
A SoC design flow based on UML 2.0 and SystemC

Sara Bocchio1, Elvinia Riccobene2, Alberto Rosti1, and Patrizia Scandurra3

1 STMicroelectronics, AST Agrate Lab R&I, Italy
{sara.bocchio, alberto.rosti}@st.com

2 Università di Milano, Dip. di Tecnologie dell’Informazione , Italy
riccobene@dti.unimi.it

3 Università di Catania, Dip. di Matematica e Informatica, Italy
scandurra@dmi.unict.it

Abstract. This paper describes a system design framework for SoC that allows

to model together the functional application, the hardware architecture and the

embedded software. It relies on a commercial CASE tool that provides a

graphical design entry by the UML, we added code generation capabilities to

produce an executable model based on SystemC and introduced a reverse

engineering flow. We use UML as higher system-level language; it works in

synergy with lower level implementation languages: C/C++ and SystemC. As

experimental results we present three examples: the Simple Bus (1), the

OCCN(2), and the 802.11b(3).

1 Introduction

This work is originated from the need to have a design flow for SoC, which starts at

high level and integrates embedded processors, memories and hardware. We need a

design flow that derives a functional executable model from the specification, maps

the functionality to hardware and software, refines the hardware parts through a set of

abstraction levels, and compiles the software for a final co-simulation model. The

software part can either be simulated on a transactional model of the hardware or it

can be compiled and simulated on an Instruction Set Simulator. For such a design

flow we need a language that spans all the needed levels of abstraction. We envisage

UML [1] as the system specification language. Even if it was born for the

specification, design, validation and documentation of software artifacts UML is

evolving to model the entire system. We envisage SystemC [2] as the system

implementation language, since it provides an answer to the basic needs of system

level design.

2 The design environment

Our design environment is based on a tool supporting UML 2.0, since only this

version provides the needed features to model the system structure. Our

implementation is based on Enterprise Architect [3] from Sparxsystem. We add new

features to UML to describe more complete system models made of hardware and

software. This enhancement is obtained by profiling: first we defined a UML profile

for SystemC. Our UML profile for SystemC [4,5] allows describing structural and

behavioral features using class, composite class, objects and extended state machine

diagrams. It models SystemC components by classes marked with the proper

stereotypes (modules, channels, interfaces, port). Behavior is modeled by enhanced

state machine diagrams, where we added a set of constructs to model the control flow

and we enriched the semantics of states so that they can contain SystemC statements.

These behavioral models are conceived for code generation, as far as an isomorphic

SystemC implementation can be easily derived out of them. The structural description

is completed by the composite structure diagrams that describe the connections of the

system components and by the object diagrams that contain also the actual parameters

of the objects. We provide a design environment where both the application and the

architecture are described together in UML. SystemC models the hardware

architecture within UML and provides the overall system simulation environment.

Fig. 1. Design environment

In Figure 1 the design environment that we want to provide is shown. Components

visualized inside dashed lines are still under development. The tool consists of two

major parts: a development kit (DK) with design and development components, and a

runtime environment (RE) represented by the standard SystemC execution engine.

The DK consists of a UML 2.0 modeler supporting the UML profile for SystemC and

translators for the forward-reverse engineering to-from C++/SystemC.

To provide a more complete environment for HW/SW co-design, we add the

capability to describe also the software application. The application is still modeled by

class, state machines and object diagrams by a C profile of UML. In our vision the

application model are divided into different groups implemented as threads for an

RTOS (like eCos or linux pthread) running in the processor or in a multiprocessor

platform. Driving by the idea to facilitate an MDA transformation between the two

profiles, we build the C profile keeping it very close to our SystemC profile (i.e. state

diagrams are used to define the behavior) Therefore, the C profile has the same

diagrams of our SystemC profile, with the addition of the sequence diagram to model

the scheduler that performs synchronization and scheduling of threads. This is still an

on-going activity: the profile is almost completed, but no tool support is ready yet (the

dashed line in fig.1).

2.1 The modeler

The modeler is built on top of Enterprise Architect (EA), version 4.5, a commercial

UML visual modeling tool by Sparx Systems [5]. Among all the tools on the market

this one seems to be most suitable for our purposes. EA supports UML 2.0 and the

UML extension mechanism. It has state-of-the-art development including XMI

import/export to allow model interchange between tools, and forward/reverse

engineering in the C++ programming language. There is however no reason to use

other tools supporting UML 2.0 and the standard extension mechanism of UML

profiles.

