SIPARX

SYSTEMS

Enterprise

Profiling

Investigating application performance? The Sparx Systems Enterprise Architect Profiler finds
the actions and their functions that are consuming the application, in a few seconds. The
Execution Analyzer applies both Process Sampling and Process Hooking.

Author: Sparx Systems
Date: 7/08/2019

Version: 1.0

CREATED WITH @ ENTF_RPF“SE

Table of Contents

Profiling 3
System Requirements 8
Getting Started 9
Call Graph 11
Stack Profile 13
Memory Profile 15
Memory Leaks 17
Setting Options 19
Start & Stop the Profiler 21
Function Line Reports 23
Generate, Save and Load Profile Reports 26
Save Report in Team Library 31

Profiling - Profiling 7 August, 2019

Profiling

I N ————

748 12 He P - ==
EEFIEFEREE LT L i T

- FEIEEICE L RN
[T

s Ve s M g

!
i
-
i

gareeane

FEET

"YERDEE

i b

_ it N—ni: R W L m e pona v

B

o ona B rwy s | s L1

Co eaan s e

During the lifetime of software applications, it is not uncommon to investigate application tasks that are determined to be
performing slower than expected. You might also simply want to know what is going on when you 'press this button'!
You can work this out quite quickly in Enterprise Architect by using its Profiler. Results can usually be produced in a
few seconds and you will quickly be able to see the actions that are consuming the application and the functions
involved. In the Execution Analyzer, The feature employs two separate strategies; Process Sampling and Process
Hooking. In one, samples are taken at regular intervals to identify CPU-intensive patterns, while in the other, the process
is hooked to record demands made on memory. Data is analyzed to produce a weighted Call Graph. Behaviors are
usually identifiable as root nodes (entrypoints) in the graph, or branches near these points. All reports can be reviewed on
demand. They can be saved to file within the model, both as Artifact elements and as Team Library posts.

Access

Ribbon Execute > Tools > Profiler

Other Execution Analyzer toolbar : Analyzer Windows | Profiler
Call Sampling

(c) Sparx Systems 2019 Page 3 of 32 Created with Enterprise Architect

Profiling - Profiling

Profiler m|
- & o 1 | B call Graph @

Process Id: 3540 Path: CM\Apachewences \DOMPrint exe

Sample time {ms): 0.0963 Court: 46257

Process time (ms): 1.1381 Fragments: 2

Entrypoints Sampled Processed Tirne

1 mainCRT5tartup Ap257 46228 00:00:38.63

7 August, 2019

The Profiler is controlled using its toolbar buttons. Here you can attach the Profiler to an existing process (or JVM), or
launch the application for the active Analyzer Script. The Profiler window displays the details of the target process as it
is profiled. These details provide feedback, letting you see the number of samples taken. You also have options for
pausing and resuming capture, clearing captured data and generating reports. You can gain access to the reporting feature
by pausing the capture - the reporting feature is disabled whilst data capture is in progress.

Weighted Call Graph

== |« =|& | BF |3 @
Call Stack
= xercesc_3_1uSAK2ZKMLReaderlmpl:parse
= xercesc_3_luXMLScannern:scanDocument
= xercesc_3_lulGXMLScanner:scanDocument
= xercesc_3_TulGXMLScanner:scanContent
= xercesc_3_1nlGKMLScanner:scanStartTagMs
= wercesc_3_lu:1GXMLScanner:iresolveSchemaGrammar
= xercesc_3_l:uSchemaValidator:preContentValidation
= xercesc_3_T:ComplexTypelnfoicheckUniqueParticleAttribution
= xercesc_3_luComplexTypelnfoimakeContentModel
= xercesc_3_l1:DFAContentModel:DFAContentModel
= xercesc_3_1:DFAContentModel:buildDFL
[= xercesc_3_1:CMStateSet:operator|=
memecpy
xercesc_3_1nCMStateSet:allocateChunk
__security_check_cockie
TraillpVec
wercesc_3_TuCMStateSet:~ CM5StateSet
wercesc_3_lukMemoryioperator delete
xerces-c_3_10

(c) Sparx Systems 2019

xercesc_3_1n
xercesc_3_1u

E E

xercesc_3_1u
xercesc_3_1u
xercesc_3_1u
xercesc_3_1u
xercesc_3_1u
xercesc_3_1u
xercesc_3_1u
xercesc_3 1u

FOFEE R EE

xercesc_3 1u

CM5tateSetigetBit
DFAContentModel:buildSyntaxTree
CMStateSet:: CMStateSet
CMStateSetigetBitCountinRange
XMemony:operator new
CMStateSet::zeroBits
CMStateSetEnumerator:nextElement
RefHashTableOf <xercesc_3_1:XMLinteger,»
RefHashTableOf<xercesc_3_1:XMLinteger,»
RefHashTableOf<xercesc_3_1:XMLinteger,»
DFAContentModel::makeDefStatelist

Page 4 of 32

Inclusive Hits Hits

16051
16051
16051
16051
16051
16051
16049
16049
16049
16047
15993
2174
32

27

21

1
3573
241
4418
1036
528
373
285
21
154
153
59

28

23

25

515
8093

Created with Enterprise Architect

Profiling - Profiling 7 August, 2019

This detailed report shows the unique set of Call Stacks/behaviors as a weighted Call Graph. The weight of each branch
is depicted by a hit count, which is the total hits of that branch plus all branches from this point. By following the hit
trail, a user can quickly identify the areas of code that occupied the program the most during the capture period.

Stack Profile

@StartPagE %, Sampler Report >

Stack Profile Summary Report

Call Stack
A Stack Profile: EVApache\xalan-builds\xerces-sre-31\Build\Win322W Cdebu glsax2print. exe
F] @ ¥erces-c_3 1Dxercesc_3_ 1 RefHashTableOf<xercesc_3 1. XMLStringPool: PoolElem,xercesc_3 1.:5tri
A @ werces-c_3 1Dxercesc 3 1:RefHashTableOf<xercesc 3 1:XMLStringPool:PoolElem,xercesc_3 1:
a @ ¥erces-C_3 1Dxercesc_3_ 1 XMLStringPool XMLStringPool
4 @ xerces-c_3 1Dxercesc 3 1:DOMDocumentImpl:DOMDocumentImpl
4 FEEI xerces-c_3 1Dxercesc_3_1:DOMImplementationImpl::createDocument
3 @ xerces-c_3 1Dxercesc 3 1:XMLGrammarPoolImpl: XMLGrammarPool Impl
3 @ xerces-C_3 1Dxercesc_3 1 ElemStack: ElemStack
3 @ xerces-c_3 1Dxercesc 3 10SAXZXMLReaderImpl:initialize
3 @ xerces-C_3 1Dxercesc_3 1:RangeTokenMap:RangeTokenMap

Stack Profiles are a taken to discover the different ways (stacks) and the count of ways that a particular function is
invoked during the running of the program. Unlike other the other profiler modes, this profile is activated through the use
of a Profile Point, which is a special kind of breakpoint marker. The marker is set in the source code like any other
breakpoint. When the breakpoint is encountered by the program, the stack is captured. When you later produce the
report, the stacks are analyzed and a weighted call graph produced. The graph shows the unique stacks that were
involved in that function during the time the profiler was running, The 'Hit Count' column indicates the count of times
that same stack occurred.

