string used to identify the
code element before it is created.

Language String
Direction: OUT
Description: A string used to identify the
programming language for the new Class.
The language must be supported by
Enterprise Architect.

Return Value

Returns a string containing the file path that should be
assigned to the Class.

(c) Sparx Systems 2019 Page 921 of 985

User Guide - Automation 20 January, 2020

MDG_PostGenerate

Add-Ins can use MDG_PostGenerate to handle file changes
caused by generation.

This event is called after Enterprise Architect has prepared
text to replace the existing contents of a file. Responding to
this event enables the Add-In to write to the linked
application's user interface rather than modify the file
directly.

When the contents of a file are changed, Enterprise
Architect passes FileContents as a non-empty string. New
files created as a result of code generation are also sent
through this mechanism, so the Add-Ins can add new files to
the linked project's file list.

When new files are created Enterprise Architect passes
FileContents as an empty string. When a non-zero is
returned by this function, the Add-In has successfully
written the contents of the file. A zero value for the return
indicates to Enterprise Architect that the file must be saved.

Syntax

Function MDG_PostGenerate (Repository As
EA.Repository, PackageGuid As String, FilePath As String,
FileContents As String) As Long

The MDG_PostGenerate function syntax contains these
parameters.

(c) Sparx Systems 2019 Page 922 of 985

User Guide - Automation 20 January, 2020

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

PackageGuid String
Direction: IN
Description: The GUID identifying the
Enterprise Architect Package sub-tree
that is controlled by the Add-In.

FilePath String
Direction: IN
Description: The path of the file
Enterprise Architect intends to overwrite.

FileContents String
Direction: IN
Description: A string containing the
proposed contents of the file.

(c) Sparx Systems 2019 Page 923 of 985

User Guide - Automation 20 January, 2020

Return Value

The return value depends on the type of event that this
function is responding to (see introduction). This function is
required to handle two separate and distinct cases.

(c) Sparx Systems 2019 Page 924 of 985

User Guide - Automation 20 January, 2020

MDG_PostMerge

MDG_PostMerge is called by Enterprise Architect after a
merge process has been completed.

File save checking should not be performed with this
function, but should be handled by MDG_PreGenerate,
MDG_PostGenerate and MDG_PreReverse.

Syntax

Function MDG_PostMerge (Repository As EA.Repository,
PackageGuid As String) As Long

The MDG_PostMerge function syntax contains these
parameters.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

PackageGuid String
Direction: IN

(c) Sparx Systems 2019 Page 925 of 985

User Guide - Automation 20 January, 2020

Description: The GUID identifying the
Enterprise Architect Package sub-tree
that is controlled by the Add-In.

Return Value

Return a zero value if the post-merge process has failed. A
non-zero return indicates that the post-merge has been
successful. Enterprise Architect assumes a non-zero return if
this method is not implemented.

(c) Sparx Systems 2019 Page 926 of 985

User Guide - Automation 20 January, 2020

MDG_PreGenerate

Add-Ins can use MDG_PreGenerate to deal with unsaved
changes.

This function is called immediately before Enterprise
Architect attempts to generate files from the model. A
possible use of this function would be to prompt the user to
save unsaved source files.

Return Value

Return a zero value to abort generation. Any other value
enables the generation to continue.

Syntax

Function MDG_PreGenerate (Repository As
EA.Repository, PackageGuid As String) As Long

The MDG_PreGenerate function syntax contains these
parameters.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object

(c) Sparx Systems 2019 Page 927 of 985

User Guide - Automation 20 January, 2020

representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

PackageGuid String
Direction: IN
Description: The GUID identifying the
Enterprise Architect Package sub-tree
that is controlled by the Add-In.

(c) Sparx Systems 2019 Page 928 of 985

User Guide - Automation 20 January, 2020

MDG_PreMerge

MDG_PreMerge is called after a merge process has been
initiated by the user and before Enterprise Architect
performs the merge process.

This event is called after a user has performed their
interactions with the merge screen and has confirmed the
merge with the OK button, but before Enterprise Architect
performs the merge process using the data provided by the
MDG_Merge call, before any changes have been made to
the model or the connected project.

This event is made available to provide the Add-In with the
opportunity to generally set internal Add-In flags to
augment the MDG_PreGenerate, MDG_PostGenerate and
MDG_PreReverse events.

File save checking should not be performed with this
function, but should be handled by MDG_PreGenerate,
MDG_PostGenerate and MDG_PreReverse.

Syntax

Function MDG_PreMerge (Repository As EA.Repository,
PackageGuid As String) As Long

The MDG_PreMerge function syntax contains these
parameters.

Parameter Type

(c) Sparx Systems 2019 Page 929 of 985

User Guide - Automation 20 January, 2020

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model.
Poll its members to retrieve model data
and user interface status information.

PackageGuid String
Direction: IN
Description: The GUID identifying the
Enterprise Architect Package sub-tree
that is controlled by the Add-In.

Return Value

A return value of zero indicates that the merge process can
not occur. If the value is not zero the merge process
proceeds.

If this method is not implemented then it is assumed that a
merge process is used.

(c) Sparx Systems 2019 Page 930 of 985

User Guide - Automation 20 January, 2020

MDG_PreReverse

Add-Ins can use MDG_PreReverse to save file changes
before they are imported into Enterprise Architect.

This function operates on a list of files that are about to be
reverse-engineered into Enterprise Architect. If the user is
working on unsaved versions of these files in an editor, you
could either prompt the user or save automatically.

