
Copyright © 1998-2010 Sparx Systems Pty Ltd

MDA Transformations User
Guide

Enterprise Architect is an intuitive, flexible and powerful UML
analysis and design tool for building robust and maintainable

software.

This booklet describes the Model Driven Architecture (MDA)
Transformation facilities of Enterprise Architect.

All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without the
written permission of the publisher.

Products that are referred to in this document may be either trademarks and/or registered trademarks of the
respective owners. The publisher and the author make no claim to these trademarks.

While every precaution has been taken in the preparation of this document, the publisher and the author assume no
responsibility for errors or omissions, or for damages resulting from the use of information contained in this document
or from the use of programs and source code that may accompany it. In no event shall the publisher and the author be
liable for any loss of profit or any other commercial damage caused or alleged to have been caused directly or
indirectly by this document.

Printed: May 2010

Enterprise Architect - MDA Transformations User Guide

© 1998-2010 Sparx Systems Pty Ltd

Publisher
Special thanks to:

All the people who have contributed suggestions, examples, bug
reports and assistance in the development of Enterprise Architect.
The task of developing and maintaining this tool has been greatly
enhanced by their contribution.Managing Editor

Technical Editors

Sparx Systems

Geoffrey Sparks

Simon McNeilly

IContents

© 1998-2010 Sparx Systems Pty Ltd

Table of Contents

Foreword 1

MDA Transformations 2

... 5Transform Elements

.. 6Chaining Transformations

... 7Import Transformations

... 8Transformation Templates

... 10Built-in Transformations

.. 10C# Transformation

.. 12Data Model To ERD Transformation

.. 15DDL Transformation

.. 19EJB Transformations

.. 21ERD To Data Model Transformation

.. 25Java Transformation

.. 27JUnit Transformation

.. 28NUnit Transformation

.. 30WSDL Transformation

.. 31XSD Transformation

... 35Write Transformations

.. 35Default Transformation Templates

.. 35Intermediary Language

.. 36Objects

.. 40Connectors

.. 42Copy Information

.. 42Convert Types

.. 42Convert Names

.. 43Cross References

Index 45

Foreword

This user guide describes the Model Driven
Architecture (MDA) Transformation facilities of

Enterprise Architect.

Foreword1

MDA Transformations User Guide

 | 2

© 1998-2010 Sparx Systems Pty Ltd

MDA Transformations

Model Driven Architecture (MDA) Transformations provide a fully configurable way of converting model
elements and model fragments from one domain to another. This typically involves converting Platform-
Independent Model (PIM) elements to Platform-Specific Model (PSM) elements. A single element from the PIM
can be responsible for creating multiple PSM elements across multiple domains.

Transformations are a huge productivity boost, and reduce the necessity of manually implementing stock
Classes and elements for a particular implementation domain: for example, database tables generated from
persistent PIM Classes. Enterprise Architect includes some basic built-in Transformations, such as PIM to
Data Model, PIM to C#, PIM to Java and PIM to XSD. Sparx Systems will make further Transformations
available over time, either as built in Transformations or as downloadable modules from the Sparx Systems
website.

For a further productivity boost, Enterprise Architect can automatically generate code for your transformed
Classes that target code languages. See the Generate Code on result option on the Model
Transformation dialog.

A Transformation is defined using Enterprise Architect's simple code generation template language, and
involves no more than writing a template to create a simple intermediary source file. Enterprise Architect reads
the source file and binds that to the new PSM.

Enterprise Architect also creates internal bindings (Transformation Dependencies) between each PSM created
and the original PIM. This is essential, as it enables you to forward synchronize from the PIM to the PSM many
times, adding or deleting features as you go. For example, adding a new attribute to a PIM Class can be
forward synchronized to a new column in the Data Model. You can observe the Transformation Dependencies
for a package using the Traceability window. This enables you to check the impact of changes to a PIM
element on the corresponding elements in each generated PSM, or to verify where a change required in a
PSM should be initiated in the PIM (and also to reflect back in other PSMs). The Transformation
Dependencies are a valuable tool in managing the traceability of your models (see UML Model Management).

Enterprise Architect does not delete or overwrite any element features that were not originally generated by
the transform. Therefore, you can add new methods to your elements, and Enterprise Architect does not act
on them during the forward generation process.

Note:

If you are using the Corporate, Business and Software Engineering, System Engineering or Ultimate edition,
if security is enabled you must have Transform Package access permission to perform an MDA Transform
on a package. For more information, see User Security in UML Models.

The following diagram highlights how Transformations work and how they can significantly boost your
productivity:

6

 | 3

MDA Transformations User Guide

Transformations that are currently built-in include:

· C# - Converts a PIM to a standard C# implementation set

· Data Model to ERD - Transforms a Data Model to an Entity Relationship Diagram (ERD)

· DDL - Transforms platform-independent Class elements to platform-specific table elements

· EJB Entity - Transforms platform-independent Class elements to packages containing the Class and
Interface elements that comprise an EJB Entity Bean

· EJB Session - Transforms platform-independent Class elements to packages containing the Class and
Interface elements that comprise an EJB Session Bean

· ERD to Data Model - Transforms an Entity Relationship Diagram into a Data Model

· Java - Transforms platform-independent elements to Java language elements

 | 4

© 1998-2010 Sparx Systems Pty Ltd

· JUnit - Converts a Java model to a model where test methods are created for each public method of any
original Class

· NUnit - Converts a .Net language specific model to a model where test methods are created for each
public method of any original Class

· WSDL - Converts a simple representation of a WSDL interface into the elements required to generate that
interface

· XSD - Transforms platform-independent elements to XSD elements.