We introduced the SystemC UML profile definition within the EA tool exploiting

the Profile section of the UML toolbox, and saved it in a XML file, with a specific

format, for use in UML modeling. The editing task included creating the profile

package, defining the stereotypes and the metaclasses they apply to, as well as tagged

values, constraints and alternative stereotype images.

Fig. 2. A thread process pattern

To start a new design project, the XML file of a UML profile has to be imported

into EA. Once imported, the user can drag and drop profile elements onto the current

diagram. EA will attach automatically all the extensions (tagged values, default

values, etc.) provided by the profile. Stereotypes for the SystemC building constructs

(modules, interfaces, ports and channels) are available to be used in various UML

structural diagrams such as UML class diagrams and composite structure diagrams to

represent hierarchical structures and communication blocks Behavior is modeled by

the use of special state and action stereotypes which lead to a variation of the UML

state machine diagram, the SC Process State Machines. This formalism has been

appositely included in the profile definition to model the control flow and the reactive

behavior of SystemC processes (methods and threads) within modules. A finite

number of abstract behavior patterns of state machines [6] have been identified.

Figure 2 depicts one of these behavior patterns together with the corresponding

SystemC pseudo-code for a thread process that: (i) is not initialized, (ii) has both a

static (the event list e1s, …, eNs) and a dynamic sensitivity (the state with the

stereotype keyword wait), and (iii) runs continuously (by the infinite while loop).

2.2 The code generator

Code Generation Facility Driving is one of the key ideas of the OMG’s Model

Driven Architecture [7]. The goal is to model once, and generate everywhere: models

are used to build programs by model transformations. A platform-independent model

(PIM) is created in UML without technology dependent details. The PIM can be

mapped to a platform specific model (PSM), which contains design and

implementation details; the PSM is then implemented in a particular coding language.

Modeling tools support code generation in different ways. In [8] three categories of

code generators are identified according to the degree of completeness of the model

and of the resulting code: skeleton generation, partial generation, and full generation.

For our SystemC code generator we followed a full generation approach. The EA

already supports partial code generation to C++. We added the capability to generate

complete SystemC code from UML models for both structural and behavioral views.

For this purpose, EA provides automation and scripting interface to customize its user

interface and the templates used for code generation. It is based on the Windows OLE

Automation (ActiveX) technology: all environments capable of generating ActiveX

COM clients are able to connect to the EA automation interface, and this involves also

Microsoft Visual Basic 6.0. Alternatively, the XMI import/export [9] facility can be

exploited to extract the model information required to generate code for a target

language. Although this second solution is more general (it should be independent

from the particular UML tool used), the first one is the most straightforward for a

rapid development of a code generator. So we decided to rely on the EA

automation/scripting interface.

We developed an EA add-in in Visual Basic 6.0 which exploits the added

semantics in the profile definition to generate SystemC code from input models

written in the SystemC UML profile. This application can be invoked from the main

menu selecting Tools | SystemC. It is possible to generate code from the model,

at package level or even for single diagrams. Starting from the selected element in the

EA project browser (project, package or class diagram) the code generation analyzes

the underlying hierarchy of views generating the corresponding mixed C++/SystemC

code. The code generator traverses all class diagrams and for every encountered class

it produces a header file (.h). For each method contained in a class, it is possible to

describe its behavior either as an inline code description or as a state machine

diagram. The state machine diagrams contribute to generate and enrich a single body

file (.cpp) that contains the implementation code of all methods of a class or module

or channel. The composite structure diagrams and object diagrams are used to derive

the module constructors in the header files.

For the SW part, we are working on the C code engineering and on how to support

the specification of multiple tasks and their mapping on abstract RTOSs models by

including precise modeling primitives directly at UML level.

2.2 The reverse engineer

We decide to rely on the XMI [10] import facility to extract from the code all the

model information required to have a coherent representation according the profile

defined, since the EA automation/scripting interface doesn’t allow a fast development

(we need to modify the parser from a generic C++ code to a C++/SystemC code). We

develop a stand alone application in Java. The software is made of three parts: a

parser, a data structure and a XMI writer. The parser for C++/SystemC is build using

the JavaCC tool [10] and taking as a starting point the ParSyC [11] grammar file. The

component accepts both SystemC code which is translated into constructs of the UML

profile for SystemC and C++ code which is translated to UML classes (including the

behavioral description). The XMI writer finally produces a UML model that can be

imported in the EA tool: for every file .h the tool produces a relative class diagram an

for every .cpp file a relative state diagram. The XMI file can be imported from the

main menu selecting Project | Import/Export | Import Package
from XMI….