Syntax

Sub MDG_PreReverse (Repository As EA.Repository,
PackageGuid As String, FilePaths As Variant)

The MDG_PreReverse function syntax contains these
parameters.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

PackageGuid String

(c) Sparx Systems 2019 Page 931 of 985

User Guide - Automation 20 January, 2020

Direction: IN
Description: The GUID identifying the
Enterprise Architect Package sub-tree
that is controlled by the Add-In.

FilePaths String array
Direction: IN
Description: An array of filepaths pointed
to the files that are to be reverse
engineered.

Return Value

None.

(c) Sparx Systems 2019 Page 932 of 985

User Guide - Automation 20 January, 2020

MDG_RunExe

Add-Ins can use MDG_RunExe to run the target
application.

This function is called when the user selects the 'Execute >
Run > Start > Run' ribbon option.

Respond to this event by launching the compiled
application.

Syntax

Sub MDG_RunExe (Repository As EA.Repository,
PackageGuid As String)

The MDG_RunExe function syntax contains these
parameters.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

PackageGuid String

(c) Sparx Systems 2019 Page 933 of 985

User Guide - Automation 20 January, 2020

Direction: IN
Description: The GUID identifying the
Enterprise Architect Package sub-tree
that is controlled by the Add-In.

Return Value

None.

(c) Sparx Systems 2019 Page 934 of 985

User Guide - Automation 20 January, 2020

MDG_View

Add-Ins can use MDG_View to display user specified code
elements.

This function is called by Enterprise Architect when the user
asks to view a particular code element. The Add-In can then
present that element in its own way, usually in a code editor.

Syntax

Function MDG_View (Repository As EA.Repository,
PackageGuid As String, CodeID as String) As Long

The MDG_View function syntax contains these parameters.

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

PackageGuid String
Direction: IN
Description: The GUID identifying the

(c) Sparx Systems 2019 Page 935 of 985

User Guide - Automation 20 January, 2020

Enterprise Architect Package sub-tree
that is controlled by the Add-In.

CodeID String
Direction: IN
Description: Identifies the code element
in this format:

<type>ElementPart<type>ElementPart...
where each element is proceeded with a
token identifying its type:
 @ -namespace
 # - Class
 $ - attribute
 % - operation
For example, if a user has selected the
m_Name attribute of Class1 located in
namespace Name1, the Class ID would
be passed through in this format:
 @Name1#Class1%m_Name

Return Value

Return a non-zero value to indicate that the Add-In has
processed the request. Returning a zero value results in

(c) Sparx Systems 2019 Page 936 of 985

User Guide - Automation 20 January, 2020

Enterprise Architect employing the standard viewing
process, which is to launch the associated source file.

(c) Sparx Systems 2019 Page 937 of 985

User Guide - Automation 20 January, 2020

Workflow Add-In Events

Enterprise Architect provides this set of four additional
events that are sent only to workflow Add-Ins.

Workflow Add-In Events

Event

EA_AllowPropertyUpdate
This event is sent to workflow Add-Ins after a user has
changed a built-in property value.

EA_AllowTagUpdate
This event is sent to workflow Add-Ins after a user has
changed a Tagged Value.

EA_CanEditProperty
This event is sent to workflow Add-Ins when a property is
being displayed that allows the property to block all edits.

EA_CanEditTag
This event is sent to workflow Add-Ins when a Tagged
Value is being displayed that allows the property to block
all edits.

(c) Sparx Systems 2019 Page 938 of 985

User Guide - Automation 20 January, 2020

(c) Sparx Systems 2019 Page 939 of 985

User Guide - Automation 20 January, 2020

EA_AllowPropertyUpdate

This event is sent to workflow Add-Ins after a user has
changed a built-in property value.

Syntax

Function EA_AllowPropertyUpdate (Repository As
EA.Repository, Info As EA.EventProperties) As Boolean

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

Info EA.EventProperties
Direction: IN
Description: Contains these
EventProperty objects describing the
requested property update:

Type: A string value corresponding to·

Element.Type

(c) Sparx Systems 2019 Page 940 of 985

User Guide - Automation 20 January, 2020

Stereotype: A string value·

corresponding to Element.Stereotype
PropertyName: The name of the·

property field to enable or disable
OldValue: The previous value of the·

property
NewValue: The new value of the·

property

Return Value

Return False to prevent this change to the described
property.

Return True to allow this change.

(c) Sparx Systems 2019 Page 941 of 985

User Guide - Automation 20 January, 2020

EA_AllowTagUpdate

This event is sent to Workflow Add-Ins after a user has
changed a Tagged Value.

Syntax

Function EA_AllowTagUpdate (Repository As
EA.Repository, Info As EA.EventProperties) As Boolean

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

Info EA.EventProperties
Direction: IN
Description: Contains these
EventProperty objects describing the
requested Tagged Value update:

Type: A string value corresponding to·

Element.Type

(c) Sparx Systems 2019 Page 942 of 985

User Guide - Automation 20 January, 2020

Stereotype: A string value·

corresponding to Element.Stereotype
TagName: The name of the Tagged·

Value field to enable or disable
OldValue: The previous value of the·

tag
NewValue: The new value of the tag·

Return Value

Return False to prevent this change to the described Tagged
Value.

Return True to allow this change.

(c) Sparx Systems 2019 Page 943 of 985

User Guide - Automation 20 January, 2020

EA_CanEditProperty

This event is sent to Workflow Add-Ins when a property is
being displayed that allows the property to block all edits.

