
Model
Transformation
Sparx Systems Enterprise Architect supports

Model Driven Architecture (MDA)
transformations of a single element or a whole
Platform Independent Model (PIM) to one or
more output Platform Specific Models (PSM)
in, for example, Oracle, MySQL or SQLite.

Enterprise Architect

User Guide Series

Author: Sparx Systems
Date: 7/08/2019

Version: 1.0

CREATED WITH

Table of Contents

Model Transformation 5
Transform Elements 11
Chaining Transformations 16

Built-in Transformations 17
C# Transformation 20
C++ Transformation 23
Data Model To ERD Transformation 25
DDL Transformation 27
EJB Transformations 33
ERD To Data Model Transformation 37
Java Transformation 41
JUnit Transformation 44
NUnit Transformation 47
PHP Transformation 50
Sequence/Communication Diagram
Transformations 52
VB.Net Transformation 55
WSDL Transformation 56
XSD Transformation 58

Edit Transformation Templates 63
Write Transformations 69
Default Transformation Templates 73
Intermediary Language 75

Intermediary Language Debugging 77
Objects 80
Connectors 90
Transform Connectors 95
Transform Foreign Keys 100
Copy Information 102
Convert Types 104
Convert Names 105
Cross References 108
Transform Template Parameter Substitution 111

User Guide - Model Transformation 7 August, 2019

Model Transformation

One of the great advantages of creating models is the ability
to manipulate them to produce outputs, thus saving time and
reducing the possibility of errors. Enterprise Architect
implements Model Driven Architecture (MDA)
transformations using a flexible and fully configurable
template system. The templates act as instructions to a
machine that takes a model as input and transforms it to a
more resolved model as output. The input could be a large
and complex model or a single element and one input model
could be transformed to a variety of output models.

The transformations are commonly unidirectional and take a
Platform Independent Model (PIM) and transform it to one
or more Platform Specific Models (PSM). A good example
of where this is useful is where a system must be
implemented in a number of different relational database
systems. A single platform independent conceptual model
(the PIM) could be transformed to a number of platform
specific models, say Oracle, MySQL and SQLite. As a
further productivity boost, once the output models are
produced they can also be converted to programming code,
database definition language or schemas. Enterprise
Architect automatically creates traceability that can be used
to visualize how elements in the input model have been
transformed to elements in the output model.

Facilities

(c) Sparx Systems 2019 Page 5 of 116

User Guide - Model Transformation 7 August, 2019

Facility Description

Transform
Elements

Discover how to transform elements on a
diagram or from a Browser window
Package.

Built-in
Transformati

ons

Enterprise Architect provides a number of
built-in transformations that support a
wide range of target languages. Each is
fully customizable to your specific needs.

Edit
Transformati
on Templates

Learn how to adjust the transformation
templates to produce transformations
specific to your system.

Write
Transformati

ons

All the information you will need to
create your own transformations.

Ready-built Transformations

(c) Sparx Systems 2019 Page 6 of 116

User Guide - Model Transformation 7 August, 2019

The Enterprise Architect installer includes a number of basic
built-in transformations, including:

PIM to:·

 - C#
 - C++
 - DDL table elements
 - EJB Entity Bean
 - EJB Session Bean
 - Java
 - PHP
 - VB.Net
 - XSD

Data Model to Entity Relationship diagram (ERD)·

Entity Relationship diagram (ERD) to Data Model·

Sequence diagram to Communication diagram·

Communication diagram to Sequence diagram·

Java model to JUnit test model·

.NET model to NUnit test model·

WSDL interface model to WSDL·

Further transformations will become available over time,
either built in or as downloadable modules from the Sparx
Systems website.

Customized Transformations

(c) Sparx Systems 2019 Page 7 of 116

User Guide - Model Transformation 7 August, 2019

You can modify the built-in transformations or define your
own, using Enterprise Architect's simple code generation
template language. This involves little more than writing
templates to create a simple intermediary source file; the
system reads the source file and binds that to the new PSM.

Transformation Dependencies

When you execute a transformation, the system creates
internal bindings (Transformation Dependencies) between
each PSM created and the original PIM. This is essential,
providing the ability to forward synchronize from the PIM
to the PSM many times, adding or deleting features as you
go; for example, adding a new attribute to a PIM Class can
be forward synchronized to a new column in the Data
Model.

You can observe the Transformation Dependencies for a
Package using the Traceability window, to check the impact
of changes to a PIM element on the corresponding elements
in each generated PSM, or to verify where a change required
in a PSM should be initiated in the PIM (and also to reflect
back in other PSMs). The Transformation Dependencies are
a valuable tool in managing the traceability of your models.

Enterprise Architect does not delete or overwrite any
element features that were not originally generated by the
transform; therefore, you can add new methods to your
elements, and Enterprise Architect does not act on them
during the forward generation process.

(c) Sparx Systems 2019 Page 8 of 116

User Guide - Model Transformation 7 August, 2019

Example of a Transformation

This diagram highlights how transformations work and how
they can significantly boost your productivity.

(c) Sparx Systems 2019 Page 9 of 116

User Guide - Model Transformation 7 August, 2019

Notes

If you are using the Corporate, Unified or Ultimate·

edition, if security is enabled you must have 'Transform
Package' access permission to perform an MDA
Transformation on the elements of a Package

(c) Sparx Systems 2019 Page 10 of 116

User Guide - Model Transformation 7 August, 2019

Transform Elements

A model transformation is a user initiated function that
starts the process of transforming one or more Platform
Independent Model (PIM) elements into their corresponding
Platform Specific Model (PSM) elements. This process
takes place in accordance with the rules that have been
codified in the Transformation Templates. The
transformation can be initiated by selecting a Package in the
Browser window or an element in a diagram.

Access

Ribbon Design > Tools > Transform > Transform
Selection

Keyboard
Shortcuts

Ctrl+H (transform selected elements)
Ctrl+Shift+H (transform selected
Package)

Perform a Transformation

Option Action

(c) Sparx Systems 2019 Page 11 of 116

User Guide - Model Transformation 7 August, 2019

Elements Lists all of the individual elements
selected in the diagram or held in the
Package. Either:

Click on an element to include just that·
element in the transformation
Hold Ctrl and click on several separate·
elements to include them in the
transformation, or
Hold Shift and click on the first and·
last elements in a block to include
those elements in the transformation

All Click on this button to select all of the
elements in the list to include them in the
transformation.

None Click on this button to deselect all of the
elements in the list.

Include child
packages

(If you have selected to transform
elements in a Package.)
Select this checkbox to include (in the
'Elements' list and potentially in the
transformation) elements from the child
Packages of the selected Package.

Transformati
ons

Select the checkbox against each type of
transformation to perform. When you

(c) Sparx Systems 2019 Page 12 of 116

User Guide - Model Transformation 7 August, 2019

select a checkbox, the 'Browse Project'
dialog displays; locate and select the
target Package into which to generate the
transformed elements.
If you want to change a selected target
Package, click on the button to the
right of the Package name and select the
new Package from the dialog.

Generate
Code on
result

Select this checkbox to specify whether
or not to automatically generate code for
transformed Classes that target code
languages.
If you select this option, the first time you
transform to the Class the system prompts
you to select a filename to generate code
into; subsequent transformations
automatically generate code to that
filename.

Perform
Transformati
ons on result

Select the checkbox to automatically
execute transformations previously done
on the target Class or Classes.

Intermediary
File

If you want to capture the intermediary
language file (for example, to debug it),
either type in the file path and name or
click on the button and locate and
select the file.

(c) Sparx Systems 2019 Page 13 of 116

User Guide - Model Transformation 7 August, 2019

Write
Always

Select this checkbox to always write the
intermediary file to disk.

Write Now Click on this button to generate the
intermediary file without performing the
full transformation.

Do
Transform

Click on this button to execute the
transformation.
When the transformation is complete, the
'Model Transformation' dialog closes.