Transformations are described in the following topics:

· Transform Elements

· Import Transformations

· Transformation Templates

· Built-in Transformations

· Write Transformations

· Chaining Transformations

5

7

8

10

35

6

Transform Elements | 5

MDA Transformations User Guide

1 Transform Elements

There are two modes for initiating a Model Transformation, each of which can be started in two ways.

· To transform selected elements on a diagram, either:

· Select the Project | Transformations | Transform Selected Elements menu option, or

· From the context menu for the Classes on the diagram, select the Transform option.

· To transform elements in the package currently selected in the Project Browser, either:

· Select the Project | Transformations | Transform Current Package menu option, or

· From the context menu of the package in the Project Browser, select the Transform Current Package
option.

The Model Transformation dialog displays.

When the dialog displays, all elements are selected and all transformations previously performed from any of
these Classes are checked.

Option Use to

Elements Select (click on) the individual elements to be included in the transformation.

All Select all of the elements from the list to be included in the transformation.

None Deselect all of the elements from the list.

Transform Elements | 6

© 1998-2010 Sparx Systems Pty Ltd

Option Use to

Include child packages Select to include elements in child packages of the selected package.

Transformations Select which transformations to perform and the package each of them
should be transformed to. (Use the [...] button to select the package in
which the transformed elements are being created.)

Generate Code on result Specify whether or not to automatically generate code for transformed
Classes that target code languages.

Automatically generating code helps boost productivity in development. With
this option selected, the first time you transform to the selected Class
Enterprise Architect enables you to select a filename to generate to.
Subsequent transformations automatically generate any Class with a
filename set.

Perform Transformations
on result

Specify if transformations previously done on target Classes should be
automatically executed. See Chaining Transformations for more
information.

Intermediary File Specify the filename of the intermediary file (if any).

Write Always Write the intermediary file to disk.

Write Now Generate the intermediary file but do not perform the transform.

Do Transform Execute the transform command.

1.1 Chaining Transformations

Chaining transformations provide an extra degree of flexibility and power to transformations. For example, you
might have a situation where two transformations have a common element. This can be separated out into
one transformation, and then the original transformations can be transformed from the common point. The
separated transform could even produce a useful model itself.

Enterprise Architect provides for chaining transformations, by enabling transformations that have already been
performed on target Classes to be performed automatically next time that Class is transformed to. To enable
this, select the Perform Transformations on result checkbox in the Model Transformation dialog.

6

Import Transformations | 7

MDA Transformations User Guide

2 Import Transformations

You can transfer Transformation templates between models. To import a Transformation template, follow the
steps below:

1. Select the Tools | Import Reference Data menu option. The Import Reference Data dialog displays.

2. Click on the Select File button and browse to a .XML file containing the required Transformation
template.

3. Select the name of one or more template datasets and click on the Import button.

Transformation Templates | 8

© 1998-2010 Sparx Systems Pty Ltd

3 Transformation Templates

Note that the Transformation Template mechanism is based very strongly on the Code Generation Template
mechanism. For further information on Transformation Templates see the Code Template Editor section of
SDK for Enterprise Architect, and also - for information on the Common Code Editor and intellisense - the
Code Editors topic in Using Enterprise Architect - UML Modeling Tool.

To modify Transformation templates:

1. Select the Settings | Transformation Templates menu option. The Transformation Templates Editor
displays.

2. In the Language field, type or select the name of the transformation to modify.

3. Select a template from the Templates list, and edit its contents in the editor pane.

4. Click on the Save button.

Option Use to

Language Select the name of the transformation.

Template Display the contents of the active template. Provide the editor for modifying
templates.

Templates List the base transformation templates. The active template is highlighted.
The Modified field indicates whether you have changed the default template
for the current transformation.

New Transformation Type Create a new transformation.

Transformation Templates | 9

MDA Transformations User Guide

Option Use to

Stereotype Overrides List the stereotyped templates, for the active base template.

The Modified field indicates whether you have modified a default stereotyped
template.

Add New Stereotyped
Override

Invoke a dialog for adding a stereotyped template, for the currently selected
base template.

Add New Custom
Template

Invoke a dialog for creating a custom stereotyped template.

Help Launch the Enterprise Architect Help topic for this dialog.

Get Default Template Update the editor display with the default version of the active template.

Save Overwrite the active templates with the contents of the editor.

Delete If you have overridden the active template, delete the override and replace it
with the corresponding default transformation template.

Built-in Transformations | 10

© 1998-2010 Sparx Systems Pty Ltd

4 Built-in Transformations

Enterprise Architect comes with some built-in transformation types. These transformations have been
designed to be useful to as many users as possible, to be a good base to modify to include the specifics of
your custom domain, and to be good examples of how to write transformations.

The following transformations are included in Enterprise Architect.

· C# · EJB Session · NUnit

· DDL · ERD to Data Model · WSDL

· Data Model to ERD · Java · XSD

· EJB Entity · JUnit

4.1 C# Transformation

The C# transformation converts Platform-Independent Model (PIM) elements to language-specific C# Class
elements. The transformation converts PIM model types to C# types and creates encapsulation according to
Enterprise Architect's options for creating properties from C# attributes, which you set on the C# Specifications
page of the Options dialog (see the Code Engineering Settings topic in Code Engineering Using UML Models).