Syntax

Function EA_CanEditProperty (Repository As
EA.Repository, Info As EA.EventProperties) As Boolean

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

Info EA.EventProperties
Direction: IN
Description: Contains these
EventProperty objects describing the
property:

Type: A string value corresponding to·

Element.Type

(c) Sparx Systems 2019 Page 944 of 985

User Guide - Automation 20 January, 2020

Stereotype: A string value·

corresponding to Element.Stereotype
PropertyName: The name of the·

property field to enable or disable

Return Value

Return False to prevent all edits to the described property.

Return True to allow changes.

(c) Sparx Systems 2019 Page 945 of 985

User Guide - Automation 20 January, 2020

EA_CanEditTag

This event is sent to Workflow Add-Ins when a Tagged
Value is being displayed that allows the property to block all
edits.

Syntax

Function EA_CanEditTag (Repository As EA.Repository,
Info As EA.EventProperties) As Boolean

Parameter Type

Repository EA.Repository
Direction: IN
Description: An EA.Repository object
representing the currently open Enterprise
Architect model. Poll its members to
retrieve model data and user interface
status information.

Info EA.EventProperties
Direction: IN
Description: Contains these
EventProperty objects describing the
Tagged Value:

Type: A string value corresponding to·

(c) Sparx Systems 2019 Page 946 of 985

User Guide - Automation 20 January, 2020

Element.Type
Stereotype: A string value·

corresponding to Element.Stereotype
TagName: The name of the tag to·

enable or disable

Return Value

Return False to prevent all edits to the described Tagged
Value.

Return True to allow changes.

(c) Sparx Systems 2019 Page 947 of 985

User Guide - Automation 20 January, 2020

Model Add-Ins

Enterprise Architect offers the function of developing and
deploying Add-Ins completely within your model.

When to use a model Add-In

High
Deployment
Costs

In organizations where installing new or
updated software is expensive, model
Add-Ins can offer a workaround. New
functionality can be added to Enterprise
Architect without the need for new
software to be installed on user machines.

Required for
all users

When all users of a model need an
Add-In to use the model as intended it
can be difficult to ensure that the Add-In
is installed and updated on all user
machines. Model based Add-Ins are
loaded by all required users automatically
on model load.
Alternative deployments allow users to
opt-in to using an Add-In, with access
controlled by security group.

Model For users regularly using multiple

(c) Sparx Systems 2019 Page 948 of 985

User Guide - Automation 20 January, 2020

Specific
Behavior

models, there will likely be some
functions that are only required in some
models but not others. By using model
based Add-Ins, these functions can be
added freely without requiring explicit
coding based on the model.

Self
Documenting

By modeling your Add-In directly, the
documentation describing it is always
accurate.

When not to use a model Add-In

Complex
User
Interface

The User Interface that model Add-Ins
can create is currently not as expressive
as Add-Ins written in a traditional IDE. If
you need to show your users complex
dialogs or forms, you might be better off
using an alternative technology.

Use across
many models

Add-In functionality that is required
across multiple models might not be a
good fit for model Add-Ins. In this
situation you might need to consider the
relative costs of a traditional Add-In vs

(c) Sparx Systems 2019 Page 949 of 985

User Guide - Automation 20 January, 2020

deploying a model Add-In using XMI,
controlled Packages or a re-usable asset
service.

Notes

This feature is available in the Corporate, Unified and·

Ultimate editions of Enterprise Architect, from Release
15.0

(c) Sparx Systems 2019 Page 950 of 985

User Guide - Automation 20 January, 2020

Create an Add-In

Model Based Add-Ins are defined within the model, using
Classes that are stereotyped as 'JavascriptAddin'. Using
these stereotyped Classes, you can specify Receptions,
Methods and Properties that together define the behaviors of
the Add-In, and how it responds to the various events
occurring within the system.

Receptions are defined for the Class, by specifying a signal
that will be received. The Receptions allow you to specify
JavaScript code that will be executed in response to receipt
of the corresponding signal. Signals that are relevant to
your Model Based Add-In should be included within the
model in which you are defining or using Model Based
Add-Ins. The Model Wizard offers a pattern that contains all
of the signals relevant to Model Based Add-Ins, providing
an easy means by which to include these signals in your
model.

Functions defined as methods of the Class can be called by
the Receptions code, while the Class attributes can be used
to define global variables that are available to the executing
code.

Create a Javascript Add-In

Ste
p

Action

(c) Sparx Systems 2019 Page 951 of 985

User Guide - Automation 20 January, 2020

1 Click on the icon and select the
'Management > Model Add-Ins' Perspective.

2 Create or open a (class) diagram on which to work,
then open the Model Add-Ins toolbox.
(Use the toolbox menu to select the Model Add-ins
toolbox.)

3 Create a JavascriptAddin by dropping the
JavascriptAddin icon from the toolbox onto a
diagram.
The name of your JavascriptAddin class will be used
in generated Javascript code. It needs to be a valid
Javascript identifier.

4 Locate the Signal Library. Signals are used to define
the entry points into your Add-In.
If not already in your model, the Signal Library is
available for import as a model pattern.