106
107 template <class TVal, class THasher>
108 void RefHashTableOf<TVal, THasher>::initialize(const ¥XMLSize_ t modulus)

109 {
© 110 if (modulus == 0)
111 ThrowXMLwithMemMgr({IllegalArgqumentException, XMLEzcepts::HshTbhl_ZeroMo
112
11z /f BAllocate the buckst list and zero them
114 fBucketlList = (REefHashTableBucketElem<TVal=>**) fMemoryManager-=allocate
115 {
116 fHashModulus * sizeof(RefHashTableBucketElem<TValx>#*)
117)
118 for (XMLSize_t index = 0; index < fHashModulus; indez++)
119 fBucketlList[index] = 0O;
120 }
121

Memory Profiles

(c) Sparx Systems 2019 Page 5 of 32 Created with Enterprise Architect

Profiling - Profiling

7 August, 2019

Profiler
d-rF & o

- E/ Memory Profile

C:Vapache \werces\DOMPrint, exe C:\test\materialsYarge, xml

Program:

Frames (4-64): 20

Allocations: 7000
Stack holdings: J000
Heap Holdings (MB): g

Frees: 1]
Frees not found: 0
Elapsed: 1:24 mins

The Memory profile tracks allocations, ignoring when memory is freed. It uses this information to rate the executing
code's demands for memory, in terms not of the amount of memory but of the frequency of demands. The Allocations
figure is the total number of memory allocations requested. The Stack Holdings is the number of stack traces taken at
those times, and the Heap Holding figure is the total amount of memory obtained by these calls. Note that profiling can
be turned on and off on demand. There is also no need to rebuild your program to get it to work as there is no linkage

involved.

Memory Graph

» profile

@Star‘t Page .+ *leaks | i *profile X
Call Stack

Pl ntdll:RtlAllocateHeap
Fl ntdll:RtipNtsetValuekey
Pl ntdll:RtIDestroyMemoryBlocklookaside
4 ntdll:RtlAllocateHeap
4 [7) ntdll
4 sver®ld:malloc_base
4 msver@ldimalloc_dbg
4 msver®ldimalloc_dbg
4 msver@ld:malloc_dbg
Pl msverdidimalloc
4 msverddoperator new

b [xerces-c_3_1dixercesc 3 1z
3 @ xerces-c_3_Tdixercesc_3_1:
b [xerces-c_3_ldixercesc_3_1x
b [xerces-c_3_1dixercesc_3_1x
» @ xerces-c_3_Tdixercesc_3_1u
b [xerces-c_3_ldixercesc_3_1x
b [xerces-c_3_1dixercesc_3_1x
» @ xerces-c_3_ldixercesc_3_1u
b [xerces-c_3_1dixercesc 3 1z
3 @ xerces-c_3_Tdixercesc_3_1:
b [xerces-c_3_ldixercesc_3_1x

4 E\Apache\xalan-builds\xerces-src-31\Build\Win32\WWC S debughDOMPrint.exe Ch\test\materials\portrait.xml

4 [xerces-c_3_ldixercesc_3_1:MemoryManagerimpl::allocate

RangeToken::expand

ValueHashTableOf< bool xercesc_3_1:5tringHasher=:put
XMemory:ioperator new

AMemory:operator new

RangeToken::doCreateMap

RangeToken:addRange

AMLString:replicate

RefHashTableOf <xercesc_3_1:RangeTokenElemMap,xercesc_3_1
RefHashTableOf <xercesc_3_1:CPMapEntry,xercesc_3_1:StringHi
Win32TransService:Win32TransService
Win32TransServicerWin32TransService

4
Instances Bytes
0 0
7,068 4,830,947
7,068 4,830,947
7,068 4,830,947
7,068 4,830,947
7,068 4,830,947
4813 3,985,885
4813 3,985,885
4,813 3,985,885
4,813 3,985,385
4812 3,985,734
4,812 3,985,734
4,807 3,985,526
203 396,984
791 37,968
753 239,048
333 21,652
201 19,788
287 28,700
218 12,914
146 7,008
144 6,912
112 6,612
106 6,258

This example is of a report produced from Profiling a demonstration program in the Xerces project from Apache. The
program iterates over the Document Object Model (DOM) for a provided XML file.

Function Summary Report

(c) Sparx Systems 2019

Page 6 of 32

Created with Enterprise Architect

Profiling - Profiling 7 August, 2019

Mame Inclusive Hits
P P

profiler/Example.Run 156
profiler/Example.main 156
java/lio/FileQutputStream.write 154
java/io/PrintStream.println 154
profiler/Example.Print 154
profiler/Example. MakeltalianCars 2
profiler/Example. Newar 2

This summary report lists the functions and only those functions executed during the sample period. Functions are listed
by total invocations, with a function that presents twice in separate Call Stacks appearing before a function that appears

just the once.

Function Line Report

LineMo
54
55
56
57
58
59
&0
61
R

Hits Code
1 forfint n = 0; n < 10000; n++)

i
1408 m_Cars = new Collection=Car=[);
1408 if(in % 3)>0)

{
338 for(int i = 0; i < 1000; i++)
{

933000 MakeltalianCars();

This detailed report shows the source code for a function line by line displaying beside it the total times each was
executed. We uncovered code using this report, that exposed case statements in code that never appeared to be executed.

Support

The Profiler is supported for programs written in C, C++, Visual Basic, Java and the Microsoft .NET languages. Memory
profiling is currently available for native C and C++ programs.