Close Click on this button to close the 'Model
Transformation' dialog without
performing the transformation.

Notes

When the dialog displays, all elements are selected and all·

transformations previously performed from any of these
Classes are checked

This procedure does not apply to the Sequence·

diagram/Communication diagram transformation, or the
Communication diagram/Sequence diagram
transformation

(c) Sparx Systems 2019 Page 14 of 116

User Guide - Model Transformation 7 August, 2019

(c) Sparx Systems 2019 Page 15 of 116

User Guide - Model Transformation 7 August, 2019

Chaining Transformations

Chaining transformations provides an extra degree of
flexibility and power to performing transformations. For
example, if two transformations have a common element;
you might separate this element out into its own
transformation, and then perform the original
transformations from the common point. The separated
transform could even produce a useful model itself.

You can chain transformations by selecting the 'Perform
Transformations on result' checkbox in the 'Model
Transformation' dialog, so that transformations that have
already been performed on target Classes are executed
automatically next time that Class is transformed to.

(c) Sparx Systems 2019 Page 16 of 116

User Guide - Model Transformation 7 August, 2019

Built-in Transformations

Enterprise Architect provides a rich set of built-in,
commonly performed transformations. These will prove
useful to a variety of disciplines from Domain Modeling to
Code Engineering. The facility to transform models is a
powerful productivity tool and it is expected that modelers
will want to create their own custom transformations. The
built-in transformations provide useful examples and are a
valuable reference for the modeler.

Built-in Transformations

Transformati
on

Converts

C# Platform-Independent Model (PIM)
elements to language-specific C# Class
elements.

C++ PIM elements to language-specific C++
Class elements.

Data
Definition
Language

A logical model to a data model targeted
at the default database type, ready for
DDL generation.

(c) Sparx Systems 2019 Page 17 of 116

User Guide - Model Transformation 7 August, 2019

Entity
Relationship
Diagram to
Data Model

An ERD logical model to a data model
targeted at the default database type,
ready for DDL generation.

Data Model
to Entity
Relationship
Diagram

A data model to an ERD logical model.

EJB Session
Bean

A single Class element to the elements of
an EJB session.

EJB Entity
Bean

A single Class element to the elements of
an EJB entity.

Java PIM elements to language-specific Java
Class elements.

JUnit An existing Java Class element with
public methods to a Class with a test
method for each public method, plus the
methods required to appropriately set up
the tests.

NUnit An existing .NET compatible Class with
public methods to a Class with a test
method for each public method, plus the
methods required to appropriately set up

(c) Sparx Systems 2019 Page 18 of 116

User Guide - Model Transformation 7 August, 2019

the tests.

PHP PIM elements to language-specific PHP
Class elements.

Sequence/Co
mmunication
Diagram

All elements and messages in an opened
Sequence diagram into matching
elements and messages in a
Communication diagram, and vice versa.

VB.Net PIM elements to language-specific
VB.Net Class elements.

WSDL A simple model to an expanded model of
a WSDL interface, suitable for
generation.

XSD PIM elements to UML Profile for XML
elements, as an intermediary step in
creating an XML Schema.

(c) Sparx Systems 2019 Page 19 of 116

User Guide - Model Transformation 7 August, 2019

C# Transformation

The C# transformation converts Platform-Independent
Model (PIM) element types to C#-specific Class element
types, and creates encapsulation according to the system
options you have set for creating properties from C#
attributes (on the 'C# Specifications' page of the
'Preferences' dialog).

Example

The PIM elements

(c) Sparx Systems 2019 Page 20 of 116

User Guide - Model Transformation 7 August, 2019

After transformation, become the PSM elements

(c) Sparx Systems 2019 Page 21 of 116

User Guide - Model Transformation 7 August, 2019

(c) Sparx Systems 2019 Page 22 of 116

User Guide - Model Transformation 7 August, 2019

C++ Transformation

The C++ transformation converts Platform-Independent
Model (PIM) element types to C++ specific Class element
types and creates encapsulation (producing the getters and
setters) according to the options you have set for creating
properties from C++ attributes (on the 'C++ Specifications'
page of the 'Preferences' dialog). Note that the public
attributes in the PIM are converted to private attributes in
the PSM. All operations on an interface are transformed into
pure virtual methods on an equivalent class.

Example

The PIM elements

After transformation, become the PSM elements

(c) Sparx Systems 2019 Page 23 of 116

User Guide - Model Transformation 7 August, 2019

(c) Sparx Systems 2019 Page 24 of 116

User Guide - Model Transformation 7 August, 2019

Data Model To ERD Transformation

The Data Model to Entity Relationship diagram (ERD)
transformation creates an ERD logical model from a Data
Model. It is the reverse of the ERD to Data Model
transformation. This transformation uses and demonstrates
support in the intermediary language for a number of
database-specific concepts.

Supported Concepts

Concept Effect

Entity Mapped one-to-one onto Table elements.

Attribute Mapped one-to-one onto Columns.

Primary Key Derived from the PrimaryKey type of
column.

Notes

Sometimes you might want to limit the stretch of the·

diamond-shaped Relationship connectors; simply pick a

(c) Sparx Systems 2019 Page 25 of 116

User Guide - Model Transformation 7 August, 2019

Relationship connector, right-click to display the context
menu, and select the 'Bend Line at Cursor' option

(c) Sparx Systems 2019 Page 26 of 116

User Guide - Model Transformation 7 August, 2019

DDL Transformation

The DDL transformation converts the logical model to a
data model structured to conform to one of the supported
DBMSs. The target database type is determined by which
DBMS is set as the default database in the model. The data
model can then be used to automatically generate DDL
statements to run in one of the system-supported database
products.

The DDL transformation uses and demonstrates support in
the intermediary language for a number of database-specific
concepts.

Concepts

Concept Effect

Table Mapped one-to-one onto Class elements.
'Many-to-many' relationships are
supported by the transformation, creating
Join tables.

Column Mapped one-to-one onto attributes.

Primary Key Lists all the columns involved so that
they exist in the Class, and creates a
Primary Key Method for them.

(c) Sparx Systems 2019 Page 27 of 116

User Guide - Model Transformation 7 August, 2019

Foreign Key A special sort of connector, in which the
Source and Target sections list all of the
columns involved so that:

The columns exist·

A matching Primary Key exists in the·

destination Class, and
The transformation creates the·

appropriate Foreign Key

MDG Technology to customize default
mappings

DDL transformations that target a new, user defined DBMS
require an MDG Technology to map the PIM data types to
the new target DBMS.

To do this, create an MDG Technology .xml file named
'UserDBMS Types.xml', replacing UserDBMS with the
name of the added DBMS. Place the file in the
EA\MDGTechnologies folder. The contents of the MDG
Technology file should have this structure:

<MDG.Technology version="1.0">

 <Documentation id="UserdataTypes" name="Userdata
Types" version="1.0" notes="DB Type mapping for

(c) Sparx Systems 2019 Page 28 of 116

User Guide - Model Transformation 7 August, 2019

UserDBMS"/>

 <CodeModules>

 <CodeModule language="Userdata" notes="">

 <CodeOptions>

 <CodeOption
name="DBTypeMapping-bigint">BIGINT</CodeOption>

 <CodeOption
name="DBTypeMapping-blob">BLOB</CodeOption>

 <CodeOption
name="DBTypeMapping-boolean">TINYINT</CodeOptio
n>

 <CodeOption
name="DBTypeMapping-text">CLOB</CodeOption>

 ...

 </CodeOptions>

 </CodeModule>

 </CodeModules>

</MDG.Technology>

As an example, 'text' is a Common Type (as listed in the
'Database Datatypes' dialog) that maps to a new DBMS's
'CLOB' data type.