5 Open the receptions list. Add a reception for any
Signal that you want to receive. A reasonable
starting point would be to include:

EA_Connect·

EA_GetMenuItems·

EA_MenuClick·

(c) Sparx Systems 2019 Page 952 of 985

User Guide - Automation 20 January, 2020

6 Open the Behavior window for your Class ('Develop
> Source Code > Behavior').
This shows all the available behavioral features that
you can add code to, including the receptions created
previously.
Examples for the signals discussed earlier are:

EA_Connect
 return "";

EA_GetMenuItems
 if(MenuName == "-Example Add-in")
 return ["Item 1", "Item 2", "-", "About"];
 else
 return "-Example Add-in";

EA_MenuClick
 Session.Prompt("You clicked " + ItemName, 1);

7 Enable your Add-In using the 'Manage Add-Ins'
dialog.
If security is enabled in your model, this requires
model administration rights.

8 You can now test and further develop your Add-In.

(c) Sparx Systems 2019 Page 953 of 985

User Guide - Automation 20 January, 2020

(c) Sparx Systems 2019 Page 954 of 985

User Guide - Automation 20 January, 2020

Responding to Events

In order for your model add-in to respond to events, you
must define Receptions on the add-in class, corresponding
to the signals (or events) that you wish to handle. You can
then define handler code, using Javascript, for each of the
defined Receptions.

You can also define additional functions as Operations on
the class, again using Javascript. These functions can then
be called from the Reception handler code.

Define Receptions

Step Description

1 Select a JavascriptAddin on a diagram.

2 From the ribbon, select the option
"Design > Element > Behavior".
The 'Behavior' code editor window is
displayed.

3 Ensure that the Structure Tree is visible.
Click on the icon to toggle display of
the Structure Tree.

Right-click on the class at the top of the

(c) Sparx Systems 2019 Page 955 of 985

User Guide - Automation 20 January, 2020

4 Structure Tree.
Choose the option 'Add Reception'. The
'Select Signal' dialog is displayed

5 Navigate to where you imported the
Signal Reference Library - select the
Signal for which you want to add a
Reception.
Click on OK.

6 In the right hand panel, enter Javascript
code to define the required behavior.

7 Repeat steps 4 through 6 for any other
signals that you wish to handle.

(c) Sparx Systems 2019 Page 956 of 985

User Guide - Automation 20 January, 2020

Edit Add-In Code

The Class 'Behavior' view provides a convenient view for
editing the code associated with the behavioral features of
your Class.

Access

Ribbon Develop > Source Code > Behavior

Syntax Highlighting

The Class 'Behavior' view highlights code using the
language assigned to the Class. For Model Add-Ins, this
should be JavaScript.

Retrieving return values in JavaScript

When handling a reception for an event with OUT/INOUT
parameters, values must be read and assigned using the .val
attribute of those parameters.

For example, to set the value of the TagValue parameter on

(c) Sparx Systems 2019 Page 957 of 985

User Guide - Automation 20 January, 2020

the EA_OnElementTagEdit event:

 TagValue.val = "Hello World!"

Adding Operations

Right click on the Class node at the top of the Structure Tree
to add a new operation.

All operations should be given names that are valid for
Javascript functions.

All code written will be generated to a function on a
JavaScript object. Therefore, to call any function you have
written, you will need to prefix it with: this.

(c) Sparx Systems 2019 Page 958 of 985

User Guide - Automation 20 January, 2020

Model Add-In Management

Access

Ribbon Specialize > Add-Ins > Manage-Addin

Listed Add-Ins

Columns

Column
Name

Description

Groups For projects in which security is enabled,
this column allows you to select the list
of security groups that will be able to
access each Add-In.
Only users with 'Configure Model
Add-Ins' permission can change this
column.

(c) Sparx Systems 2019 Page 959 of 985

User Guide - Automation 20 January, 2020

Status This column allows you to select the
behavior of each Add-In for users within
included security groups.

Disabled means that the Add-In can·

not be used by any users
Enabled means that the Add-In is·

loaded and run for all users in the
selected security groups
Optional means that each user can·

choose to enable the Add-In
themselves; by default any Add-Ins
will be disabled until users enable them

Only users with 'Configure Model
Add-Ins' permission can change this
column.

Load on
Startup

This column allows each user to specify
that they want to use any optional
Add-Ins that are available to their group.
If users are not part of a listed group, or
the status is not optional, this has no
effect.

(c) Sparx Systems 2019 Page 960 of 985

User Guide - Automation 20 January, 2020

Signal Reference Library

All the broadcasts Enterprise Architect can send to an add-in
are defined in a self-contained pattern that provides an easy
way to implement each signal in your model Add-Ins.

Import the Broadcast Types Pattern

Ste
p

Action

1 Click on the icon and select the
'Management > Model Add-Ins' Perspective.

This automatically opens the Model Wizard on the
'Model Patterns' tab at the Model Add-Ins
Perspective page.

2 Click on the target Package in the Browser window.

3 Click on the 'Broadcast Types' pattern.

4 Click on the Create Pattern(s) button.

(c) Sparx Systems 2019 Page 961 of 985

User Guide - Automation 20 January, 2020

Sample Add-Ins

There are two working examples of Model Add-Ins in the
Enterprise Architect Example Model.

These samples demonstrate how to:

Add code to Receptions·

Call Functions defined as class operations from Reception·

code

Use class Attributes as global variables·

Create menus and menu items in an Add-in·

Respond to selection of Add-in menu items·

To open the Example Model, select the ribbon option 'Start
> Help > Help > Open the Example Model'. Once the
Example Model has loaded, search for 'Model Based
Add-Ins'.