10 19 28

15 21 30

12 25 31

19 27

Built-in Transformations | C# Transformation11

MDA Transformations User Guide

The Platform-Independent Model (PIM):

Built-in Transformations | C# Transformation 12

© 1998-2010 Sparx Systems Pty Ltd

After transformation, becomes the PSM:

4.2 Data Model To ERD Transformation

The Data Model to ERD transformation is a reverse engineering of the ERD to Data Model
transformation.

The transformation uses and demonstrates support in the intermediary language for the following
database-specific concepts:

21

Built-in Transformations | Data Model To ERD Transformation13

MDA Transformations User Guide

Entity Mapped one-to-one onto table elements.

Attribute Mapped one-to-one onto columns.

Primary Key Comes from the PrimaryKey type of column.

The source Data Model diagram:

Built-in Transformations | Data Model To ERD Transformation 14

© 1998-2010 Sparx Systems Pty Ltd

After transformation becomes the Entity Relationship Diagram:

Built-in Transformations | Data Model To ERD Transformation15

MDA Transformations User Guide

Tip:

Sometimes you might want to limit the stretch of the diamond-shape Relationship connectors. Simply pick a
Relationship connector, right-click to display the context menu, and select the Bend Line at Cursor option.

4.3 DDL Transformation

The purpose of the DDL transformation is to create a data model from the logical model, generating a model
targeted at the default database type that is ready for DDL generation. The data model can then be used to
automatically generate DDL statements to run in one of the Enterprise Architect supported database products.

The DDL Transformation uses and demonstrates support in the intermediary language for the following
database-specific concepts:

Table Mapped one-to-one onto Class elements.

Column Mapped one-to-one onto attributes.

Primary Key Lists all the columns involved; this ensures that they exist in the Class and creates a primary
key method for them.

Foreign Key This is a special sort of connector. The Source and Target sections list all of the columns
involved; this ensures that they exist and that a matching primary key exists in the destination
Class, and that the transformation creates the appropriate foreign key.

The following two diagrams show a typical PIM to Data Model Transformation.

35

Built-in Transformations | DDL Transformation 16

© 1998-2010 Sparx Systems Pty Ltd

The Platform-Independent Model (PIM):

Built-in Transformations | DDL Transformation17

MDA Transformations User Guide

After transformation becomes the PSM:

Generalizations are handled by providing the child element with a foreign key to the parent element, as in the
following diagram. Copy-down inheritance is not supported.

Built-in Transformations | DDL Transformation 18

© 1998-2010 Sparx Systems Pty Ltd

Built-in Transformations | EJB Transformations19

MDA Transformations User Guide

4.4 EJB Transformations

The purpose of the EJB Session Bean transformation and the EJB Entity Bean transformation is to
reduce the work required in generating the internals of Enterprise Java Beans, thus enabling you to
concentrate on modeling at a higher level of abstraction.

The EJB Session Bean transformation generates the following from a single Class element containing the
attributes, operations and references required for code generation by the javax.ejb.* package:

· An implementation Class element

· A home interface element

· A remote interface element.

The EJB Entity Bean transformation generates the following from a single Class element containing the
attributes, operations and references required for code generation by the javax.ejb.* package:

· An implementation Class element

· A home interface element

· A remote interface element

· A primary key element.

Both transformations also generate a META-INF package containing a deployment descriptor element.

The Platform-Independent Model (PIM):

Built-in Transformations | EJB Transformations 20

© 1998-2010 Sparx Systems Pty Ltd

After transformation generates a set of Entity Beans, where each one takes the following form (for the
Account Class):

Built-in Transformations | ERD To Data Model Transformation21

MDA Transformations User Guide

4.5 ERD To Data Model Transformation

The purpose of the Entity Relationship Diagram (ERD) to Data Model transformation is to create a data
model from the ERD logical model, generating a model targeted at the default database type ready for DDL
generation. Before doing the transformation, make sure you have defined the common data type for each
attribute and selected a database type as the default database. The data modeling diagram can then be
automatically generated. This data model can be used for generating DDL statements to run in one of the
Enterprise Architect supported database products.

The transformation uses and demonstrates support in the intermediary language for the following
database-specific concepts:

Table Mapped one-to-one onto Entity elements.

Column Mapped one-to-one onto attributes.

Primary Key Comes from the primaryKey type of attribute.

Foreign Key
Make sure the primary key exists in the source Entity; the transformation then creates the
appropriate foreign key.

Built-in Transformations | ERD To Data Model Transformation 22

© 1998-2010 Sparx Systems Pty Ltd

The Source Entity Relationship Diagram:

Built-in Transformations | ERD To Data Model Transformation23

MDA Transformations User Guide

After transformation becomes the Data Model Diagram (for an Oracle DBMS):

Tip:

Sometimes you might go back to the ERD, make some changes and then want to do another transformation.
To achieve better results, always delete the previous transformation package before doing the next
transformation.

Generalization

Generalization can be handled in ERD technology, as illustrated by the following example. Note that the
copy-down inheritance is currently supported with two levels only.

Built-in Transformations | ERD To Data Model Transformation 24

© 1998-2010 Sparx Systems Pty Ltd

This transforms to:

Built-in Transformations | Java Transformation25

MDA Transformations User Guide

4.6 Java Transformation

The purpose of the Java transformation is to convert Platform-Independent Model (PIM) elements to
language-specific Java Class elements. The transformation converts the PIM model types to Java types and
creates encapsulation according to Enterprise Architect's options for creating properties from Java attributes;
that is, producing the getters and setters according to the rules you have defined. Notice that the public
attributes in the PIM are converted to private attributes in the PSM.