Notes

(c) Sparx Systems 2019 Page 29 of 116

User Guide - Model Transformation 7 August, 2019

You can define DBMS-specific aspects not depicted in a·

Logical model, such as Stored Procedures, Triggers,
Views and Check Constraints, after the transformation;
see the Physical Data Model topic

Example

The PIM elements

After transformation, become the PSM elements

(c) Sparx Systems 2019 Page 30 of 116

User Guide - Model Transformation 7 August, 2019

Generalizations are handled by providing the child element
with a Foreign Key to the parent element, as shown.
Copy-down inheritance is not supported.

(c) Sparx Systems 2019 Page 31 of 116

User Guide - Model Transformation 7 August, 2019

(c) Sparx Systems 2019 Page 32 of 116

User Guide - Model Transformation 7 August, 2019

EJB Transformations

The EJB Session Bean and EJB Entity Bean transformations
reduce the work required to generate the internals of
Enterprise Java Beans. You can therefore focus on modeling
at a higher level of abstraction.

Transformations

Both transformations also generate a META-INF Package
containing a deployment descriptor element.

Transformati
on

Detail

EJB Session
Bean

This transformation converts a single
Class element (containing the attributes,
operations and references required for
code generation by the javax.ejb.*
Package) to

An implementation Class element·

A home interface element·

A remote interface element·

EJB Entity
Bean

This transformation converts a single
Class element (containing the attributes,
operations and references required for
code generation by the javax.ejb.*

(c) Sparx Systems 2019 Page 33 of 116

User Guide - Model Transformation 7 August, 2019

Package) to:
An implementation Class element·

A home interface element·

A remote interface element·

A Primary Key element·

Example

The PIM elements

(c) Sparx Systems 2019 Page 34 of 116

User Guide - Model Transformation 7 August, 2019

After transformation generate a set of Entity Beans, where
each one takes this form (for the Account Class):

(c) Sparx Systems 2019 Page 35 of 116

User Guide - Model Transformation 7 August, 2019

(c) Sparx Systems 2019 Page 36 of 116

User Guide - Model Transformation 7 August, 2019

ERD To Data Model Transformation

The Entity Relationship Diagram (ERD) to Data Model
transformation converts an ERD logical model to a data
model targeted at the default database type, ready for
generating DDL statements to run in one of the
system-supported database products. Before doing the
transformation, you define the common data type for each
attribute and select a database type as the default database.
You can then automatically generate the Data Modeling
diagram.

The transformation uses and demonstrates support in the
intermediary language for a number of database-specific
concepts.

Concepts

Concept Definition

Table Mapped one-to-one onto Class elements.

Column Mapped one-to-one onto attributes.

Primary Key Lists all the columns involved so that
they exist in the Class, and creates a
Primary Key Method for them.

(c) Sparx Systems 2019 Page 37 of 116

User Guide - Model Transformation 7 August, 2019

Foreign Key A special sort of connector, in which the
Source and Target sections list all of the
columns involved so that:

The columns exist·

A matching Primary Key exists in the·

destination Class, and
The transformation creates the·

appropriate Foreign Key

Generalization

ERD technology can handle Generalization, as shown. Note
that the copy-down inheritance is currently supported with
two levels only.

Example

The ERD elements

(c) Sparx Systems 2019 Page 38 of 116

User Guide - Model Transformation 7 August, 2019

After transformation, become the Data Model elements

(c) Sparx Systems 2019 Page 39 of 116

User Guide - Model Transformation 7 August, 2019

Notes

Sometimes you might go back to the ERD, make some·

changes and then need to do another transformation; in
this case, to achieve better results, always delete the
previous transformation Package before doing the next
transformation

(c) Sparx Systems 2019 Page 40 of 116

User Guide - Model Transformation 7 August, 2019

Java Transformation

The Java transformation converts Platform-Independent
Model (PIM) element types to Java-specific Class element
types, and creates encapsulation (producing the getters and
setters) according to the options you have set for creating
properties from Java attributes (on the 'Java Specifications'
page of the 'Preferences' dialog). Note that the public
attributes in the PIM are converted to private attributes in
the PSM. All operations in the interface are transformed into
pure virtual methods.

Example

The PIM elements

(c) Sparx Systems 2019 Page 41 of 116

User Guide - Model Transformation 7 August, 2019

After transformation, become the PSM elements

(c) Sparx Systems 2019 Page 42 of 116

User Guide - Model Transformation 7 August, 2019

(c) Sparx Systems 2019 Page 43 of 116

User Guide - Model Transformation 7 August, 2019

JUnit Transformation

The JUnit transformation converts an existing Java Class
with public methods into a Class with a test method for each
public method. The resulting Class can then be generated
and the tests filled out and run by JUnit.

Example

The Java model elements (originally transformed from the
PIM)

(c) Sparx Systems 2019 Page 44 of 116

User Guide - Model Transformation 7 August, 2019

After transformation, become the PSM elements

(c) Sparx Systems 2019 Page 45 of 116

User Guide - Model Transformation 7 August, 2019

Notes

For each Class in the Java model, a corresponding Test·

Class has been created containing a test method for every
public method in the source Class, plus the methods
required to appropriately set up the tests; you fill in the
details of each test

(c) Sparx Systems 2019 Page 46 of 116

User Guide - Model Transformation 7 August, 2019

NUnit Transformation

The NUnit transformation converts an existing .NET
compatible Class with public methods into a Class with a
test method for each public method. The resulting Class can
then be generated and the tests filled out and run by NUnit.

Example

The C# elements (originally transformed from the PIM)

(c) Sparx Systems 2019 Page 47 of 116

User Guide - Model Transformation 7 August, 2019

After transformation, become the PSM elements

(c) Sparx Systems 2019 Page 48 of 116

User Guide - Model Transformation 7 August, 2019

Notes

For each Class in the C# model, a corresponding Test·

Class has been created containing a test method for every
public method in the source Class, plus the methods
required to appropriately set up the tests; you fill in the
details of each test

(c) Sparx Systems 2019 Page 49 of 116

User Guide - Model Transformation 7 August, 2019

PHP Transformation

The PHP transformation converts Platform-Independent
Model (PIM) element types to language-specific PHP Class
element types and creates encapsulation (producing the
getters and setters) according to the options you have set for
creating properties from PHP attributes (on the 'PHP
Specifications' page of the 'Preferences' dialog). Note that
the public attributes in the PIM are converted to private
attributes in the PSM.

Example

The PIM elements

After transformation, become the PSM elements

(c) Sparx Systems 2019 Page 50 of 116

User Guide - Model Transformation 7 August, 2019

(c) Sparx Systems 2019 Page 51 of 116

User Guide - Model Transformation 7 August, 2019

Sequence/Communication Diagram
Transformations

It is possible to transform a Sequence diagram into a
Communication diagram, and to transform a
Communication diagram into a Sequence diagram. In each
case, every element or message in the source diagram type
is mapped 1:1 to a matching element or message in the
target diagram.

Access

Ribbon Design > Tools > Transform > Transform
Selection

Keyboard
Shortcuts

Ctrl+Shift+H (transform current
Package)
Ctrl+H (transform selected elements)

Perform a Transformation

Field/Button Action

(c) Sparx Systems 2019 Page 52 of 116

User Guide - Model Transformation 7 August, 2019

Elements Lists and highlights all the elements from
the diagram, which will be included in
the transformation.

Transformati
ons

Select:
The 'Communication' checkbox, if·

transforming a Sequence diagram into
a Communication diagram, or
The 'Sequence' checkbox, if·

transforming a Communication
diagram into a Sequence diagram

In either case, the 'Browse Project' dialog
displays. Browse for and select the target
Package into which the target diagram
will be created, then click on the OK
button.

Do
Transform

Click on this button to execute the
transformation.
The target diagram is created and listed in
the Browser window under the target
Package with the name (depending on
which transformation you have
executed):
<source diagram name> Communication
or
<source diagram name> Sequence

(c) Sparx Systems 2019 Page 53 of 116

User Guide - Model Transformation 7 August, 2019

Notes

The diagram being transformed must be open in the main·

diagram view for the 'Communication' or 'Sequence'
options to appear in the Model Transformation dialog.