The reverse engineering facility allows us to import existing models into our

environment and to achieve rapidly a high number of design cases. It is also

indispensable to allow round trip engineering, which is the synchronized cooperation

with code generation (forward engineering) to complete the description of a model

working on both the UML model and the code. It is also useful in practice as a tool to

inspect the structure of a source code graphically. This tool is a powerful help for IP-

reuse and component based design, where the design phase mainly consists building

complex architecture from basic existing IPs (that could be automatically imported.)

4 Case Study

As experimental results we present three examples:

(1) The Simple Bus is a transactional level example designed to perform cycle-

accurate simulation; it implements a high performance, abstract bus model. It contains

the three master blocks (blocking, non-blocking, monitor), two slave memories (fast

and slow), the bus connecting masters and slaves, an arbiter and a clock generator.

Masters issue transactions for the slave memories through the bus. We described this

model using the UML profile for SystemC testing our code generator on it. The UML

model is isomorphic to SystemC; the generated code is identical to the original

SystemC model.

 (2)The On-Chip Communication Network (OCCN) provides an efficient modeling

of network on-chip (NoC) based on an object-oriented C++ library in SystemC. It

spans multiple abstraction levels, from functional, to transactional, to clock accurate,

to register-transfer models. OCCN is the main test for our reverse engineering flow.

The design was in fact imported in the environment by the reverse engineering flow

and then the model was adjusted within the Enterprise Architect tool. OCCN contains

a mixture of SystemC constructs and C++ classes; the situation is also complicated by

complex inheritances and template classes.

 (3) In [12] we already described this application example related to a system

composed by a VLIW processor developed in ST, called LX, with some dedicated

hardware for an 802.11b physical layer transmitter and receiver. We provide the

UML model of the application description and its translation to C/C++ language, it is

will be encapsulated as a library functions in a UML class. This class provides

through ports the I/O interface of the software layer to the hardware system. The

software part will be executed by the LX ISS: a ISS encapsulation in UML is also

provided, in order to represent all the elements of the system.

4 Conclusions

This work demonstrated that you can build a system environment taking advantage

of general CASE tools based on UML that can easily be integrated in a design flow

thanks to standard formats to exchange data such as XMI. Relying on other standard

notation as SystemC allows integrating the design flow in a refinement design chain to

implementation. The flow is completed by point tools for code generator and a reverse

engineering. About the future enhancements we plan to work about a refinement

methodology that allows going through different levels, both for the hardware and the

software part.

References

[1] OMG, UML Specification, Document ad/03-03-09, version 1.5.

[2] The Open SystemC Initiative. http://www.systemc.org.

[3] The Enterprise Architect Tool. http://www.sparxsystems.com.au/

[4] E. Riccobene, P. Scandurra, A. Rosti and S. Bocchio. A UML 2.0 Profile for SystemC. ST

Microelectronics Technical Report, 2004.

[5] E. Riccobene, P. Scandurra, A. Rosti, S. Bocchio. A SoC Design Methodology Based on a

UML 2.0 Profile for SystemC. In DATE 05.

[6] E. Riccobene, P. Scandurra. Modelling SystemC Process Behavior by the UML Method

State Machines. In RISE 04, Springer-Verlag 2004.

[7] OMG, Model Driven Architecture. http://www.omg.org/mda/.

[8] P.-A. Muller, P. Studer, F. Fondement, and J. Bézivin. Platform independentWeb

Application Modeling and Development with Netsilon. Journal SoSym, 2005

[9] 2005OMG, XML Metadata Interchange (XMI) Specification, v1.2.

[10] Java Compiler Compiler. https://javacc.dev.java.net/.

[11] G G. Fey, D. Groe, T. Cassens, C. Genz, T. Warode, and R. Drechsler. ParSyC: An

efficient SystemC parser. In Synthesis And System Integration of Mixed Information

technologies, 2004.

[12] S. Bocchio E. Riccobene, A. Rosti, P. Scandurra, A SoC Design Flow Based on UML 2.0

and SystemC, UML-SoC 05