You set the code generation options for Java code generation on the Java Specifications page of the Options
dialog (see the Code Engineering Settings topic in Code Engineering Using UML Models).

The Platform-Independent Model (PIM):

Built-in Transformations | Java Transformation 26

© 1998-2010 Sparx Systems Pty Ltd

After transformation becomes the PSM:

Built-in Transformations | JUnit Transformation27

MDA Transformations User Guide

4.7 JUnit Transformation

The purpose of the JUnit transformation is to create a Class with test methods for all public methods of an
existing Java Class. The resulting Class can then be generated and the tests filled out and run by JUnit.

The Java model originally transformed from the PIM:

Built-in Transformations | JUnit Transformation 28

© 1998-2010 Sparx Systems Pty Ltd

After transformation becomes the PSM:

Note that for each Class in the Java model, a corresponding test Class has been created. Each of these test
Classes contains a test method for every public method in the source Class, plus the methods required to
appropriately set up the tests. It is your responsibility to fill in the details of each test. (See the Unit Testing
topic in Visual Execution Analyzer in Enterprise Architect.)

4.8 NUnit Transformation

The purpose of the NUnit transformation is to create a Class with test methods for all public methods of an
existing .Net compatible Class. The resulting Class can then be generated and the tests filled out and run by
NUnit.

Built-in Transformations | NUnit Transformation29

MDA Transformations User Guide

The C# model originally transformed from the PIM:

Built-in Transformations | NUnit Transformation 30

© 1998-2010 Sparx Systems Pty Ltd

After transformation becomes the PSM:

Note that for each Class in the C# model, a corresponding test Class has been created. Each of these test
Classes contains a test method for every public method in the source Class, plus the methods required to
appropriately set up the tests. It is your responsibility to fill in the details of each test. (See the Unit Testing
topic in Visual Execution Analyzer in Enterprise Architect.)

4.9 WSDL Transformation

The purpose of the WSDL transformation is to create from a simple model an expanded model of a WSDL
interface that is suitable for generation (see the Model WSDL topic in Code Engineering Using UML Models).

Take the following example interface:

This generates the corresponding WSDL component, service, port type, binding and messages as follows.

· Classes are handled in the same way as the XSD Transformation

· All in parameters are transformed into messageParts in the Request message

· The return value and all out and return parameters are transformed into messageParts in the Request
message

· All methods where a value is returned are transformed into Request-Response operations while all
methods not returning a value are transformed into OneWay operations

· The transformation does not handle generation of Solicit-Response and Notification methods or faults.

31

Built-in Transformations | WSDL Transformation31

MDA Transformations User Guide

The resulting package can then have the specifics filled out using the WSDL editing capabilities of Enterprise
Architect, and finally be generated using WSDL generation (see the Generate WSDL topic in Code
Engineering Using UML Models).

4.10 XSD Transformation

The purpose of the XSD transformation is to convert Platform-Independent Model (PIM) elements to UML
Profile for XML elements as an intermediary step to creating an XML Schema. Each selected PIM Class
element is converted to an «XSDcomplexType» element.

For more information, see the XML Schema Generation topic in Code Engineering Using UML Models.

Built-in Transformations | XSD Transformation 32

© 1998-2010 Sparx Systems Pty Ltd

The Platform-Independent Model (PIM):

Built-in Transformations | XSD Transformation33

MDA Transformations User Guide

After transformation becomes the PSM:

Which in turn generates the following XSD:

<?xml version="1.0" encoding="ISO-8859-1"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="Account" type="Account"/>
<xs:complexType name="Account">

<xs:sequence>
<xs:element name="name" type="xs:string"/>
<xs:element name="billingAddress" type="xs:string"/>
<xs:element name="emailAddress" type="xs:string"/>
<xs:element name="closed" type="xs:boolean"/>
<xs:element name="deliveryAddress" type="xs:string"/>
<xs:element ref="Order"/>
<xs:element ref="ShoppingBasket"/>

</xs:sequence>
</xs:complexType>
<xs:element name="LineItem" type="LineItem"/>
<xs:complexType name="LineItem">

<xs:sequence>
<xs:element name="quantity" type="xs:integer"/>
<xs:element ref="StockItem"/>

</xs:sequence>
</xs:complexType>
<xs:element name="Order" type="Order"/>
<xs:complexType name="Order">

<xs:sequence>
<xs:element name="date" type="xs:date"/>
<xs:element name="deliveryInstructions" type="xs:string"/>

Built-in Transformations | XSD Transformation 34

© 1998-2010 Sparx Systems Pty Ltd

<xs:element name="orderNumber" type="xs:string"/>
<xs:element ref="LineItem"/>
<xs:element name="status" type="OrderStatus"/>

</xs:sequence>
</xs:complexType>
<xs:simpleType name="OrderStatus">

<xs:restriction base="xs:string">
<xs:enumeration value="new"/>
<xs:enumeration value="packed"/>
<xs:enumeration value="dispatched"/>
<xs:enumeration value="delivered"/>
<xs:enumeration value="closed"/>

</xs:restriction>
</xs:simpleType>
<xs:element name="ShoppingBasket" type="ShoppingBasket"/>
<xs:complexType name="ShoppingBasket">