Notes

e The Profiler is available in Enterprise Architect Professional editions and above

e The Profiler can also be used under WINE (Linux and Mac) for Profiling standard Windows applications deployed
in a WINE environment

(c) Sparx Systems 2019 Page 7 of 32 Created with Enterprise Architect

Profiling - Profiling 7 August, 2019

System Requirements

Using the Profiler, you can analyze applications built for these platforms:
e Microsoft ™ Native (C++, C, Visual basic)
e Microsoft .NET (supporting a mix of managed and unmanaged code)

e Java

Microsoft Native applications

For C, C++ or Visual Basic applications, the Profiler requires that the applications are compiled with the Microsoft ™
Native compiler and that for each application or module of interest, a PDB file is available. The Profiler can sample both
debug and release configurations of an application, provided that the PDB file for each executable exists and is up to
date.

Microsoft .NET applications

For Microsoft .NET applications, the Profiler requires that the appropriate Microsoft .NET framework is installed, and
that for each application or module to be analyzed, a PDB file is available.

Java

For Java, the Profiler requires that the appropriate JDK from Oracle is installed.
The classes of interest should also have been compiled with debug information. For example: "java -g * java"
e New instance of application VM is launched from Enterprise Architect - no other action is required

e Existing application VM is attached to from within Enterprise Architect - the target Java Virtual Machine has to
have been launched with the Enterprise Architect profiling agent

These are examples of command lines to create a Java VM with a specific JVMTI agent:

1. java.exe -cp "%classpath%;.\" -agentpath:"C:\Program Files (x86)\Sparx Systems\EA\vea\x86\ssamplerlib32"
myapp

2. java.exe -cp "%classpath%;.\" -agentpath:"C:\Program Files (x86)\Sparx Systems\EA\vea\x64\ssamplerlib64"
myapp

(Refer to the JDK documentation for details of the -agentpath VM startup option.)

(c) Sparx Systems 2019 Page 8 of 32 Created with Enterprise Architect

Profiling - Profiling 7 August, 2019

Getting Started

The Profiler can be used to investigate performance issues, providing four separate tools for you to choose from, namely:
e Call Graph

e Stack Profile

e Memory Profile

e Memory Leaks

You select these tools from the Profiler toolbar.

Access

Ribbon Execute > Tools > Profiler

Tools

Tool Description

Call Graph Analyzes performance by taking samples during an activity in a program. Each
sample represents a stack. The samples are taken at intervals controlled using the
toolbar. In this scenario, poor performance is rated by the patterns of behavior that
repeat the most during the sample time period. This figure is used to weight the Call
Graph produced.

Memory Profile Analyzes performance by hooking the memory allocations made by a program. In
this scenario, poor performance is rated by the activities making the most requests
for memory. This figure is used to weight the Call Graph produced.

Stack Profile The Stack Profiler enables you to set a marker in your source code so that whenever
execution hits that marker, a full stack trace is captured. As the application
continues executing and the marked position is accessed from a variety of places
within the running executable, a very detailed and useful picture is built up showing
hot spots and usage scenarios for a particular point in code.

The Stack Profile report, like the Memory Profile report, is displayed in 'reverse
stack' order. This means that the root of the report is always a single node (in this
case the marker) and the tree then fans out to show all the various places the
marked position has been accessed from.

Memory Leaks Analyzes memory leaks by hooking the memory operations performed by a
program. What is produced is a Call Graph presenting the Call Stacks that allocated
memory for which a free operation was not detected.

Toolbar Buttons

(c) Sparx Systems 2019 Page 9 of 32 Created with Enterprise Architect

Profiling - Profiling 7 August, 2019

Button Action
- Displays a menu of options for managing your Profiling session.
b Launches the configured application to be profiled. By default, this is the

application configured in the active Analyzer Script.

- Indicates the state of the sampler. When green, sampling is enabled; when red,
sampling is disabled.
Stops the Profiler process; if any samples have been collected, the Report button

and Discard Data button are active.

Generates a report from the current data collection.

Displays the Profiling tool in use, which determines the fields shown in the Profiler
window. Click on the drop-down arrow and select a different tool, which changes
the window fields.

Discards the collected data. You are prompted to confirm the discard.

Displays the Help topic for this window.

(c) Sparx Systems 2019 Page 10 of 32 Created with Enterprise Architect

Profiling - Profiling 7 August, 2019

Call Graph

Profiler O x
- e O 1 > | B+ | call Graph @
Process Id: 3540 Path: CApache'werces \DOMPrint exe
Sample time {ms): 0.0963 Court: 46257
Process time |ms): 1.1381 Fragments: 2
Entrypoints Sampled Processed Tirne
1 mainCRTStartup 46257 46228 00:00:38.63
Call Stack Inclusive Hits UFP
7| manCRT5tartu 740
inCRTS p 7408
saxd print:mainCRTS5tartu 740
2pri inCRTSH p 7408 1
saxdprint__tmainCRTS5tartu 7407
2pri inCRTSH p 7,407 1
sax2printimain 7,350
&) saxzprintmai 7,350 1
@ xerces-c_3_1Dxercesc_3_1uSAXZXMLReaderlmpl:parse 7,350 1
@ xerces-c_3_1Dimercesc_3_1uXMLScanner:scanDocument 7,350 1
@ xerces-c_3_1Dxercesc_3_1uxMLScanner:scanDocument 7,349 1
@ xerces-c_3_1Dwercesc_3_1ulGXMLScannerniscanDocument 7,348 1
@ xerces-c_3_1Dwercesc_3_TulGXMLScannen:scanContent 3,309 1
& xerces-c_3_1Dmxercesc_3_1:1GXMLScanner:scanCharData 3,301 1
[xerces-c_3_1Dmxercesc_3_1:GXMLScanner:sendCharData 3,301 1,742
[xerces-c_3_1Dmercesc_3_1:SAX2XMLReaderlmpl:docCharacters 3,301 1,742

e Quickly discover what a program is doing at any point in time
e Easily identify performance issues

e Be surprised how quickly you can realize improvements

e See your improvements at work and have the evidence

e Support for C/C++, NET and Java platforms

Usage

The 'Call Graph' option is typically used in situations where an activity is performing slower than expected, but it can
also be used simply to better understand the patterns of behavior at play during an activity.

Operation

The Profiler operates by taking samples - or Call Stacks - at regular intervals over a period of time; the interval is set
using the Profiler toolbar. You use the Profiler to run a particular program, or you can attach to an existing process. The
Profiler capture is controlled, and you can pause and resume capture at any time. You can also elect to have capture
initiated immediately when the Profiler is started. If necessary, you can discard any captured samples and start again
during the same session. If you cannot continue with the same session, restarting the Profiler is quick and easy.