Once you have selected the 'Communication' or·

'Sequence' checkbox, these transforms ignore any other
field setting in the dialog except for 'Target Package', and
will perform a direct transformation of every element in
the source diagram

(c) Sparx Systems 2019 Page 54 of 116

User Guide - Model Transformation 7 August, 2019

VB.Net Transformation

The VB.Net transformation converts Platform-Independent
Model (PIM) element types to language-specific VB.Net
Class element types, and creates encapsulation according to
the options you have set for creating properties from VB.Net
attributes (on the 'VB.Net Specifications' page of the
'Preferences' dialog). Note that the public attributes in the
PIM are converted to private attributes in the PSM.

Example

The PIM elements

After transformation, become the PSM elements

(c) Sparx Systems 2019 Page 55 of 116

User Guide - Model Transformation 7 August, 2019

WSDL Transformation

The WSDL transformation converts a simple model into an
expanded model of a WSDL interface that is suitable for
generation. For example:

Transformation of this generates the corresponding WSDL
Component, Service, Port Type, Binding and Messages:

Classes are handled in the same way as in the XSD·

Transformation

All 'in' parameters are transformed into WSDL Message·

Parts in the Request message

The return value and all 'out' and 'return' parameters are·

transformed into WSDL Message Parts in the Response
message

All methods where a value is returned are transformed·

into Request-Response operations, and all methods not
returning a value are transformed into OneWay operations

The transformation does not handle the generation of·

Solicit-Response and Notification methods or faults

(c) Sparx Systems 2019 Page 56 of 116

User Guide - Model Transformation 7 August, 2019

In the resulting Package you can then fill out the specifics
using the WSDL editing capabilities of Enterprise Architect,
and finally generate the Package using the WSDL
generation tools.

(c) Sparx Systems 2019 Page 57 of 116

User Guide - Model Transformation 7 August, 2019

XSD Transformation

The XSD transformation converts Platform-Independent
Model (PIM) elements to UML Profile for XML elements
as an intermediary step in creating an XML Schema. Each
selected PIM Class element is converted to an
«XSDcomplexType» element.

Example

The PIM elements

(c) Sparx Systems 2019 Page 58 of 116

User Guide - Model Transformation 7 August, 2019

After transformation become the PSM elements

These in turn generate this XSD

<?xml version="1.0" encoding="ISO-8859-1"?>

<xs:schema
xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="Account" type="Account"/>

<xs:complexType name="Account">

<xs:sequence>

<xs:element name="name" type="xs:string"/>

<xs:element name="billingAddress" type="xs:string"/>

<xs:element name="emailAddress" type="xs:string"/>

(c) Sparx Systems 2019 Page 59 of 116

User Guide - Model Transformation 7 August, 2019

<xs:element name="closed" type="xs:boolean"/>

<xs:element name="deliveryAddress" type="xs:string"/>

<xs:element ref="Order"/>

<xs:element ref="ShoppingBasket"/>

</xs:sequence>

</xs:complexType>

<xs:element name="LineItem" type="LineItem"/>

<xs:complexType name="LineItem">

<xs:sequence>

<xs:element name="quantity" type="xs:integer"/>

<xs:element ref="StockItem"/>

</xs:sequence>

</xs:complexType>

<xs:element name="Order" type="Order"/>

<xs:complexType name="Order">

<xs:sequence>

<xs:element name="date" type="xs:date"/>

<xs:element name="deliveryInstructions" type="xs:string"/>

<xs:element name="orderNumber" type="xs:string"/>

<xs:element ref="LineItem"/>

<xs:element name="status" type="OrderStatus"/>

</xs:sequence>

</xs:complexType>

<xs:simpleType name="OrderStatus">

<xs:restriction base="xs:string">

(c) Sparx Systems 2019 Page 60 of 116

User Guide - Model Transformation 7 August, 2019

<xs:enumeration value="new"/>

<xs:enumeration value="packed"/>

<xs:enumeration value="dispatched"/>

<xs:enumeration value="delivered"/>

<xs:enumeration value="closed"/>

</xs:restriction>

</xs:simpleType>

<xs:element name="ShoppingBasket"
type="ShoppingBasket"/>

<xs:complexType name="ShoppingBasket">

<xs:sequence>

<xs:element ref="LineItem"/>

</xs:sequence>

</xs:complexType>

<xs:element name="StockItem" type="StockItem"/>

<xs:complexType name="StockItem">

<xs:sequence>

<xs:element name="catalogNumber" type="xs:string"/>

</xs:sequence>

</xs:complexType>

<xs:element name="Transaction" type="Transaction"/>

<xs:complexType name="Transaction">

<xs:sequence>

<xs:element name="date" type="xs:date"/>

<xs:element name="orderNumber" type="xs:string"/>

(c) Sparx Systems 2019 Page 61 of 116

User Guide - Model Transformation 7 August, 2019

<xs:element ref="Account"/>

<xs:element ref="LineItem"/>

</xs:sequence>

</xs:complexType>

</xs:schema>

(c) Sparx Systems 2019 Page 62 of 116

User Guide - Model Transformation 7 August, 2019

Edit Transformation Templates

A single transformation applies a number of transformation
templates, each of which defines a type of object that is
acted on within the transformation, and the actions that are
performed on objects of that type. The system provides a
range of built-in default templates, and each type of
transformation uses a specific subset of these templates.
Typically, the transformation type and the subset of
templates are tailored to the target language. Some default
templates within a set have no content; these are 'latent', and
represent the potential for acting on an object that is not
generally included in the transformation but is perfectly
valid if you wanted to include it. An example of a latent
template is the Linked Class Base template in the C#
transformation.

You can tailor the transformation templates in various ways,
including:

Adjust the code in one or more of the templates in a·

default set

Add code to a 'latent' default template·

Add a new custom template, based on one of the defaults·

but serving a different purpose that you define

Add a new transformation type containing - initially - a·

basic set of default templates

Add (or remove) a stereotyped override for a template·

A stereotyped override directs the transformation to use the

(c) Sparx Systems 2019 Page 63 of 116

User Guide - Model Transformation 7 August, 2019

modified template only if the element and/or feature are of
the specified stereotyped types. If the object or feature are
not of that type, the transformation applies the base
template.

Access

Ribbon Design > Tools > Transform > Transform
Templates

Keyboard
Shortcuts

Ctrl+Alt+H

Edit Transformation Templates

Option Action

Language Click on the drop-down arrow and select
the name of the transformation.

New
Transformati
on Type

Click on this button if you want to create
a new transformation.
A prompt displays for the name of the
transformation; type in the name and

(c) Sparx Systems 2019 Page 64 of 116

User Guide - Model Transformation 7 August, 2019

click on the OK button.
The 'Templates' list shows the default set
of built-in templates, from which you can
develop your transformation. Your
custom transformation is not saved or
available for use unless you add and/or
edit one or more templates in the
transformation.

Templates Lists the transformation templates for the
current transformation.
Click on a template name to highlight it
and display its content in the Template
panel. The 'Modified' column indicates
whether you have edited the template for
this transformation.

Template Displays the contents of the
currently-selected template, and provides
the editor facilities for modifying the
template (right-click on the code text).

Stereotype
Overrides

Lists the stereotyped templates, for the
active base template.
The 'Modified' column indicates whether
you have modified a stereotyped
template.

Add New Click on this button to create a custom

(c) Sparx Systems 2019 Page 65 of 116

User Guide - Model Transformation 7 August, 2019

Custom
Template

template to add to the current
transformation.
A dialog displays, prompting you to
specify:

The object type (base template type)·

that this new template will respond to -
click on the drop-down arrow and
select the name (custom template types
are not included in this list)
The name of the new template - type in·

the appropriate text
Click on the OK button. The new
template name is added to the list of
templates, and it is opened in the template
editor ready for you to add its code.