(c) Sparx Systems 2019 Page 962 of 985

User Guide - Automation 20 January, 2020

Workflow Scripts

Workflow scripts validate user work and actions against the
policy and procedures within your model, providing a robust
approach to applying company policy and strengthening
project development guidelines.

Project Administrators can write workflow scripts to
manage the way users interact with a model, such as
managing security, staff compliance and model access, and
monitoring changes made by users. Administrators can also
use the scripts to control a user's capacity to change a model
element, taking into account factors such as access rights,
group membership and even the value of a proposed change.

Access

Open the Scripting window using one of the methods
outlined here, then click on the New Group button to create
a new Workflow script group, before clicking on the New
Script button to create a new script.

Ribbon Specialize > Tools > Scripting

Application of Workflow scripts

(c) Sparx Systems 2019 Page 963 of 985

User Guide - Automation 20 January, 2020

Consideratio
n

Description

Project
Governance

Good corporate governance relies on well
written and transparent project
development guidelines and company
policy.
A project might be compromised if the
appropriate policies and procedures are
poorly understood and not followed
correctly - effective governance can be
hampered by human error and the costs
of recovering from the inadequate
compliance of developers.

Policies,
Procedures
and
Development

Company policy and procedures can be
integrated with the development process
to manage workflows, determine access
rights, extend role based security
permissions and respond to property
change events.
This approach reduces compliance costs,
enhances collaborative development and
gives you confidence that projects are
being developed correctly the first time
around.
Development teams can adhere to best
practice guidelines that govern model
validation, change management, access

(c) Sparx Systems 2019 Page 964 of 985

User Guide - Automation 20 January, 2020

controls and general development
principles.

Script
Implementati
on

When a model is launched, the Workflow
Engine is initialized with the current user
and group memberships; this information
determines who can access and modify
parts of a given model.
When a selected event occurs, the script
engine is initialized with values including
the author's name and access rights, and
the element name and version details.
The workflow script implements rules
governing change management, access
control and model validation; if a user
attempts to make changes in violation of
company policy, the script denies the
update.
The user is notified why the validation
failed and the activity is logged.
These reminders help to reinforce
company policy, reduce human error and
provide management with valuable
project feedback.

Notes

(c) Sparx Systems 2019 Page 965 of 985

User Guide - Automation 20 January, 2020

Workflow Scripting is available in the Corporate, Unified·

and Ultimate editions of Enterprise Architect

Workflow Scripting requires User Security to be enabled·

in order to function

You need 'Admin Workflow' permission to develop and·

manage Workflow Scripts

(c) Sparx Systems 2019 Page 966 of 985

User Guide - Automation 20 January, 2020

Workflow Script Functions

Workflow scripts are created in the Scripting window, under
the Workflow group type as VBScripts. They are executed
by the Enterprise Architect workflow engine, to manage
user input.

You can make use of a range of functions and data
structures to develop your scripts.

Access

Ribbon Specialize > Tools > Scripting

Workflow functions and data structures

Function Description

Functions for
User Input

These are functions that Enterprise
Architect calls to validate and control
user input.
For each of the functions that Enterprise
Architect calls, a set of objects are filled.

(c) Sparx Systems 2019 Page 967 of 985

User Guide - Automation 20 January, 2020

Functions to
create a
Search

These are functions that Enterprise
Architect calls to create a search with
user tasks.

Workflow
Data
Structures
Enterprise
Architect fills

These are workflow data structure objects
that Enterprise Architect fills.

Workflow
Data
Structures
you fill

These are Workflow data structure
objects that you can fill.

Functions
you call

These are functions that Enterprise
Architect provides for you to call.

Notes

If you make changes to a workflow script listed in the·

Scripting window, click on the Refresh Scripts button in
the Scripting window toolbar to reload the script with the
changes

(c) Sparx Systems 2019 Page 968 of 985

User Guide - Automation 20 January, 2020

Functions - Validate and Control User
Input

Enterprise Architect calls a number of functions to validate
and control user input. For each function a set of objects is
filled.

Validate/Control User Input

Function Action

AllowPhaseU
pdate(OldVal
ue,
NewValue)

Validate a change a user has made to a
phase.
Return Value:

True to allow this user to make this·

change
False to disallow the change and revert·

to the previous value

AllowStatus
Update(OldV
alue,
NewValue)

Validate a change a user has made to a
status.
Return Value:

True to allow this user to make this·

change
False to disallow the change and revert·

to the previous value

(c) Sparx Systems 2019 Page 969 of 985

User Guide - Automation 20 January, 2020

AllowTagUp
date(TagNam
e,
OldValue,
NewValue)

Validate a change a user has made to a
Tagged Value.
Return Value:

True to allow this user to make this·

change
False to disallow the change and revert·

to the previous value

AllowVersio
nUpdate(Old
Value,
NewValue)

Validate a change a user has made to a
version.
Return Value:

True to allow this user to make this·

change
False to disallow the change and revert·

to the previous value

CanEditPhas
e()

Enable or disable the control for editing a
phase
Return Value:

True to allow this user to make changes·

by enabling the control
False to completely disable edit of this·

property by disabling the control

CanEditStatu
s()

Enable or disable the control for editing a
status.
Return Value:

(c) Sparx Systems 2019 Page 970 of 985

User Guide - Automation 20 January, 2020

True to allow this user to make changes·

by enabling the control
False to completely disable edit of this·

property by disabling the control

CanEditTag(
TagName)

Enable or disable the control for editing a
Tagged Value.
Return Value:

True to allow this user to make changes·

by enabling the control
False to completely disable edit of this·

property by disabling the control

CanEditVersi
on()

Enable or disable the control for editing a
version.
Return Value:

True to allow this user to make changes·

by enabling the control
False to completely disable edit of this·

property by disabling the control

OnPreNewEl
ement(Eleme
ntType,
ElementStere
otype)

Allow or disallow the creation of the
specified element.
Return Value:

True to allow this user to create the·

element/connector
False to prevent this user from creating·

the element

(c) Sparx Systems 2019 Page 971 of 985

User Guide - Automation 20 January, 2020

OnPreNewC
onnector(Con
nectorType,
ConnectorSu
bType,
ConnectorSte
reotype)

Allow or disallow the creation of the
specified connector.
Return Value:

True to allow this user to create the·

element/connector
False to prevent this user from creating·

the element

PreAllowPha
seUpdate(Old
Value,
NewValue)

Determine what information is required
to validate this change.
Return Value: Semi-colon separated list
of additional data required in order to
validate this change.
Supported Data Type:

Tests - fill the Tests array in the·

WorkflowContext object

PreAllowStat
usUpdate(Ol
dValue,
NewValue)

Determine what information is required
to validate this change.
Return Value: Semi-colon separated list
of additional data required in order to
validate this change.
Supported Data Type:
Tests - fill the Tests array in the
WorkflowContext object

PreAllowTag Determine what information is required

(c) Sparx Systems 2019 Page 972 of 985

User Guide - Automation 20 January, 2020

Update(TagN
ame,
OldValue,
NewValue)

to validate this change.
Return Value: Semi-colon separated list
of additional data required in order to
validate this change.
Supported Data Type:
Tests - fill the Tests array in the
WorkflowContext object

PreAllowVer
sionUpdate(
OldValue,
NewValue)

Determine what information is required
to validate this change.
Return Value: Semi-colon separated list
of additional data required in order to
validate this change.
Supported Data Type:
Tests - fill the Tests array in the
WorkflowContext object

(c) Sparx Systems 2019 Page 973 of 985

User Guide - Automation 20 January, 2020

Functions - Create a Search With User
Tasks

These are functions that Enterprise Architect calls to create
a search with user tasks.

Functions

Function Action

GetWorkflow
Tasks

Describe the searches that this user must
run.
Return Value: Ignored

(c) Sparx Systems 2019 Page 974 of 985

User Guide - Automation 20 January, 2020

Filled Workflow Data Structures

These are the workflow data structures (objects) that
Enterprise Architect fills.

Data Structures

Workflow
Data
Structure

Description

WorkflowUs
er

This object provides information about
the user currently logged in to the model.
It is filled by Enterprise Architect before
any function is called by Enterprise
Architect; it has these properties:

Username - the username for login to·

the system (if using Windows
Authentication, this matches the
Windows username)
Firstname - as found in the 'Security·

Users' dialog
Surname - as found in the 'Security·

Users' dialog
Fullname - the combination·

<Firstname> <Surname> (the form
Enterprise Architect uses for 'Author'

(c) Sparx Systems 2019 Page 975 of 985

User Guide - Automation 20 January, 2020

fields and similar)
Department - the department in which·

the user works, as found in the
'Security Users' dialog

Calls: This object calls the
IsMemberOf(GroupName) function.

WorkflowCo
ntext

This object provides information about
the object currently in context.
It is filled by Enterprise Architect before
any searches except GetWorkflowTasks
are run; it has these properties:

MetaType - the type of the current·

object, either an Enterprise Architect
core type or a profile-specified
metatype
Name - as found in the object·

'Properties' dialog
Status - as found in the object·

'Properties' dialog
Phase - as found in the object·

'Properties' dialog
Version - as found in the object·

'Properties' dialog
Stereotypes - an array of strings for the·

stereotypes applied to this object
Tags - an array of Tagged Values,·

providing:

(c) Sparx Systems 2019 Page 976 of 985

User Guide - Automation 20 January, 2020

 - Name - the Tagged Value name
 - Value - the Tagged Value value
Tests - an array of tests; only filled·

during an Allow* call after the
PreAllow* call has specified that tests
are required; provides these details, as
found in the Testing window:
 - Name
 - Status
 - RunBy
 - CheckedBy
 - TestClass
 - TestType

Calls: This object calls the
TagValue(TagName) function.

Functions

Function Action

IsMemberOf(
GroupName)

Check the group membership of the
current user.
Return Value: Returns the value True if
the current user is a member of the group
with the specified name.

(c) Sparx Systems 2019 Page 977 of 985

User Guide - Automation 20 January, 2020

TagValue(Ta
gName)

Get the value from a named tag.
Return Value: Returns the value of the
first Tagged Value with that name, or an
empty string if no Tagged Value with that
name exists.

(c) Sparx Systems 2019 Page 978 of 985

User Guide - Automation 20 January, 2020

Workflow Data Structures You Fill

These are the workflow data structures (objects) that you
can fill.

Data Structures

Workflow
Data
Structure

Description

WorkflowSta
tus

Use this data structure to provide
information on the status of the object.