Results

(c) Sparx Systems 2019 Page 11 of 32 Created with Enterprise Architect

Profiling - Profiling 7 August, 2019

Results can be produced at any time during the session; however, capture must be disabled in order for the Report button
to become active. It is up to you to decide how long you let the Profiler run. You might know when an activity is
finished, or it might be apparent for other reasons. The reason you are here might be that an activity is not completing at
all.

You enable the Report button by either pausing capture or stopping the Profiler altogether.

Results are displayed in a Report view. The report opens with two tabs initially visible: the Call Graph and the Function
Summary. The reports can be saved to file, stored in the model as Artifacts or posted in the Team Library.

(c) Sparx Systems 2019 Page 12 of 32 Created with Enterprise Architect

Profiling - Profiling 7 August, 2019

Stack Profile

The Stack Profiler enables you to set a marker in your source code so that whenever execution hits that marker, a full
stack trace is captured. As the application continues executing and the marked position is accessed from a variety of
places within the running executable, a very detailed and useful picture is built up showing hot spots and usage scenarios
for a particular point in code.

The Stack Profile report, like the Memory Profile report, is displayed in 'reverse stack' order. This means that the root of
the report is always a single node (in this case the marker) and the tree then fans out to show all the various places the
marked position has been accessed from.

@StartPagE W, Sampler Report X
Stack Profile Summary Report

Call Stack
r Stack Profile: EVApache\walan-builds\xerces-src-31\Build\Win32W Cdebu ghsax2print. exe
4 @ werces-c_3 1Dxercesc 3 1:RefHashTableOf<xercesc_ 3 1:XMLStringPool::PoolElem,xercesc_3 1::5tri
rl @ werces-C_3 1Dxercesc_3_l:RefHashTableOf<xercesc_3_1:XMLStringPool::PoolElem,xercesc_3 1:
A @ werces-c_3 1Dwercesc 3 1:XMLStringPoaol:: XMLStringPool
F] @ xerces-C_3 1Dxercesc_3 1:DOMDocumentImpl:DOMDocumentImpl
3 FEEI werces-c_3 1Dxercesc 3 1:DOMImplementationImpl:createDocument
3 @ xerces-C_3 1Dxercesc_3 1:XMLGrammarPoolImpl: XMLGrammarPool Impl
3 @ xerces-c_3 1Dxercesc_ 3 1:ElemStack:ElemStack
3 @ xerces-c_3 1Dxercesc_3 10SAXZXMLReaderImplinitialize
3 @ xerces-c_3 1Dxercesc 3 1-RangeTokenMap:RangeTokenMap

Usage

Use the Stack Profile mode to produce a report that shows the unique ways in which a function can be invoked during the
running of a program. Determine the parts of the model that rely on this function and their frequency.

Operation

1de
107 template <class TVal, class THasher>
108 void RefHashTableOf<TVal, THasher>::initialize(const ¥MLSize_t modulus)

109 {
@ 110 if (modulus == 0)
111 ThrowXMLwithMenMgr({IllegalArgqumentException, XMLEzcepts::HshTbhl_ZeroMo
112
113 /{ Bllocate the bucket list and zeroc them
114 fBucketlList = (RefHashTableBucketElem<TVal>*#*) fMemoryManager—-=allocate
115 {
116 fHashModulus * sizeof(RefHashTableBucketElem<TVal>#*)
117 Vi
118 for (EMLSize_t index = 0; indexz < fHashModulus; indsz++)
119 fBucketliszt[index] = 0;
120}
121

(c) Sparx Systems 2019 Page 13 of 32 Created with Enterprise Architect

Profiling - Profiling 7 August, 2019

Profiler modes are selected using the Profiler control Toolbar. If a Profiler Point is already created, it is displayed. The
Profiler Point is the point at which stack traces are captured. You can set the Profiler Point using the Set button on the
control itself, once the mode is selected. After deciding on the Profile Point, build the project to be sure everything is up
to date, then start the Profiler. The number of unique stack holdings detected is visible during the run.

Results

A results can be produced by clicking the report button on the Profiler control Toolbar. This button is enabled when
either:

e Capture is turned off (using the Pause Button) or
e The Profiler is stopped (using the Stop Button)

The results produced are displayed as a weighted call graph, where the lines on the graph represent a unique stack, and
weighted to show the higher frequency stacks first. The report can then be saved, either to file or to the model, using the
context menu of the report itself.

(c) Sparx Systems 2019 Page 14 of 32 Created with Enterprise Architect

Profiling - Profiling 7 August, 2019

Memory Profile

Profiler 0o
i~ & o\ - | [E/ Memory Profile

Program:
C:Vapache \werces\DOMPrint, exe Ci\test\materialsYarge, xmil
Frames (4-64): 20
Mlocations: 7000 Frees: 0
Stack holdings: 7000 Frees not found: 0
Heap Holdings (MB): 8 Blapsed: 1:24 mins
Call Stack Instances Bytes
. [7] e\Apache\xalan-builds\xerces-src-31\Build\Win32\VC9\debughDOMPrint.exe "c\sysinternals\LogFilexml® 4136 78,256,467
Pl ntdll:RtlAllocateHeap 4,136 78,256,467
4 ntdll:RtlpNtSetValueKey 4136 78,256,467
4 ntdll:RtIDestroyMemoryBlocklookaside 4136 78,256,467
4 ntdll:RtlAllocateHeap 4136 78,256,467
a [2] ntdll 4136 78,256,467
a msver30dimalloc_base 4132 78,253,895
4 msvcrdldimalloc_dbg 4132 78,253,895
4 msverdd:malloc_dbg 4132 78,253,895
4 msverdldimalloc_dbg 4132 78,253,895
4 msver?dimalloc 4131 78,253,747
4 msverdldioperator new 4131 78,253,747
4 [xerces-c_3_1diercesc_3_1:MemoryManagerimpl:allocate 4126 78,253,339
b [xerces-c_3_1dwmercesc_3_1:ValueHashTableOf < bool xercesc_3_1:StringHasher> zput 79 37,968
b [xerces-c_3_1dmercesc_3_1:XMemory:operator new 746 73,364
b [xerces-c_3_1dwercesc_3_1:DOMDocumentlmpl:allocate n2 142 664
b [xerces-c_3_1duercesc_3_1:XMemory::operator new 332 21,596
b [xerces-c_3_1duercesc_3_1:RangeToken:doCreateMap 291 19,788
b [& xerces-c_3_1duercesc_3_1:RangeToken:addRange 223 22,300
b [& xerces-c_3_1duercesc_3_1:XMLString:zreplicate 202 11,906
b [xerces-c_3_1dwercesc_3_1:DOMDocumentimpl:allocate 152 77583712
b [werces-c_3_1dwercesc_3_1:RefHashTableOf <xercesc_3_1:RangeTokenElemMap,xercesc_3_ 146 7,008
3 @ xerces-c_3_ldixercesc_3_1:RefHashTableOf <xercesc_3_1:CPMapEntry, xercesc_3_1:5tringk 144 6,912
» @ xerces-c_3_ldixercesc_3_1:RangeToken:expand B4 74,052