Add New
Stereotyped
Override

Click on this button to add a new
stereotype override for the currently
selected template. A dialog displays,
prompting you to specify the:

Base Class (stereotyped Class type -·

click on the drop-down arrow and click
on the type in the list) and/or
Feature (click on the drop-down arrow·

and click on the stereotyped feature in
the list)

Click on the OK button. The override is
added to the 'Stereotype Overrides' list.

(c) Sparx Systems 2019 Page 66 of 116

User Guide - Model Transformation 7 August, 2019

Get Default
Template

Click on this button to update the editor
display with the default version of the
current built-in template or to clear the
content of the current custom template.
If you have saved the changed template,
re-instating the default version is a
change, so the 'Modified' field still
displays the word 'Yes'.

Save Click on this button to save the new or
edited current template. You cannot
switch to another template without saving
the current template, so this effectively
saves the transition as well.

Delete Click on this button to delete the current
custom template or stereotype override,
or the most recent changes to a built-in
template (effectively returning it to the
default, base content). You cannot delete
a built-in template.
You are prompted to confirm the
deletion.

Help Click on this button to display this Help
topic.

(c) Sparx Systems 2019 Page 67 of 116

User Guide - Model Transformation 7 August, 2019

Notes

Transformation template editing is based very strongly on·

code generation template editing; for additional
information on editing transformation templates see the
Code Template Editor section and the Editing Source
Code topic

(c) Sparx Systems 2019 Page 68 of 116

User Guide - Model Transformation 7 August, 2019

Write Transformations

Enterprise Architect provides a facility to create your own
transformations; this can be useful to automate the process
of generating more specific models from more general ones,
reusing the transformation and preventing errors from being
introduced as they might if the models were created by
hand. The existing templates will provide a useful guide and
reference to assist you when creating new templates.

Transformation templates are based on the Code Generation
Template Framework, and an understanding of the way
these templates work is critical to be able to adjust existing
transformation templates or to create new ones. Therefore it
is suggested that you read and understand the topics
discussing Code Generation Templates prior to using the
Transformation Template language.

Access

Ribbon Design > Tools > Transform > Transform
Templates

Keyboard
Shortcuts

Ctrl+Alt+H

(c) Sparx Systems 2019 Page 69 of 116

User Guide - Model Transformation 7 August, 2019

Factors concerning Transformation
Templates

Factor Detail

Default
Transformati
on Templates

Enterprise Architect provides a set of
default transformation templates that you
can use 'as is' or customize to your
requirements.

General
Syntax for
the
Intermediary
Language

Transformations in Enterprise Architect
generate an intermediary code form of the
model being created in the
transformation. You can review and edit
this code.

Intermediary
Language
Debugging

You can also debug transformation
scripts by checking the intermediary code
generated from the Transform script.

Editing
transformatio
n templates
and code

When writing transformations, you use
the facilities of the common Code Editor.

Code
Template

You use the Code Template Framework
to perform forward engineering of UML

(c) Sparx Systems 2019 Page 70 of 116

User Guide - Model Transformation 7 August, 2019

Framework models. The Transformation Template
Framework is derived from this.

Syntax for
Creating
Objects

To generate objects or elements in a
transformation, you apply a specific
syntax in the template script.

Syntax for
Creating
Connectors

To generate connectors (relationships) in
a transformation, you also apply a
specific syntax in the template script.

Transforming
Duplicate
Information

In many transformations there is a
substantial amount of information to be
copied. Rather than place this information
in the template, you can use macros to
read it from its source.

Transforming
Template
Parameter
Substitutions

In a transformation template, if you are
transforming Template Binding connector
binding parameter substitutions, you can
use the Template Parameter substitution
macros.

Converting
Types

You can apply various methods for
converting data types to different target
platform types.

Converting
Names

You can apply various methods for
converting names of elements to different

(c) Sparx Systems 2019 Page 71 of 116

User Guide - Model Transformation 7 August, 2019

target platform naming conventions.

Cross
References

During a transformation, you can perform
cross verification of transformed
elements.

Notes

Further hints and tips can be gleaned from a close study of·

the Transformation Templates provided with Enterprise
Architect

The Transformation Template editor applies the facilities·

of the common Code Editor

(c) Sparx Systems 2019 Page 72 of 116

User Guide - Model Transformation 7 August, 2019

Default Transformation Templates

Transformation templates provide the ability to represent the
existing information in a model in a modified way. When
creating a new transformation Enterprise Architect provides
a default set of transformation templates that perform a
direct copy of the source model to the target model. This
allows you to think in terms of how the source model and
target model are different. For each template you are able to
prevent properties from being copied and add additional
information until the appropriate target model is created.

You can list and examine the default templates in the
Transformation Editor. The combination of default
templates varies according to the language you are
transforming.

Access

Ribbon Design > Tools > Transform > Transform
Templates

Keyboard
Shortcuts

Ctrl+Alt+H

(c) Sparx Systems 2019 Page 73 of 116

User Guide - Model Transformation 7 August, 2019

Notes

When creating a new transformation you must modify at·

least one template before the new transformation becomes
available

(c) Sparx Systems 2019 Page 74 of 116

User Guide - Model Transformation 7 August, 2019

Intermediary Language

All transformations in Enterprise Architect create an
intermediary language form of the model to generate. You
can access and edit the file containing this intermediary
language code using an external editor. Each object is
represented in this language by the object type (for example,
Class, Action, Method, Generalization or Tag) followed by
the object properties and the features that it is made from;
the grammar of the object description resembles this:

 element:

 elementName { (elementProperty | element)* }

 elementProperty:

 packageName

 stereotype

 propertyName = " propertyValueSymbol* "

 packageName:

 name = " propertyValueSymbol* " (. "
propertyValueSymbol* ")*

 stereotype:

 stereotype = " propertyValueSymbol* " (, "
propertyValueSymbol* ")*

 propertyValueSymbol:

 \\

 \"

 Any character except " (U+0022), \ (U+005C)

(c) Sparx Systems 2019 Page 75 of 116

User Guide - Model Transformation 7 August, 2019

elementName is any one of the set of element types·

propertyName is any one of the set of properties·

Literal strings can be included in property values by
'escaping' a quote character:

 default = "\"Some string value.\""

(c) Sparx Systems 2019 Page 76 of 116

User Guide - Model Transformation 7 August, 2019

Intermediary Language Debugging

The script from an MDA template produces intermediate
language text. However, on generating the model this script
could return errors. When an error occurs, you can view and
debug the generated text externally, preferably in an editor
that prompts on updates to the file alterations.

Access

Ribbon Design > Tools > Transform > Transform
Selection

Keyboard
Shortcuts

Ctrl+H (transform selected
elements)
Ctrl+Shift+H (transform current
Package)

Debug when errors are returned on
generating altered code

Ste
p

Description

(c) Sparx Systems 2019 Page 77 of 116

User Guide - Model Transformation 7 August, 2019

1 Select the Package to be transformed, and the
'Transform Package' option.
The 'Model Transformations' dialog displays.

2 In the 'Name' column, select the checkbox against
the type of transformation being altered.

3 In the 'Intermediary File' field, click on the button
and set the file location into which to generate the
code.

4 Select the 'Write Always' checkbox, and click on the
Write Now button to generate the script.
This only generates the script, not the model.

5 If an error is returned specifying the line number of
the problem, open the file in an external Code Editor
(with Line Numbering) and locate the line number of
problem.