<xs:sequence>
<xs:element ref="LineItem"/>

</xs:sequence>
</xs:complexType>
<xs:element name="StockItem" type="StockItem"/>
<xs:complexType name="StockItem">

<xs:sequence>
<xs:element name="catalogNumber" type="xs:string"/>

</xs:sequence>
</xs:complexType>
<xs:element name="Transaction" type="Transaction"/>
<xs:complexType name="Transaction">

<xs:sequence>
<xs:element name="date" type="xs:date"/>
<xs:element name="orderNumber" type="xs:string"/>
<xs:element ref="Account"/>
<xs:element ref="LineItem"/>

</xs:sequence>
</xs:complexType>

</xs:schema>

Write Transformations | 35

MDA Transformations User Guide

5 Write Transformations

This topic provides help in writing your own transformations. Subjects covered are:

· Default Transformation Templates

· General Syntax for the Intermediary Language

· Syntax for Creating Objects

· Syntax for Creating Connectors

· Transforming Duplicate Information

· Converting Types

· Converting Names

· Cross References

Further hints and tips can be gleaned from a close study of the Transformation Templates provided with
Enterprise Architect. Note also that writing transformations is very similar to writing code generation templates,
so an understanding of the Code Template Framework can greatly assist in understanding transformations.
See the Code Templates section of SDK for Enterprise Architect.

The Transformation Template editor provides the facilities of the Common Code Editor. For more information
on the Common Code Editor, see the Code Editors topic in Using Enterprise Architect - UML Modeling Tool.

Transformation Templates are accessed from the Settings | Transformation Templates menu option.

5.1 Default Transformation Templates

In most transformations, there is a lot of information that is simply copied to the target model. In order to make
writing new transformations simpler Enterprise Architect provides a default set of transformation templates.
These templates perform a simple copy of the source model to the target model. This means that in order to
write a new transformation you can modify the default templates to make the required changes.

Note:

When creating a new transformation you must modify at least one template before the transformation
becomes available.

5.2 Intermediary Language

All transformations in Enterprise Architect work by generating a text form of the model to generate.

Any element is represented in this language by the type of element (for example, Class, Action, Method,
Generalization or Tag) followed by the properties of the element and the elements that it is made from. The
grammar for this resembles the following.

element:
elementName { (elementProperty | element)* }

elementProperty:
packageName
stereotype
propertyName = " propertyValueSymbol* "

packageName:
name = " propertyValueSymbol* " (. " propertyValueSymbol* ")*

stereotype:
stereotype = " propertyValueSymbol* " (, " propertyValueSymbol* ")*

35

35

36

40

42

42

42

43

Write Transformations | Intermediary Language 36

© 1998-2010 Sparx Systems Pty Ltd

propertyValueSymbol:
\\
\"
Any character except " (U+0022), \ (U+005C)

· elementName is any one of the set of element types as described in Objects and Connectors

· propertyName is any one of the set of properties as described in Objects and Connectors .

Literal strings can be included in property values by escaping a quote character. For example:

default = "\"Some string value.\""

5.3 Objects

Objects are created in Enterprise Architect by generating text in the following form:

objectType
{
 objectProperties
}

where:

objectType is one of the following object types:

· Action

· ActionPin

· Activity

· ActivityParameter

· ActivityPartition

· ActivityRegion

· Actor

· Association

· Change

· Class

· Collaboration

· CollaborationOccurrence

· Component

· DeploymentSpecification

· DiagramFrame

· Decision

· EntryPoint

· Event

· ExceptionHandler

· ExecutionEnvironment

· ExitPoint

· ExpansionNode

· ExpansionRegion

· ExposedInterface

· GUIElement

· InteractionFragment

· InteractionOccurrence

· InteractionState

· Interface

· InterruptibleActivityRegion

· Issue

· Iteration

· Object

· ObjectNode

· MessageEndpoint

36 40

36 40

Write Transformations | Objects37

MDA Transformations User Guide

· Node

· Package

· Parameter

· Part

· Port

· ProvidedInterface

· RequiredInterface

· Requirement

· Sequence

· State

· StateMachine

· StateNode

· Synchronization

· Table

· TimeLine

· Trigger

· UMLDiagram

· UseCase.

objectProperties is zero, or one or more of the following properties:

· Abstract

· Alias

· Arguments

· Author

· Cardinality

· Classifier

· Complexity

· Concurrency

· Filename

· Header

· Import

· IsActive

· IsLeaf

· IsRoot

· IsSpecification

· Keyword

· Language

· Multiplicity

· Name

· Notes

· Persistence

· Phase

· Scope

· Status

· Stereotype

· Version

· Visibility.

and zero, or one or more of the following elements:

· Attribute

Write Transformations | Objects 38

© 1998-2010 Sparx Systems Pty Ltd

· Classifier

· Parameter

· Operation

· Parent

· Tag

· XRef

· Any object.

Notes:

· Some of the above only apply to certain object types.

· Every object created in a transformation should include an XRef element , as it enables Enterprise
Architect to synchronize with the element and makes it possible to create a connector to that Class in a
transformation.