e Quickly rate performance of activities that interest you
e Nothing influences a discussion more than evidence
e Reward your efforts by working in those areas that will make a difference

e Surprise yourself by delivering optimizations you might not have known existed

Usage

The Memory Profile can be used to reveal how activities perform in regard to memory consumption. Using this mode, a
user would be interested in questioning the frequency of demands made for memory during a task. They would be less
interested in the actual amount consumed. A well managed activity might make relatively few calls to allocate resources
but allocate enough memory to do its job efficiently. Other activities might make many thousands of requests, and that
typically makes them less efficient. This mode is useful for detecting those scenarios.

Operation

(c) Sparx Systems 2019 Page 15 of 32 Created with Enterprise Architect

Profiling - Profiling 7 August, 2019

The Memory Profile works by hooking the process in question, so that program has to be launched using the tool in
Enterprise Architect. Unlike the Call Graph option, you cannot attach to an existing process. When the program is
started, hooking mechanisms track the allocation of memory; this information is collected and collated in Enterprise
Architect. You can easily monitor the number of allocations being made. Also, the process is controlled; that is, the
memory hooks can be turned on and off on demand. If you might have mistimed some action, you can pause capture,
discard the data and resume capture again easily.

Results

Results can be produced at any time during the session; however, capture must be disabled in order for the Report button
to become active. It is your decision how long you let the Profiler run. You enable the Report button by either pausing
capture or stopping the Profiler altogether.

Results are displayed in a Report view. The report initially opens with two tabs visible; a single weighted Call Graph and
a Function Summary. The Call Graph depicts all the Call Stacks that led to memory allocations, which are aggregated
and weighted according to the frequency of the pattern.

Requirements

For best results, the image and its modules should be built with debug information included, and without optimizations.
Any module with the Frame Pointer Omission (FPO) optimization is likely to produce misleading results.

(c) Sparx Systems 2019 Page 16 of 32 Created with Enterprise Architect

Profiling - Profiling 7 August, 2019

Memory Leaks

Profiler
-k 1 |1 + | [| Memory Leaks -
Program; Ising Analyzer Script -
E:\apachewalan-buildsxerces-src-31\Build Wiin323WC9\debug \DOMPrint.exe C

Frames (4-64): 20 :

Mlocations: 7088 Frees: 7083

Stack holdings: 1 Frees not found: 86

Heap Holdings (MB): 0 Elapsed: 3.1 secs

The Profiler control, showing the count of memory allocations and the count of operations that are memory free.

leaks

@Start Page |+, *leaks X
Call Stack Instances Bytes
4 EM\Apache\xalan-builds\xerces-src-3T\Buil d\Win32\WC 3\ debug\DOMPrint.exe C\test\materials\portrait.xml
4 ntdikRtlAllocateHeap

4 [7] ntdllRtlphtSetValuekey
P ntdll:RtIDestroyMemeryBlockLookaside
Pl ntdll:RtlAllocateHeap

4 ntdll
4 msvcrild:malloc_base 151
4 msverd0d:malloc_dbg 151

]
1 151
1
1
1
1
1
1
Pl msvcrB0d:malloc_dbg 1 151
1
1
1
1
1
1
1
1

151
151
151
151

4 msver®0dimalloc_dbg 151
F msverdld:malloc_dbg 151

P msverdd:unlock 151

4 msver0d:_getmainargs 151

4 msverd0d 151

4 msver30diinitterm 151

4 msverdld 151

msverdld 151

A well behaved program.

Memory leak detection is a road well traveled. Although many other good options are available, we believe our approach
has major benefits, such as:

e No changes at all to existing project build
e No header files required by the project code
e No runtime dependencies to worry about

e No system configuration to think about

Usage

A person would use this mode to track memory leaks in an application or in an activity within the application. A memory
leak from the Profiler's point of view is a successful call made to a memory allocation function that returns a memory
address for which no matching call is made to free that address.

(c) Sparx Systems 2019 Page 17 of 32 Created with Enterprise Architect

Profiling - Profiling 7 August, 2019

Operation

The Memory Leak detection works through hooking. The memory routines of the process are hooked to track when
memory is both allocated and freed. Call Stacks are captured at the point of the allocation and this information is collated
in Enterprise Architect to produce a report in the form of a Call Graph. Capture is controlled; that is, the hooking
mechanisms can be enabled or disabled on demand.

Depending on the type of program and its memory consumption, you could employ an appropriate strategy. For small
programs, you might track the program from start to finish. For larger windowed programs, you would probably do better
by toggling capturing before and after a specific task to avoid tracking too much data.

Results

Results can be produced at any time during the session; however, capture must be disabled in order for the Report button
to become active. It is your decision how long you let the Profiler run. You enable the Report button by either pausing
capture or stopping the Profiler altogether.

Results are displayed in a Report view. The report initially opens with two tabs visible; a single weighted Call Graph and
a Function Summary. The Call Graph depicts all the Call Stacks that led to memory allocations, and are aggregated and
weighted according to the frequency of the pattern.

Reports can contain a variable amount of 'noise'. To focus on an area you have specific concerns for, locate a function
known to you in the summary report and use that to navigate directly into the line in the graph where it is featured.

Requirements

For best results, the image and its modules should be built with debug information included, and without optimizations.
Any module with the Frame Pointer Omission (FPO) optimization is likely to produce misleading results.

(c) Sparx Systems 2019 Page 18 of 32 Created with Enterprise Architect

Profiling - Profiling

Setting Options

7 August, 2019

The first icon on the Profiler window toolbar displays a list of options that you can set to tailor your Profiling session.

Attach to Rurining Process

*

Load Report

Analyzer Scripts...