6 Alter the template code to correct the error.

7 Click on the Do Transform button to check that the
alteration has corrected the problem.

(c) Sparx Systems 2019 Page 78 of 116

User Guide - Model Transformation 7 August, 2019

Example

For a MySQL database, the template code might resemble
this:

$enumFieldName = “test”

Column

{

name= %qt%% CONVERT_NAME ($enumFieldName,
"Pascal Case", "Camel Case")%%qt%

type= %qt%% CONVERT_TYPE (genOptDefaultDatabase,
"Enum")%%qt%

}

This returns the output in the generated text file as:

Column

{

name = "test"

type = "ENUM"

}

If there is an error in the original transform, such as a
spelling error - ‘Colum’ - clicking the Do Transform button
returns an error message referring to the first line of
intermediate code that includes the error 'Colum’.

(c) Sparx Systems 2019 Page 79 of 116

User Guide - Model Transformation 7 August, 2019

Objects

Objects are generated in a transformation as text in this
form:

 objectType

 {

 objectProperties*

 XRef{xref}*

 Tag{tag}*

 Attribute{attributes}*

 Operation{operations}*

 Classifier{classifiers}*

 Parameter{parameters}*

 }

For example:

 Class

 {

 name = "Example"

 language = "C++"

 Tag

 {

 name = "defaultCollectionClass"

 value = "List"

(c) Sparx Systems 2019 Page 80 of 116

User Guide - Model Transformation 7 August, 2019

 }

 Attribute

 {

 name = "count"

 type = "int"

 }

 }

Every object created in a transformation should include an
XRef syntax element (see the end of this topic), as it helps
the system to synchronize with the object and makes it
possible to create a connector to that Class in the
transformation.

Syntax elements in the code

Element Detail

objectType objectType is one of these:
Action·

ActionPin·

Activity·

ActivityParameter·

ActivityPartition·

ActivityRegion·

(c) Sparx Systems 2019 Page 81 of 116

User Guide - Model Transformation 7 August, 2019

Actor·

Association·

Change·

Class·

Collaboration·

CollaborationUse·

Component·

DeploymentSpecification·

DiagramFrame·

Decision·

EntryPoint·

Event·

ExceptionHandler·

ExecutionEnvironment·

ExitPoint·

ExpansionNode·

ExpansionRegion·

ExposedInterface·

GUIElement·

InteractionFragment·

InteractionOccurrence·

InteractionState·

Interface·

InterruptibleActivityRegion·

Issue·

(c) Sparx Systems 2019 Page 82 of 116

User Guide - Model Transformation 7 August, 2019

Iteration·

Object·

ObjectNode·

MessageEndpoint·

Node·

Package·

Parameter·

Part·

Port·

ProvidedInterface·

RequiredInterface·

Requirement·

Sequence·

State·

StateMachine·

StateNode·

Synchronization·

Table·

TimeLine·

Trigger·

UMLDiagram·

UseCase·

objectPropert
ies

objectProperties is zero, or one instance
of one or more of these:

Abstract·

(c) Sparx Systems 2019 Page 83 of 116

User Guide - Model Transformation 7 August, 2019

Alias·

Arguments·

Author·

Cardinality·

Classifier·

Complexity·

Concurrency·

Filename·

Header·

Import·

IsActive·

IsLeaf·

IsRoot·

IsSpecification·

Keyword·

Language·

Multiplicity·

Name·

Notes·

Persistence·

Phase·

Scope·

Status·

Stereotype·

Version·

(c) Sparx Systems 2019 Page 84 of 116

User Guide - Model Transformation 7 August, 2019

Visibility·

Attribute Attribute has the same structure as
objectType, and includes these
properties:

Alias·

Classifier·

Collection·

Container·

Containment·

Constant·

Default·

Derived·

LowerBound·

Name·

Notes·

Ordered·

Scope·

Static·

Stereotype·

Type·

UpperBound·

Volatile·

Attribute also includes these elements:
Classifier·

(c) Sparx Systems 2019 Page 85 of 116

User Guide - Model Transformation 7 August, 2019

Tag·

XRef·

Operation Operation has the same structure as
objectType, and includes these
properties:

Abstract·

Alias·

Behavior·

Classifier·

Code·

Constant·

IsQuery·

Name·

Notes·

Pure·

ReturnArray·

Scope·

Static·

Stereotype·

Type·

Operation also includes these elements:
Classifier·

Parameter·

Tag·

(c) Sparx Systems 2019 Page 86 of 116

User Guide - Model Transformation 7 August, 2019

XRef·

Parameter Parameter has the same structure as
objectType, and includes the Tag element
and these properties:

Classifier·

Default·

Fixed·

Name·

Notes·

Kind·

Stereotype·

Tag Tag has these properties:
Name·

Value·

Special Cases

Certain types of object have variations of the object
definition syntax.

Object Detail

Packages Packages differ from other objects in

(c) Sparx Systems 2019 Page 87 of 116

User Guide - Model Transformation 7 August, 2019

these ways:
They have a reduced set of properties:·

alias, author, name, namespaceRoot,
notes, scope, stereotype and version
The property namespaceRoot is only·

given to Packages
A name must be specified for each·

Package
The name property can be a qualified·

name; when a qualified name is
specified, the properties given are
applied only to the final Package
Only Packages can contain other·

Packages
Packages cannot contain attributes and·

operations

XRef Cross references are defined using the
transform statements. The properties
include:

Namespace·

Name·

Source·

Notes·

Tables Tables are a special type of object, with
these differences from other object types:

They can include columns and primary·

(c) Sparx Systems 2019 Page 88 of 116

User Guide - Model Transformation 7 August, 2019

keys
They cannot include attributes·

Columns Columns are similar to attributes, but
have an autonumber element containing
Startnum and its increment, and these
added properties:

Length·

NotNull·

Precision·

PrimaryKey·

Scale·

Unique·

In the column definition, you cannot
assign a value to the NotNull,
PrimaryKey or Unique properties.

(c) Sparx Systems 2019 Page 89 of 116

User Guide - Model Transformation 7 August, 2019

Connectors

The process of creating connectors in a transformation has
the same form as for creating elements (objects). It is a little
more complex, because you also define each end of the
connector - the source and target.

Connectors are represented in the Intermediary language as:

 ConnectorType

 {

 connectorProperties*

 AssociationClass {associationClassProperties*}

 Source {sourceProperties*}

 Target {targetProperties*}

 }

For example:

 Association

 {

 name="anAssociation"

 stereotype=""

 direction="Unspecified"

 Source

 {

 access="Private"

 navigability="Unspecified"

(c) Sparx Systems 2019 Page 90 of 116

User Guide - Model Transformation 7 August, 2019

 }

 Target

 {

 access="Private"

 multiplicity="1..*"

 }

 }

Syntax elements in the code

Element Detail

ConnectorTy
pe

ConnectorType is one of these:
Abstraction·

Aggregation·

Assembly·

Association·

Collaboration·

ControlFlow·

Connector·

Delegate·

Dependency·

Deployment·

ForeignKey·

Generalization·

(c) Sparx Systems 2019 Page 91 of 116

User Guide - Model Transformation 7 August, 2019

InformationFlow·

Instantiation·

Interface·

InterruptFlow·

Manifest·

Nesting·

NoteLink·

ObjectFlow·

Package·

Realization·

Sequence·

Substitution·

TemplateBinding·

Transition·

Usage·

UseCase·

Uses·

connectorPro
perties

connectorProperties is zero, or one
instance of one or more of these:

alias·

direction·

notes·

name·

stereotype·

tag·

(c) Sparx Systems 2019 Page 92 of 116

User Guide - Model Transformation 7 August, 2019

XRef·

associationCl
assProperties

associationClassProperties are one
instance of these:

Classifier·

XRef·

sourcePropert
ies
targetProperti
es

sourceProperties and targetProperties are
each a reference to an element and zero,
or one instance of one or more of these:

aggregation·

alias·

allowduplicates·

changeable·

constraint·

containment·

navigability·

membertype·

multiplicity·

Notes·

ordered·

qualifier·

role·

scope·

stereotype·

tag·

(c) Sparx Systems 2019 Page 93 of 116

User Guide - Model Transformation 7 August, 2019

Element
Reference

An element reference is either a guid that
references an element that already exists
before the transformation, or an XRef to
reference an element that is created by a
transformation.

guid·

XRef·

Notes

Each connector is transformed at both end objects,·

therefore the connector might appear twice in the
transformation; this is not a problem, although you should
check carefully that the connector is generated exactly the
same way, regardless of which end is on the current Class

(c) Sparx Systems 2019 Page 94 of 116

User Guide - Model Transformation 7 August, 2019

Transform Connectors

When you transform a connector, you can use two different
types of Class as the connector ends: either a Class created
by a transformation, or an existing Class for which you
already know the GUID.