Classes

A simple Class can be created as follows:

Class
{

name = "Example"
}

It is then easy to add to this. The following example sets the language to C++, and adds a Tagged Value and
an attribute:

Class
{

name = "Example"
language = "C++"
Tag
{

name = "defaultCollectionClass"
value = "List"

}
Attribute
{

name = "count"
type = "int"

}
}

Attributes

Attributes are created with the same structure as objects, and include the following properties:

· Alias

· Classifier

· Collection

· Container

· Containment

· Constant

· Default

· Derived

· LowerBound

· Name

· Notes

· Ordered

· Scope

· Static

· Stereotype

· Type

43

Write Transformations | Objects39

MDA Transformations User Guide

· UpperBound

· Volatile.

and the following elements:

· Classifier

· Tag

· XRef.

Operations

Operations are created with the same structure as objects, and include the following properties:

· Abstract

· Alias

· Behavior

· Classifier

· Code

· Constant

· IsQuery

· Name

· Notes

· Pure

· ReturnArray

· Scope

· Static

· Stereotype

· Type.

and the following elements:

· Classifier

· Parameter

· Tag

· XRef.

Parameters

Parameters are created with the same structure as objects, and include the tag element and the following
properties:

· Classifier

· Default

· Fixed

· Name

· Notes

· Kind

· Stereotype.

Packages

Packages differ from other objects in the following ways:

· A reduced set of properties of alias, author, name, namespaceRoot, notes, scope, stereotype and version

· The extra property namespaceRoot

· Must have a name specified

· Name can be a qualified name; when a qualified name is specified the properties given are applied only to
the final package

· Can contain other packages

· Can't contain attributes and operations.

Write Transformations | Objects 40

© 1998-2010 Sparx Systems Pty Ltd

Tables

Tables are a special sort of object, with the following differences from other object types:

· Can include columns and primary keys

· Can't include attributes.

Columns

Columns are similar to attributes, but have an autonumber element containing Startnum and increment, and
the following added properties:

· Length

· NotNull

· Precision

· PrimaryKey

· Scale

· Unique.

Note:

In the column definition, you cannot assign a value to the NotNull, PrimaryKey or Unique properties.

5.4 Connectors

Creating connectors in a transformation can be complex, but the process has the same form as creating
elements. The difference is that you must also specify each end.

The different connectors that can be created are as follows.

· Aggregation

· Assembly

· Association

· Collaboration

· ControlFlow

· Connector

· Delegate

· Dependency

· Deployment

· ForeignKey

· Generalization

· InformationFlow

· Instantiation

· Interface

· InterruptFlow

· Manifest

· Nesting

· NoteLink

· ObjectFlow

· Package

· Realization

· Sequence

· Transition

· UseCase

· Uses

Write Transformations | Connectors41

MDA Transformations User Guide

Note:

· ForeignKey is a special case where not just a connector is created; you must also list the columns involved
in the transformation. In addition, tags specified on the connector are actually created on the foreign key
operation in the source Class, and a cascade property can be added; for example,
cascade="update","delete".

· Each connector is transformed at both end objects, therefore the connector might appear twice in the
transformation. This is nothing to be concerned about, but you should check carefully that the connector is
generated exactly the same way, regardless of which end is on the current Class.

There are two different types of Class that you can use as a connector end: one created by a transformation,
and one for which you already know the GUID.

Connect to a Class Created by a Transformation

The most common connection is to connect to a Class created by a transformation. To do this you must have
three items of information:

· The original Class GUID

· The name of the transformation

· The name of the transformed Class.

This type of connector is created using the TRANSFORM_REFERENCE function macro. When the
element is in the current transformation, it can be safely omitted from the transformation. The simplest
example of this is when you have created multiple Classes from a single Class in a transformation and want a
connector between them. Consider this example from the EJB Entity transformation:

Dependency
{
 %TRANSFORM_REFERENCE("EJBRealizeHome",classGUID)%
 stereotype="EJBRealizeHome"
 Source
 {
 %TRANSFORM_REFERENCE("EJBEntityBean",classGUID)%
 }
 Target
 {
 %TRANSFORM_REFERENCE("EJBHomeInterface",classGUID)%
 }
}

There are three uses of the TRANSFORM_REFERENCE macro: one to identify this connector for
synchronization purposes and the other two to identify the ends. All three use the same source GUID,
because they all come from the one original Class. None of the three have to specify the transformation
because the two references are referencing something in the current transformation. Each of them then only
has to identify the transform name.

Of course it is also possible to create a connector from another connector.

You can create a connector template and list over all connectors connected to a Class from the Class level
templates. You don't have to worry about only generating it once, because if you have created a
TRANSFORM_REFERENCE for the connector then Enterprise Architect automatically synchronizes them.
The following copies the source connector.

%connectorType%
{
 %TRANSFORM_CURRENT()%
 %TRANSFORM_REFERENCE("Connector",connectorGUID)%
 Source
 {
 %TRANSFORM_REFERENCE("Class",connectorSourceGUID)%
 %TRANSFORM_CURRENT("Source")%
 }
 Target
 {
 %TRANSFORM_REFERENCE("Class",connectorDestGUID)%
 %TRANSFORM_CURRENT("Target")%
 }
}

43

Write Transformations | Connectors 42

© 1998-2010 Sparx Systems Pty Ltd

Connecting to a Class For Which You Know the GUID

The second type of Class that you can use as a connector end is one for which you know the current GUID.
To do this, specify the GUID of the target Class in either the source or target end. The following example
creates a dependency from a Class created in a transformation, to the Class it was transformed from.