Delay Sampling

Shift+F12

CallGraph Aggregates Method

CallGraph Samples Include Wait State

Start Sampling Immediately

+ Discard Fragments
Capture Debug Output

Stop Process on Exit

Options

Option

Attach to Running Process

Switch to Debugger

Load Report

Analyzer Scripts

Delay Sampling

CallGraph Aggregates
Method

CallGraph Samples Include
Wait State

(c) Sparx Systems 2019

Description

Select this option to display the 'Attach to Process' dialog, from which you choose
an active process to Profile.

Select this option to change operations from Profiling to Debugging. The Debugger
has an equivalent drop-down menu option that you can use to switch from
Debugging to Profiling.

Select this option to load a previously saved report from the file system.

Select this option to open the Analyzer Script window, which is the model
repository for configuring builds, debugging, and all other Visual Execution
Analyzer options.

Select this option to set a delay between clicking on a 'Start Profiling' option and
the Profiling actually beginning. The delay can be 3, 5 or 10 seconds. Select 'None'
to cancel any delay set.

When this option is selected, instances of the identical stack sequences are
aggregated by method. That is to say, line numbers / instructions within a method
are ignored, so two stacks will be counted as one where they differ only by line
number in their final frame.

When this option is selected, the Profiler will sample all threads, including those in
Wait states. When unselected, the Profiler only samples threads that have
accumulated CPU time since the last interval expired.

Page 19 of 32 Created with Enterprise Architect

Profiling - Profiling 7 August, 2019

Start Sampling Select this option to trigger Data Collection immediately on launch. You would
Immediately typically use this option to profile a process during startup.
Discard Fragments When stacks cannot be reconciled to the entry point of a thread they are referred to

as fragments. The number of fragments encountered during sampling is displayed
in the sampler Summary window. You can set this option to collect or discard
fragments; when the Discard Fragments option is:

e Selected, fragments do not appear in the reports, although the number
encountered is still updated

e Deselected, a special collection named 'fragments' is created in the call graph to
house them, and to ensure they data is not mixed in with the complete samples

Capture Debug Output (Applies to Process Sampling). When selected, output normally visible during
debugging is captured and displayed in the Debug window. Note that only debug
builds will typically emit debug output.

Stop Process on Exit This option determines termination behavior for the Profiler. When the option is
selected, the target process will terminate when the Profiler is stopped.

(c) Sparx Systems 2019 Page 20 of 32 Created with Enterprise Architect

Profiling - Profiling 7 August, 2019

Start & Stop the Profiler

Profiling is a two stage process of data collection and reporting. In Enterprise Architect the data collection has the
advantage of being a background task - so you are free to do other things while it runs. The information sent back to
Enterprise Architect is stored until you generate a report. To view a report, the capture must be turned off. After the
report is produced you can resume capture with the click of a button. If, for some reason, you decide to scrap your data
and start again, you can do so easily and without having to stop and start the program again.

class Profiler

EA Profiler [Target Application
S aflows | ~ flows
Access
Ribbon Execute > Tools > Profiler > Open Profiler
Other Execution Analyzer toolbar : Analyzer Windows | Profiler
Actions
Action Detail
Toolbar .
Profiler
- 1 - Call Graph @
Memaory Profile
Memory Leaks

Strategy Selection Select the Profiling strategy from the available options on the Toolbar.
Start the Profiler Click the Run button on the Profiler window
Stop the Profiler The process exits if:

® You click on the Stop button

e The target application terminates, or

® You close the current model

If you stop the Profiler and the process is still running, you can quickly attach to it

again.
Pause and Resume Capture You can pause and resume capture at any time during a session.

When capture is turned on, samples are collected from the target. When paused, the
Profiler enters and remains in a wait state until either capture is enabled, the

(c) Sparx Systems 2019 Page 21 of 32 Created with Enterprise Architect

Profiling - Profiling 7 August, 2019

Profiler is stopped or the application finishes.

Generate Reports The Report button is disabled during capture but is available when capture is turned
off.
Clear Data Collection You can clear any data samples collected and resume at any time. First suspend

capture by clicking on the Pause button. The Discard button, as for the Report
button, is enabled whenever capture is turned off. In clicking on the Discard button
you will be asked to confirm the operation. This action cannot be undone.

(c) Sparx Systems 2019 Page 22 of 32 Created with Enterprise Architect

Profiling - Profiling 7 August, 2019

Function Line Reports

After you have run the Profiler on an executing application and generated a Sampler report, you can further analyze the
activity of a specific function listed in the report by generating a Function Line report from that item. A Function Line
report shows the number of times each line of the function was executed. You produce one Function Line report at a
time, on any method in the Sampler report that has a valid source file. The Function Line report is particularly useful for
functions that perform loops containing conditional branching; the coverage can provide a picture of the most frequently
and least frequently executed portions of code within a single method.

The line report you generate is saved when you save the Sampler report. The body of the function is also saved with the
Function Line report to preserve the function state at that time.

Platforms supported

Java, Microsoft NET and Microsoft native code

Create a Line Report

In the Sampler report, right-click on the name of the function to analyze, and select the 'Create Line report for function'
option.

Once the Profiler binds the method, the Function Line report is opened on the Sampler Report window. The report shows
the body of the function, including line numbers and text. As each line is executed a hit value will accumulate against
that line. A timer will update the report approximately once every second.

(c) Sparx Systems 2019 Page 23 of 32 Created with Enterprise Architect

Profiling - Profiling 7 August, 2019

M 4 » M | CallTree Report | Summary Report | ConsoleApplication:CQuickSort:Quicksort
-

Module:ConsoleApplication

Function: CQuickSort:Quicksort

Date: 20,/09/2013 2:53:21 PM

Author smeagher
Iterations: 28679

LineMo Hits Code

21 28645 {

22 28644 if ir<=1)

23 14460 retum;

24 14134 inti=1.j=r.p=F.g=r;
25 for {;;)

26 i

27 435530 while (a[++] < a[r]) ;

28 14185 while (@[] = alrl)

29 if§==I)

30 breal:;

H if i =]}

32 14185 break;

33

M BExchangel(a. i. j)

35 if {alil ==all)

g Exchangela, ++p. i);
7

33 if {af] ==al])

35 Exchangela. j. gl
40

41 }

42 14185 Exchangela.i. r);

43 14185 j=i-10=is1;

44 14185 forfint k=1, k < p; k== j-)

End Line Report Capture

Once enough information is captured, or the function has ended, click on the Profiler toolbar Stop button to stop
recording the capture.