Connect to a Class Created by a
Transformation

The most common connection is to a Class created by a
transformation; to create this connection you use three items
of information:

The original Class GUID·

The name of the transformation·

The name of the transformed Class·

This type of connector is created using the
TRANSFORM_REFERENCE function macro; when the
element is in the current transformation, it can be safely
omitted from the transformation. The simplest example of
this is when you have created multiple Classes from a single
Class in a transformation, and you want a connector
between them; consider this script from the EJB Entity
transformation:

Dependency

{

(c) Sparx Systems 2019 Page 95 of 116

User Guide - Model Transformation 7 August, 2019

%TRANSFORM_REFERENCE("EJBRealizeHome",classG
UID)% stereotype="EJBRealizeHome"

Source

{

%TRANSFORM_REFERENCE("EJBEntityBean",classGU
ID)%

}

Target

{

%TRANSFORM_REFERENCE("EJBHomeInterface",class
GUID)%

}

}

In this script there are three uses of the
TRANSFORM_REFERENCE macro: one to identify the
connector for synchronization purposes and the other two to
identify the ends; all three use the same source GUID,
because they all come from the one original Class. None of
the three have to specify the transformation because the two
references are to something within the current
transformation - each of them then only has to identify the
transform name.

It is also possible to create a connector from another
connector. You can create a connector template and list all
connectors connected to a Class from the Class level
templates; you don't have to worry about only generating the
connector once, because if you have created a

(c) Sparx Systems 2019 Page 96 of 116

User Guide - Model Transformation 7 August, 2019

TRANSFORM_REFERENCE for the connector then the
system automatically synchronizes them.

This script copies the source connector:

%connectorType%

{

%TRANSFORM_CURRENT()%

%TRANSFORM_REFERENCE("Connector",connectorGU
ID)%

Source

{

%TRANSFORM_REFERENCE("Class",connectorSourceG
UID)%

%TRANSFORM_CURRENT("Source")%

}

Target

{

%TRANSFORM_REFERENCE("Class",connectorDestGUI
D)%

%TRANSFORM_CURRENT("Target")%

}

}

Connecting to a Class for which you know
the GUID

(c) Sparx Systems 2019 Page 97 of 116

User Guide - Model Transformation 7 August, 2019

The second type of Class that you can use as a connector
end is an existing element for which you know the current
GUID. To create this connection, specify the GUID of the
target Class in either the source or target end; this script
creates a Dependency from a Class created in a
transformation, to the Class it was transformed from:

Dependency

{

%TRANSFORM_REFERENCE("SourceDependency",class
GUID)%

stereotype="transformedFrom"

Source

{

%TRANSFORM_REFERENCE("Class",classGUID)%

}

Target

{

GUID=%qt%%classGUID%%qt%

}

}

Notes

Each connector is transformed at both end objects,·

(c) Sparx Systems 2019 Page 98 of 116

User Guide - Model Transformation 7 August, 2019

therefore the connector might appear twice in the
transformation; this is not a problem, although you should
check carefully that the connector is generated exactly the
same way, regardless of which end is on the current Class

(c) Sparx Systems 2019 Page 99 of 116

User Guide - Model Transformation 7 August, 2019

Transform Foreign Keys

Enterprise Architect supports the transformation into
Foreign Keys of many different types of relationship defined
between entities in a logical model.

Each Foreign Key in a Physical model is represented by the
combination of a stereotyped connector and an operation in
each of the involved Tables. Foreign Key transformations
are achieved with the 'Connector' template in the DDL
language. This template generates an intermediate dataset
that is then interpreted by Enterprise Architect's
transformation engine to create all the required physical
entities and connectors.

By default, Enterprise Architect supports transformations of
these connector types:

Generalization - this kind of connector will create a·

Foreign Key with a multiplicity of 0..1 in the source and 1
in the destination

Association Class - this kind of connector will create a·

'join' table linking both the source and destination Tables

Association/Aggregation - these kinds of connector use·

the multiplicity defined in the Logical model's
relationship to join the source and destination Tables

All Foreign Key definitions will cause the addition of a new
integer (or equivalent) column in both source and
destination Tables, which will act as the Primary Key in the
source Table and the Foreign Key column in the destination
Table. The default names for the new columns will be the

(c) Sparx Systems 2019 Page 100 of 116

User Guide - Model Transformation 7 August, 2019

Table name with the suffix of 'ID' added, whilst the names
of the Foreign Keys will be automatically generated using
the FK DDL template.

(c) Sparx Systems 2019 Page 101 of 116

User Guide - Model Transformation 7 August, 2019

Copy Information

In many transformations there is a substantial amount of
information to be copied.

It would be tedious to type all of the common information
into a template so that it is copied to the transformed Class;
the alternative is to use the TRANSFORM_CURRENT and
TRANSFORM_TAGS function macros.

Use of Macros

Objective Detail

Copy Object TRANSFORM_CURRENT
(<listOfExcludedItems>)

The function generates an exact copy of
all the properties of the current item,
except for the items named in
<listOfExcludedItems>.

Copy
Connector

Another form of the function is available
when transforming connectors to copy
either end of the connector:
TRANSFORM_CURRENT
(<connectorEnd>,
<listOfExcludedItems>)

(c) Sparx Systems 2019 Page 102 of 116

User Guide - Model Transformation 7 August, 2019

This generates an exact copy of the
connector end specified by
<connectorEnd> (either Source or Target)
except for the items named in
<listOfExcludedItems>.

Copy Tags TRANSFORM_TAGS
(<listOfExcludedItems>)

The function generates an exact copy of
all the Tagged Values of the current item,
except for the items named in
<listOfExcludedItems>.

(c) Sparx Systems 2019 Page 103 of 116

User Guide - Model Transformation 7 August, 2019

Convert Types

Different target platforms almost certainly require different
data types, so you usually require a method of converting
between types. This is offered by the macro:

CONVERT_TYPE (<destinationLanguage>,
<originalType>)

This function converts <originalType> to the corresponding
type in <destinationLanguage> using the datatypes and
common types defined in the model, where <originalType>
is assumed to be a platform independent common type.

A similar macro is available when transforming common
datatypes to the datatypes for a specified database:

CONVERT_DB_TYPE (<destinationDatabase>,
<originalType>)

This function converts <originalType> to the corresponding
datatypes in <destinationDatabase>, which is defined in the
model; <originalType> refers to a platform independent
common datatype.

(c) Sparx Systems 2019 Page 104 of 116

User Guide - Model Transformation 7 August, 2019

Convert Names

Different target platforms use different naming conventions,
so you might not want to copy the names of your elements
directly into the transformed models. To facilitate this
requirement, the transformation templates provide a
CONVERT_NAME function macro.

Another way in which you can transform a name is to
remove a prefix from the original name, with the
REMOVE_PREFIX macro.

CONVERT_NAME (<originalName>,
<originalFormat>, <targetFormat>)

This macro converts <originalName>, which is assumed to
be in <originalFormat>, to <targetFormat>.