LogEntry - set to True or False to·

indicate whether or not a log item
should be recorded
Reason - indicate what reason should·

be recorded in the log
Action - indicate how to display the log·

message; valid values are:
MessageBox, StatusBar and Output
(default)

WorkflowSea
rches

Use this data structure to provide an array
of searches.
Use Redim WorkflowSearches(x) to
specify the number of searches being

(c) Sparx Systems 2019 Page 979 of 985

User Guide - Automation 20 January, 2020

provided.
Each search has these attributes:

Name - the name of this search·

Group - the name of the group that this·

search should appear under in the
'Search' combo box
ID - the GUID for this search·

Tasks - the array of tasks that this·

search looks for; an entry describes
how to find all objects required to meet
a particular task:
 - Name - the name of the task, as
displayed in the Model Search
 view; workflow searches are
grouped by this field by default
 - Conditions - an array of
conditions, all of which must be
matched for
 an object to be included in this
task; a condition is a comparison of
 a single field to a value:
 - Column - the name of the
field
 - Operator - operator types,
either = (provide matching values only)
 or <> (provide non-matching
values only)
 - Value - if this contains a
comma, the string is treated as a

(c) Sparx Systems 2019 Page 980 of 985

User Guide - Automation 20 January, 2020

 comma separated list of
values to compare against;
 otherwise the string is a
single value to compare against

(c) Sparx Systems 2019 Page 981 of 985

User Guide - Automation 20 January, 2020

Functions You Call

These are functions that Enterprise Architect provides for
you to call.

Functions

Function Action

NewSearch(n
ame, group,
guid,
taskcount)

Create a new search object to be included
in WorkflowSearches.
Initialize each member.
Return Value: The created search

NewTask(na
me,
conditioncou
nt)

Create a new task object to be included in
a search.
Initialize each member.
Return Value: The created task

NewConditio
n(column,
operator,
value)

Create a new condition object to be
included in a task.
Initialize each member.
Return Value: The created condition

SetLastError(
message,

Called on user input to these element
properties:

(c) Sparx Systems 2019 Page 982 of 985

User Guide - Automation 20 January, 2020

outputMetho
d)

Status·

Phase·

Version, and·

Tagged Values·

It logs and/or reports the provided
message to the user. It can be called
within the functions:

AllowPhaseUpdate·

AllowStatusUpdate·

AllowTagUpdate·

AllowVersionUpdate·

preAllowPhaseUpdate·

preAllowStatusUpdate·

preAllowTagUpdate·

preAllowVersionUpdate·

For example:
 public function
AllowPhaseUpdate(OldValue,
NewValue)
 AllowPhaseUpdate = false
 SetLastError "No updating to phase
allowed", "messagebox"
 end function
Parameters:

message: Text·

(c) Sparx Systems 2019 Page 983 of 985

User Guide - Automation 20 January, 2020

outputMethod: can be "messagebox",·

"statusbar" or "outputwindow"; this
parameter is case sensitive

Return Value: The message

(c) Sparx Systems 2019 Page 984 of 985

User Guide - Automation 20 January, 2020

(c) Sparx Systems 2019 Page 985 of 985

	Automation
	Hybrid Scripting
	C# Example
	Java Example

	Scripting
	Scripts Tab
	Console Tab
	Script Group Properties
	Script Editor
	Session Object
	Script Debugging

	Enterprise Architect Object Model
	Using the Automation Interface
	Connect to the Interface
	Set References In Visual Basic

	Examples and Tips
	Call from Enterprise Architect
	Available Resources

	Reference
	Interface Overview
	App Object
	Enumerations
	ConstLayoutStyles
	CreateBaselineFlag
	CreateModelType
	DocumentBreak
	DocumentPageOrientation
	DocumentType
	EAEditionTypes
	EnumRelationSetType
	ExportPackageXMIFlag
	MDGMenus
	MessageFlag
	ObjectType
	PropType
	ReloadType
	ScenarioDiagramType
	ScenarioStepType
	ScenarioTestType
	XMIType

	Properties Tab Package
	PropertiesTab Class

	Repository Package
	Author Class
	Client Class
	Collection Class
	The AddNew Function

	Datatype Class
	EventProperties Class
	EventProperty Class
	ModelWatcher Class
	Package Class
	ProjectIssues Class
	ProjectResource Class
	ProjectRole Class
	PropertyType Class
	Reference Class
	Repository Class
	SecurityUser Class
	Stereotype Class
	Task Class
	Term Class

	Element Package
	Constraint Class
	Effort Class
	Element Class
	ElementGrid Class
	File Class
	Issue (Maintenance) Class
	Metric Class
	Requirement Class
	Resource Class
	Risk Class
	Scenario Class
	ScenarioExtension Class
	ScenarioStep Class
	TaggedValue Class
	Test Class

	Element Features Package
	Attribute Class
	AttributeConstraint Class
	AttributeTag Class
	CustomProperties Collection
	EmbeddedElements Collection
	Method Class
	MethodConstraint Class
	MethodTag Class
	Parameter Class
	ParamTag Class
	Partitions Collection
	Properties Class
	TemplateParameter Class
	Transitions Collection

	Connector Package
	Connector Class
	ConnectorConstraint Class
	ConnectorEnd Class
	ConnectorTag Class
	RoleTag Class
	TemplateBinding Class

	Diagram Package
	Diagram Class
	DiagramLinks Class
	DiagramObject Class
	SwimlaneDef Class
	Swimlanes Class
	Swimlane Class

	Project Interface Package
	Project Class

	Document Generator Interface Package
	DocumentGenerator Class

	Data Miner Package
	DataMinerManager Class
	DataMiner Class
	DataSet Class
	DMArray Class
	DMAction Class
	DMScript Class
	DMConnection Class