Dependency
{
 %TRANSFORM_REFERENCE("SourceDependency",classGUID)%
 stereotype="transformedFrom"
 Source
 {
 %TRANSFORM_REFERENCE("Class",classGUID)%
 }
 Target
 {
 GUID=%qt%%classGUID%%qt%
 }
}

5.5 Copy Information

In many transformations there is a substantial amount of information to be copied. It would be tedious to type
all of the common information into a template so that it is copied to the transformed Class. The alternative is to
use the TRANSFORM_CURRENT function macro to do exactly this.

· TRANSFORM_CURRENT(<listOfExcludedItems>) - Generates an exact copy of all the properties of the
current item, except for the items named in <listOfExcludedItems>.

Another form of this is available when transforming connectors that enables either end of the connector to be
copied:

· TRANSFORM_CURRENT(<connectorEnd>,<listOfExcludedItems>) - Generates an exact copy of the
connector end specified by <connectorEnd> except for the items named in <listOfExcludedItems>, where
<connectorEnd> is either Source or Target.

5.6 Convert Types

Different target platforms almost certainly require different types, so you often require a method of converting
between types. The following macro offers this.

· CONVERT_TYPE(<destinationLanguage>, <originalType>) - Converts <originalType> to the
corresponding type in <destinationLanguage> using the datatypes and common types defined in the
model, where <originalType> is assumed to be a platform independent common type.

A similar macro is available when transforming common datatypes to the datatypes for a specified database.

· CONVERT_DB_TYPE(<destinationDatabase>, <originalType>) - Converts <originalType> to the
corresponding datatypes in <destinationDatabase>, which is defined in the model. The <originalType>
refers to a platform independent common datatype.

5.7 Convert Names

Different target platforms use different naming conventions. As a result you might not want to copy the names
of your elements directly into the transformed models. To facilitate this requirement, Enterprise Architect's
transformation templates provide a CONVERT_NAME function macro.

Another way in which you can transform a name is to remove a prefix from the original name, with the
REMOVE_PREFIX macro.

CONVERT_NAME(<originalName>, <originalFormat>, <targetFormat>)

This macro converts <originalName>, which is assumed to be in <originalFormat>, to <targetFormat>.

The supported formats are:

· Camel Case: New words start with a capital letter except for the first word, which begins with a lower case

42

43

Write Transformations | Convert Names43

MDA Transformations User Guide

letter; for example, myVariableTable

· Pascal Case: Same as Camel Case but the first letter of the first word is upper case; for example,
MyVariableTable

· Spaced: Words are separated by spaces; the case of letters is ignored

· Underscored: Words are separated by underscores; the case of letters is ignored.

Note:

Acronyms are not supported when converting from Camel Case or Pascal Case.

The original format might also specify a list of delimiters to be used. For example a value of ' _' breaks words
whenever either a space or underscore is found.

The target format might also use a format string that specifies the case for each word and a delimiter between
them. It takes the following form:

<firstWord>(<delimiter>)<otherWords>

· <firstWord> controls the case of the first word (see below)

· <delimiter> is the string generated between words

· <otherWords> applies to all words after the first word.

<firstWord> and <otherWords> are both a sequence of two characters. The first character represents the case
of the first letter of that word, and the second character represents the case of all subsequent letters. An upper
case letter forces the output to upper case, a lower case letter forces the output to lower case, and any other
character preserves the original case.

Example 1: To capitalize the first letter of each word and separate multiple words with a space:

 "Ht()Ht" to output "My Variable Table"

Example 2: To generate the equivalent of Camel Case, but reverse the roles of upper and lower case; that is,
all characters are upper case except for the first character of each word after the first word:

 "HT()hT" to output "MY vARIABLE tABLE"

REMOVE_PREFIX(<originalName>, <prefixes>)

This macro removes any prefix found in <prefixes> from <originalName>. The prefixes are specified in a semi-
colon separated list.

The macro is often used in conjunction with the CONVERT_NAME macro. For example, this code creates a
get property name according to the options for Java.

$propertyName=%REMOVE_PREFIX(attName,genOptPropertyPrefix)%
%if genOptGenCapitalisedProperties=="T"%
$propertyName=%CONVERT_NAME($propertyName, "camel case", "pascal case")%
%endIf%

5.8 Cross References

Cross References are an important part of transformations. They are used to:

· Find the transformed Class to synchronize with

· Create connectors between transformed Classes

· Specify a classifier of a type

· Determine where to transform to for future transformations.

Each cross reference has three different parts:

· A Namespace, corresponding to the transformation that generated the element

· A Name, which is a unique reference to something that can be generated in the above transformation

· A Source, which is the GUID of the element that this element was created from.

When writing the templates for a transformation, it is easiest to create the cross references using the
TRANSFORM_REFERENCE macro that is defined for this purpose. It has three optional parameters.

Write Transformations | Cross References 44

© 1998-2010 Sparx Systems Pty Ltd

TRANSFORM_REFERENCE(<name>, <sourceGuid>, <namespace>)

Generates a reference that can be used in the ways described above. It resembles the following.

XRef{namespace="<namespace>" name="<name>" source="<sourceGuid>"

Where:

· If <name> is not specified it gets the name of the current template

· If <sourceGUID> is not specified it gets the GUID of the current Class

· If <namespace> is not specified it gets the name of the current transformation.

Note:

The only time that this should be specified is when creating a connector to a Class created in a different
transformation.