Save Reports

Use the Save button on the Call Stack toolbar to save the Sampler report and any Function Line reports to a file.

Delete Line Reports

Closing the 'Line Report' tab will close that report but the report data will only be deleted when the report is saved.

(c) Sparx Systems 2019 Page 24 of 32 Created with Enterprise Architect

Profiling - Profiling 7 August, 2019

(c) Sparx Systems 2019 Page 25 of 32 Created with Enterprise Architect

Profiling - Profiling 7 August, 2019

Generate, Save and Load Profile Reports

Reports can be produced at any time during a session, or naturally when a program ends. To enable the Report button
while the program is running, however, you need to suspend Profiling by toggling the Pause/Resume button, or by
terminating the Profiler with the Stop button. You have some options for reviewing and sharing the results:

e View the report

e Save the report to File

o Distribute the report as a Team Library resource

e Attach the report as a document to an Artifact element

e Synchronize the model by reverse engineering the source code that participated in the profile

Access
Ribbon Execute > Tools > Profiler > Create Report from Current Data
Profiler

From the Profiler window, click on the icon in the toolbar.

Load Report from File

The option is available from the drop down menu of the Profiler Window

Generate Report

From the Profiler window, click on the icon in the toolbar.

CallFrequency Report

(c) Sparx Systems 2019 Page 26 of 32 Created with Enterprise Architect

Profiling - Profiling 7 August, 2019

=« a4ty |I@

Call Stack Inclusive Hits Hits
= xercesc_3_1uSAK2ZKMLReaderlmpl:parse 16051
= xercesc_3_luXMLScanner:scanDocument 16031
=1 wercesc_3_l1:1GXMLScanneriscanDocument 160351
= wercesc_3_l1:1GXMLScanner:scanContent 160351
= xercesc_3_1:IGXMLScanner:scanStartTaghs 160351
= xercesc_3_l1:1GXMLScanner:resolveSchemaGrammar 160351
= xercesc_3_l:uSchemaValidator:preContentValidation 16049
= xercesc_3_T:ComplexTypelnfoicheckUniqueParticleAttribution 16049
= xercesc_3_l1uComplexTypelnfoimakeContentModel 16049
= xercesc_3_1:DFAContentModel:DFAContentModel 16047
= xercesc_3 1:DFAContentModel:buildDFL 13998 515
= xercesc_3_1uCMStateSet:ioperator|= 2174 2093
memecpy 32 32
xercesc 3 1nCMStateSet:iallocateChunk 27 1
__security_check_cockie 21 21
TraillpVec 1 1
wercesc_3_TuCMStateSet::~ CM5StateSet 3573 4
wercesc_3_lukMemoryioperator delete a4 2
xerces-c_3_10 4416 2
xercesc_3_1uCM5StateSet::getBit 1036 1036
xercesc_3_1uDFAContentModel:buildSyntaxTree 528 3
xercesc_3_1nCMStateSet:: CMStateSet 373 3
xercesc_3_1:CMStateSet:getBitCountlnRange 285 285
xercesc_3_luXMemony:operator new 21 2
xercesc_3_1uCMStateSet::zeroBits 154
xercesc_3_ 1uCMStateSetEnumerator:nextElement 133 136
xercesc_3_luRefHashTableOf<xercesc_3_1:XMLinteger,» 59 2
xercesc_3_luRefHashTableOf <xercesc_3_Tu¥MLinteger,: 28 2
xercesc_3_luRefHashTableOf <xercesc_3_TuXMLinteger: 23
xercesc_3_1uDFAContentModel:makeDefStatelist 25 2

Function Summary

@Stan:Page o C\ea\tests\cg-xerces-sax2print.ssprf X

Marmne Inclusive Hits Occurrences
L2 p

(£ mainCRTStartup 7408 1
[_tmainCRTStartup 7407 1
@ wercesc_3_1:XMLFormatter:handleUnEscaped Chars 7351 10
@ ®ercesc_3_1uEMLRarmatter:format Buf 7351 10
@ xercesc_3_1uXMLFormatter:ispecialFormat 7351 10
@ S&X2PrintHandlers write Chars 7350 10
@ xercesc_3_1XNLscanner:scanDocument 7350 1
[main 7350 1
@ xercesc_3_1:5A2%XMLReaderImpl:parse 7350 1
FE“‘ xercesc_3_1EMLScanner:scanDocument 73459 1
@ xercesc_3_1:IGXMLScanner::scanDocument 7348 1
FE“‘ xercesc_3_10EMLRormatter::format Buf 4042 2]

Unfiltered Summary Report listing all participating functions in order of inclusive hits.

(c) Sparx Systems 2019 Page 27 of 32 Created with Enterprise Architect

Profiling - Profiling

7 August, 2019

@StartPage o C:\ea\tests\cg-xerces-sax2print.ssprf X

MHame Inclusive Hits Occurrences
SAX x »

@ 524 2PrintHandlers:write Chars 7350 10

@ xercesc_3_1:5Ax2XNMLReaderImpl:parse 7350 1

@ xercesc_3_1:5Ax2XNMLReaderImpl::doc tharacters 3309 2

@ S&2PrintHandlers::characters 3309 2

FED‘ xercesc_3_1nSAXZXMLReaderImpl:endElement 2114 1

FED‘ xercesc_3_1n5AXZXMLReaderimpl:startElement 1925 1

FE“‘ 54x2PrintHandlers::endElerment 1523 1

You can filter and reorganize the information in the report, in the same way as you do for the results of a Model Search.