The supported formats are:

Camel Case: the first word begins with a lower-case letter·

but subsequent words start with an upper-case letter; for
example, myVariableTable

Pascal Case: the first letter of each word is upper case; for·

example, MyVariableTable

Spaced: words are separated by spaces; the case of letters·

is ignored

Underscored: words are separated by underscores; the·

case of letters is ignored

(c) Sparx Systems 2019 Page 105 of 116

User Guide - Model Transformation 7 August, 2019

The original format might also specify a list of delimiters to
be used. For example a value of '_' breaks words whenever
either a space or underscore is found. The target format
might also use a format string that specifies the case for
each word and a delimiter between them. It takes this form:

 <firstWord> (<delimiter>) <otherWords>

<firstWord> controls the case of the first word·

<delimiter> is the string generated between words·

<otherWords> applies to all words after the first word·

Both <firstWord> and <otherWords> are a sequence of two
characters. The first character represents the case of the first
letter of that word, and the second character represents the
case of all subsequent letters. An upper case letter forces the
output to upper case, a lower case letter forces the output to
lower case, and any other character preserves the original
case.

Example 1: To capitalize the first letter of each word and
separate multiple words with a space:

 "Ht()Ht" to output "My Variable Table"

Example 2: To generate the equivalent of Camel Case, but
reverse the roles of upper and lower case; that is, all
characters are upper case except for the first character of
each word after the first word:

 "HT()hT" to output "MY vARIABLE tABLE"

REMOVE_PREFIX(<originalName>,

(c) Sparx Systems 2019 Page 106 of 116

User Guide - Model Transformation 7 August, 2019

<prefixes>)

This macro removes any prefix found in <prefixes> from
<originalName>. The prefixes are specified in a semi-colon
separated list.

The macro is often used in conjunction with the
CONVERT_NAME macro. For example, this code creates a
get property name according to the options for Java:

$propertyName=%REMOVE_PREFIX(attName,genOptPro
pertyPrefix)%

 %if genOptGenCapitalisedProperties=="T"%

 $propertyName=%CONVERT_NAME($propertyName,
"camel case", "pascal case")%

 %endIf%

Notes

Acronyms are not supported when converting from Camel·

Case or Pascal Case

(c) Sparx Systems 2019 Page 107 of 116

User Guide - Model Transformation 7 August, 2019

Cross References

Cross References are an important part of transformations.
You can use them to:

Find the transformed Class to synchronize with·

Create connectors between transformed Classes·

Specify a classifier of a type·

Determine where to transform to for future·

transformations

Each Cross Reference has three different parts:

A Namespace, corresponding to the transformation that·

generated the element

A Name, which is a unique reference to something that·

can be generated in the transformation, and

A Source, which is the GUID of the element that this·

element was created from

When writing the templates for a transformation it is easiest
to generate the Cross References using the macro defined
for this purpose:

 TRANSFORM_REFERENCE (<name>, <sourceGuid>,
<namespace>)

The three parameters are optional. The macro generates a
reference that resembles this:

 XRef{namespace="<namespace>" name="<name>"
source="<sourceGuid>"

If <name> is not specified the macro gets the name of the·

(c) Sparx Systems 2019 Page 108 of 116

User Guide - Model Transformation 7 August, 2019

current template

If <sourceGUID> is not specified the macro gets the·

GUID of the current Class

If <namespace> is not specified the macro gets the name·

of the current transformation

The only time that a Cross Reference should be specified is
when creating a connector to a Class created in a different
transformation.

A good example of the use of Cross References is in the
DDL transformation provided with Enterprise Architect. In
the Class template a Cross Reference is created with the
name 'Table'. Then up to two different connectors can be
created, each of which must identify the two Classes it
connects using Cross References, while having its own
unique Cross Reference.

Specify Classifiers

Objects, attributes, operations and parameters can all
reference another element in the model as their type. When
this type is created from a transformation you must use a
cross reference to specify it, using the macro:

TRANSFORM_CLASSIFIER (<name>, <sourceGuid>,
<namespace>)

This macro generates a cross reference within a classifier
element, where the parameters are identical to the
TRANSFORM_REFERENCE macro but the name
Classifier is generated instead of XRef.

(c) Sparx Systems 2019 Page 109 of 116

User Guide - Model Transformation 7 August, 2019

If the target classifier already exists in the model before the
transformation, TRANSFORM_CLASSIFIER is
inappropriate, so instead the GUID can be given directly to
a classifier attribute.

If a classifier is specified for any type, it overrides that type.

(c) Sparx Systems 2019 Page 110 of 116

User Guide - Model Transformation 7 August, 2019

Transform Template Parameter
Substitution

If you want to provide access in a transformation template to
data concerning the transformation of a Template Binding
connector's binding parameter substitution in the model, you
can use the Template Parameter substitution macros.

Factors in the Transformation

Factor Detail

Intermediary
Language

Template Parameter Substitutions are
represented in the Intermediary language
as:
 TemplateParameterSubstitution
 {
 Formal { FormalProperties }
 Actual { ActualProperties }
 }

For example:
 TemplateParameterSubstitution
 {
 Formal

(c) Sparx Systems 2019 Page 111 of 116

User Guide - Model Transformation 7 August, 2019

 {

name=%qt%%parameterSubstitutionFor
mal%%qt%
 }
 Actual
 {

name=%qt%%parameterSubstitutionActu
al%%qt%

%TRANSFORM_CLASSIFIER("Class",
parameterSubstitutionActualClassifier)%
 }
 }

Formal
Properties or
Actual
Properties

FormalProperties and ActualProperties
are zero, or one instance of one of these
properties:

name·

classifier·

Transform of
Parameter
Substitution
Actual
parameter

If the Actual parameter is assigned a
String Expression, it will transform as
Actual name. You can assign the Actual
Classifier if you know the GUID:
TemplateParameterSubstitution
(

(c) Sparx Systems 2019 Page 112 of 116

User Guide - Model Transformation 7 August, 2019

Formal
{
name=%qt%%parameterSubstitutionFor
mal%%qt%
}
Actual
{
name=%qt%%parameterSubstitutionActu
al%%qt%
classifier=%qt%%parameterSubstitution
ActualClassifier%%qt%
}
}

If you want the Actual parameter to be
transformed so that its Classifier is
assigned with an element that is
transformed, then use
TRANSFORM_CLASSIFIER or
TRANSFORM_REFERENCE, as shown:

TemplateParameterSubstitution
{
Formal
{
name=%qt%%parameterSubstitutionFor
mal%%qt%

(c) Sparx Systems 2019 Page 113 of 116

User Guide - Model Transformation 7 August, 2019

}
Actual
{
name=%qt%%parameterSubstitutionActu
al%%qt%
%TRANSFORM_CLASSIFIER("Class",
parameterSubstitutionActualClassifier)%
}
}

Or

TemplateParameterSubstitution
{
Formal
{
name=%qt%%parameterSubstitutionFor
mal%%qt%
}
Actual
{
name=%qt%%parameterSubstitutionActu
al%%qt%
%TRANSFORM_REFERENCE("Class",
parameterSubstitutionActualClassifier)%
}

(c) Sparx Systems 2019 Page 114 of 116

User Guide - Model Transformation 7 August, 2019

}

(c) Sparx Systems 2019 Page 115 of 116

User Guide - Model Transformation 7 August, 2019

(c) Sparx Systems 2019 Page 116 of 116

	Model Transformation
	Transform Elements
	Chaining Transformations

	Built-in Transformations
	C# Transformation
	C++ Transformation
	Data Model To ERD Transformation
	DDL Transformation
	EJB Transformations
	ERD To Data Model Transformation
	Java Transformation
	JUnit Transformation
	NUnit Transformation
	PHP Transformation
	Sequence/Communication Diagram Transformations
	VB.Net Transformation
	WSDL Transformation
	XSD Transformation

	Edit Transformation Templates
	Write Transformations
	Default Transformation Templates
	Intermediary Language
	Intermediary Language Debugging
	Objects
	Connectors
	Transform Connectors
	Transform Foreign Keys
	Copy Information
	Convert Types
	Convert Names
	Cross References
	Transform Template Parameter Substitution