A good example of the use of cross references is in the DDL templates provided with Enterprise Architect.
In the Class template a cross reference is created with the name table. Then up to two different connectors
can be created, each of which must identify the two Classes it connects using cross references while having
its own unique cross reference.

Specify Classifiers

Objects, attributes, operations and parameters can all reference another element in the model as their type.
When this type is created from a transformation you must use a cross reference to specify it, using the
TRANSFORM_CLASSIFIER macro.

TRANSFORM_CLASSIFIER(<name>, <sourceGuid>, <namespace>)

Generates a cross reference within a classifier element, where the parameters are identical to the
TRANSFORM_REFERENCE macro but the name Classifier is generated instead of XRef.

If the target classifier already exists in the model before the transformation, a TRANSFORM_CLASSIFIER is
inappropriate and instead the GUID can be given directly to a classifier attribute.

Note:

If a classifier is specified for any type it overrides the type specified.

15

Index45

MDA Transformations User Guide

Index
- B -
Built-In

Transformations 10

- C -
C#

Transformation 10

Camel Case

Naming Format 42

Chaining Transformations 6

Class

Created In Transformation, Connect To 40

Connector

Create In MDA-Style Transformation 40

Duplication In Transformation 40

To Class Created In Transformation 40

Transform 40

Convert

Names In MDA Transformations 42

CONVERT_DB_TYPE 42

CONVERT_NAMES 42

CONVERT_TYPE 42

- D -
Data Model

To ERD Transformation, MDA-Style Transform
12

Transformation From Entity Relationship
Diagram 21

Transformation To Entity Relationship Diagram
12

DDL

Transformation 15

- E -
EJB

Entity Bean Transformations 19

Session Bean Transformations 19

Element

Transformation 5

Enterprise Java Beans 19

Entity Relationship Diagram

Transformation From Data Model 12

Transformation To Data Model 21

ERD To Data Model

Transformation, MDA-Style Transform 21

- I -
Import

MDA-Style Transformations 7

Intermediary Language

MDA-Style Transforms 35

Internal Binding

PIM to PSM 2

- J -
Java

Transformation, MDA-Style Transform 25

JUnit Transformation

MDA-Style Transform 27

- M -
Macro

CONVERT_DB_TYPE 42

CONVERT_NAMES 42

CONVERT_TYPE 42

REMOVE_PREFIX 42

TRANSFORM_CLASSIFIER 43

TRANSFORM_CURRENT 42

TRANSFORM_REFERENCE 40, 43

MDA Transformation

Built-In 2

Overview 2

MDA-Style Transformation

Built In Transformation 10

C# Transformation 10

Chaining Transformations 6

Convert Datatypes 42

Convert Names 42

Convert Types 42

Copy Information 42

Create Connectors 40

Cross References 43

Data Model To ERD Transformation 12

DDL Transformation 15

Duplication Of Connectors 40

EJB Transformations 19

ERD To Data Model Transformation 21

Import Transformations 7

Intermediary Language 35

Java Transformation 25

Index 46

© 1998-2010 Sparx Systems Pty Ltd

MDA-Style Transformation

JUnit Transformation 27

NUnit Transformation 28

Specify Classifiers 43

Transform Connectors 40

Transform Elements 5

Transformation Templates 8

Write Transformations 35

WSDL Transformation 30

XSD Transformation 31

META-INF Package 19

Model

Transformation 5

Model Driven Achitecture

Overview 2

- N -
Naming Format

Camel Case 42

Pascal Case 42

Spaced 42

Underscored 42

NUnit Transformation

MDA-Style Transform 28

- O -
Object

Attributes 36

Classes 36

Columns 36

Definition 36

Operations 36

Packages 36

Parameters 36

Properties 36

Tables 36

Transformation 36

Type 36

- P -
Package

META-INF 19

Pascal Case

Naming Format 42

PIM

Internal Bindings 2

Platform Naming Conventions 42

Platform Specific Model 2

Platform-Independent Model 2

PSM 2

- R -
REMOVE_PREFIX 42

- T -
Template

Transformation, Default 35

Transform

Connector End 42

Connectors 40

Copy Information 42

Duplication Of Connectors 40

Elements, MDA-Style Transformations 5

Model, MDA-Style Transformations 5

Names 42

Objects 36

TRANSFORM_CLASSIFIER

Macro 43

TRANSFORM_CURRENT

Macro 42

TRANSFORM_REFERENCE

Macro 40, 43

Transformation

Built In, MDA-Style Transformation 10

C# 10

Data Model To ERD 12

DDL 15

Dependencies 2

EJB 19

Entity Bean 19

ERD To Data Model 21

Java 25

JUnit 27

NUnit 28

Session Bean 19

Write 35

WSDL 30

XSD 31

Transformation Template

Default 35

Modify 8

Transfer Between Models 7

- W -
WSDL

Transformation 30

Index47

MDA Transformations User Guide

- X -
XSD

Transformation 31

MDA Transformations User Guide

www.sparxsystems.com

	MDA Transformations
	Transform Elements
	Chaining Transformations

	Import Transformations
	Transformation Templates
	Built-in Transformations
	C# Transformation
	Data Model To ERD Transformation
	DDL Transformation
	EJB Transformations
	ERD To Data Model Transformation
	Java Transformation
	JUnit Transformation
	NUnit Transformation
	WSDL Transformation
	XSD Transformation

	Write Transformations
	Default Transformation Templates
	Intermediary Language
	Objects
	Connectors
	Copy Information
	Convert Types
	Convert Names
	Cross References