Report Options
Right-click on the report to display the context menu.
4 @ werces-c_3_1Dwercesc_3_1:IGXMLScanner:scanCharData 621
4 [& xerces-c_3_1Dmercesc_3_1:1GXMLScanner:sendCharData 621
4 @ xerces-c_3_1Dmercesc_3_1:SAX2ZXMLReaderlmpl::docCharacters 221
4 [Sax2Print:SAX2PrintHandlers:characters . — o
ow Source for Function
4 [xerces-c_3_1Dnxercesc_3_luXMLFormatter:formatBu
4 @ xerces-c_3_1Dxercesc_3_1uXMLFormatter:specii Find in Summary Window
Fl @ xerces-c_3_1Dhxercesc_3 1:XMLFormatter:fo Collapse Graph
4 [xerces-c_3_1Duxercesc_3_1uXMLFormatte Collapse To Mode
b & Sax2Print:SAX2PrintHandlers:writeCh
b [Sax2Print:SAX2PrintHandlers:writeCh Follow Max Allocations
4 [xerces-c_3_1Dmxercesc_3_1ulGXMLScanner:scanCharData Create Line Report for Fundtion
4 @ werces-c_3_1Dmercesc_3_1:lGXMLScanner:sendCharData Create Function Graph
d @ werces-c_3_1Dmercesc_3_1uSAX2ZXMLReaderlmpl:docChara
4 [Sax2PrintSAX2PrintHandlersicharacters Mark Initial Frame for Call Stack Diagram
4 [xerces-c_3_1Dnxercesc_3_luXMLFormatter:formatBu Re -
d @ werces-c_3_1Dmxercesc_3_1uXMLFormatter:specii Create Call Stack Diagram
4 @ xerces-c_3_1Duxercesc_3_1uXMLFormatter:fo))
4 [xerces-c_3_1D:xercesc_3_1uXMLFormatte Create Weighted Call Graph Diagram
b & Sax2Print:SAX2PrintHandlers:writeCh Display Heaviest Weighted Use
4 @ xerces-c_3_1Dixercesc_3_1:1GXMLScanner:scanContent e T
isplay Ne eighted Use
4 [xerces-c_3_1Dmxercesc_3_1:IGXMLScanner:scanEndTag play g
4 @ werces-c_3_1Dxercesc_3_1:5AX2XMLReaderlmpl:endElement ~aHs SCLETE o (D L
4 [Sax2Print:SAX2PrintHandlerszendElerent I
4 [xerces-c_3_1Duercesc_3_luXMLFormatter:operator< <) -
rl @ werces-c_3_1Dkxercesc_3_1u¥XMLFormatter:formatBu 7 LI
d @ werces-c_3_1Dmxercesc_3_1uXMLFormatter:specii Save Report to File
4 [xerces-c_3_1Duercesc_3_1nXMLFormatter:fo S
4 [xerces-c_3_1D:xercesc_3_1uXMLFormatte P
4 [F Sax2Print:SAX2PrintHandlersiwriteCh Help
Action Detail
Show Source for Function For the selected frame, select this option to display the corresponding line of code

in a code editor. Frames that have source available are identifiable by their icon.

Find in Summary Window Select this option to locate the function in the Summary View.
Collapse Graph Select this option to collapse the entire graph including child nodes, visible or not.
Collapse to Node Select this option to collapse the entire graph, then expand and set the focus to the

(c) Sparx Systems 2019 Page 28 of 32

Created with Enterprise Architect

Profiling - Profiling

Follow Max Allocations

Create Line Report for
Function

Create Function Graph

Mark Initial Frame for Call
Stack Diagram

Remove Mark

Create Call Stack Diagram

Create Weighted Call
Graph Diagram

Display the Heaviest

Weighted Use

Display the Next Weighted
Use

Display the Previous
Weighted Use

Save Report to File

Save Report to Artifact

(c) Sparx Systems 2019

7 August, 2019

selected node.
Select this option to expand an entire line in the graph.

Select this option to launch the Profiler (if it is not already running), immediately
bind the selected function and ready it for recording. Once bound, an extra tab is
opened in the current Report View. This report will update instantaneously,
showing the number of times each line executed. Of course, the report will continue
to record activity in the function even if is not visible.

Note: In windowed programs, it is usually necessary to take some action in the
application to cause the function to be invoked.

Select this option to create an additional tab, which shows the selected function in
isolation. For a Call Frequency Profile, this produces a graph showing all the lines
that led to this function being called (that is, the callers). For a Memory Profile, this
produces a graph showing all lines that emanate from this function (that is, the
callees).

Use prior to creating a Call Stack sequence diagram to limit the stack length. When
this option is selected, the frame is marked and its text is highlighted. Frames above
this one will then be excluded from any Sequence diagram produced.

Removes the mark from a frame that was previously marked as 'Initial'.

Generates a sequence diagram for a single stack in the graph. The selected frame is
depicted as the terminal frame in the stack. The initial frame of the stack defaults to
the root node if no 'Initial' frame has been marked.

Generates a sequence diagram that presents a sequence for each visible stack
branching from the selected frame. By expanding and collapsing the nodes of
interest, a user can tailor the sequence diagram content to their liking.

Select this option to display the line in the graph with the highest weight in which
this function appears.

Select this option to navigate to the next line in the graph where the function
appears.

You can use the shortcut key combination Ctrl+Down Arrow.

Select this option to navigate to the previous line in the graph where this function
appears.

You can also use the shortcut key combination Ctrl+Up Arrow

Select this option to display the 'Save As' dialog, allowing you to choose where to
store the report.

Note: Before selecting this option, go to the Browser window and select the
Package or element under which to create the Artifact element.

You are prompted to provide a name for the report (and element); type this in and
click on the OK button.

The Artifact element is created in the Browser window, underneath the selected
Package or element.

If you add the Artifact to a diagram as a simple link, when you double-click on the
element the report is re-opened.

Page 29 of 32 Created with Enterprise Architect

Profiling - Profiling 7 August, 2019

Team Library Options

Option Description
Make Report a Team You can save any current report as a resource for a Category, Topic or Post in the
Library Resource Team Library to share and review at any time, as it is saved with the model. The

report can also be compared with future runs.

To begin this process, on the "Team Library context menu select the menu option
'Share Resource | Add Active Profiler Report'.

Notes

e Ifyou add the Profiler report to an Artifact element and also attach a Linked Document, the Profiler report takes
precedence and is displayed when you double-click on the element; you can display the Linked Document using the
'Edit Linked Document' context menu option

(c) Sparx Systems 2019 Page 30 of 32 Created with Enterprise Architect

Profiling - Profiling 7 August, 2019

Save Report in Team Library

You can save any current report as a resource for a Category, Topic or Document in the Team Library. The report can
then be shared and reviewed at any time as it is saved with the model. This helps you to:

e Preserve a Profiler report to compare against future runs

e Allow other people to investigate the profile

Access

Context Menu Right-click in Team Library window | Share Resource | Active Profiler Report

(c) Sparx Systems 2019 Page 31 of 32 Created with Enterprise Architect

Profiling - Profiling 7 August, 2019

(c) Sparx Systems 2019 Page 32 of 32 Created with Enterprise Architect

	Profiling
	System Requirements
	Getting Started
	Call Graph
	Stack Profile
	Memory Profile
	Memory Leaks
	Setting Options
	Start & Stop the Profiler
	Function Line Reports
	Generate, Save and Load Profile Reports
	Save Report in Team Library