	TypeInfoProperties Package
	TypeInfoProperties Class
	TypeInfoProperty Class

	Mail Interface Package
	MailInterface Class

	Search Window Package
	EAContext Class
	EASelection Class
	SearchWindow Class

	Simulation Package
	Simulation Class

	Schema Composer Package
	SchemaProperty Class
	SchemaProfile Class
	SchemaComposer Class
	ModelTypeEnum Class
	ModelType Class
	SchemaTypeEnum Class
	SchemaType Class
	SchemaPropEnum Class
	SearchType Enumeration
	SchemaNamespace Class
	SchemaNamespaceEnum Class

	Code Samples
	Open the Repository
	Iterate Through a .EAP File
	Add and Manage Packages
	Add and Manage Elements
	Add a Connector
	Add and Manage Diagrams
	Add and Delete Features
	Element Extras
	Repository Extras
	Stereotypes
	Work With Attributes
	Work With Methods

	Enterprise Architect Add-In Model
	The Add-In Manager
	Add-In Tasks
	Create Add-Ins
	Define Menu Items
	Deploy Add-Ins
	Tricks and Traps

	Add-In Search
	EA_SampleSearch
	XML Format (Search Data)

	Add-In Events
	EA_OnAddinPropertiesTabChanging
	EA_Connect
	EA_Disconnect
	EA_GetMenuItems
	EA_GetMenuState
	EA_GetRibbonCategory
	EA_MenuClick
	EA_OnOutputItemClicked
	EA_OnOutputItemDoubleClicked
	EA_ShowHelp

	Broadcast Events
	Custom Table Events
	EA_OnCustomTableBeginEdit
	EA_OnCustomTableEndEdit
	EA_OnCustomTableSelectionChanged
	EA_OnCustomTableCellUpdated

	Schema Composer Events
	EA_GenerateFromSchema
	EA_GetProfileInfo
	EA_IsSchemaExporter

	Add-In License Management Events
	EA_AddinLicenseValidate
	EA_AddinLicenseGetDescription
	EA_GetSharedAddinName

	Compartment Events
	EA_QueryAvailableCompartments
	EA_GetCompartmentData

	Context Item Events
	EA_OnContextItemChanged
	EA_OnContextItemDoubleClicked
	EA_OnNotifyContextItemModified

	EA_FileClose
	EA_FileNew
	EA_FileOpen
	EA_OnPostCloseDiagram
	EA_OnPostInitialized
	EA_OnPostOpenDiagram
	EA_OnPostTransform
	EA_OnPreExitInstance
	EA_OnRetrieveModelTemplate
	EA_OnTabChanged
	Model Validation Events
	EA_OnInitializeUserRules
	EA_OnStartValidation
	EA_OnEndValidation
	EA_OnRunElementRule
	EA_OnRunPackageRule
	EA_OnRunDiagramRule
	EA_OnRunConnectorRule
	EA_OnRunAttributeRule
	EA_OnRunMethodRule
	EA_OnRunParameterRule
	Model Validation Example

	Post-New Events
	EA_OnPostNewElement
	EA_OnPostNewConnector
	EA_OnPostNewDiagram
	EA_OnPostNewDiagramObject
	EA_OnPostNewAttribute
	EA_OnPostNewMethod
	EA_OnPostNewPackage
	EA_OnPostNewGlossaryTerm

	Pre-Deletion Events
	EA_OnPreDeleteElement
	EA_OnPreDeleteAttribute
	EA_OnPreDeleteMethod
	EA_OnPreDeleteConnector
	EA_OnPreDeleteDiagram
	EA_OnPreDeleteDiagramObject
	EA_OnPreDeletePackage
	EA_OnPreDeleteGlossaryTerm

	Pre New-Object Events
	EA_OnPreNewElement
	EA_OnPreNewConnector
	EA_OnPreNewDiagram
	EA_OnPreNewDiagramObject
	EA_OnPreDropFromTree
	EA_OnPreNewAttribute
	EA_OnPreNewMethod
	EA_OnPreNewPackage
	EA_OnPreNewGlossaryTerm

	Tagged Value Events
	EA_OnAttributeTagEdit
	EA_OnConnectorTagEdit
	EA_OnElementTagEdit
	EA_OnMethodTagEdit

	Technology Events
	EA_OnInitializeTechnologies
	EA_OnPreActivateTechnology
	EA_OnPostActivateTechnology
	EA_OnPreDeleteTechnology
	EA_OnDeleteTechnology
	EA_OnImportTechnology

	Custom Views
	Create a Custom View

	Add a Portal
	Custom Docked Window
	MDG Add-Ins
	MDG Events
	MDG_BuildProject
	MDG_Connect
	MDG_Disconnect
	MDG_GetConnectedPackages
	MDG_GetProperty
	MDG_Merge
	MDG_NewClass
	MDG_PostGenerate
	MDG_PostMerge
	MDG_PreGenerate
	MDG_PreMerge
	MDG_PreReverse
	MDG_RunExe
	MDG_View

	Workflow Add-In Events
	EA_AllowPropertyUpdate
	EA_AllowTagUpdate
	EA_CanEditProperty
	EA_CanEditTag

	Model Add-Ins
	Create an Add-In
	Responding to Events
	Edit Add-In Code

	Model Add-In Management
	Signal Reference Library
	Sample Add-Ins

	Workflow Scripts
	Workflow Script Functions
	Functions - Validate and Control User Input
	Functions - Create a Search With User Tasks
	Filled Workflow Data Structures
	Workflow Data Structures You Fill
	Functions You Call

