
Copyright © 1998-2010 Sparx Systems Pty Ltd

Software Developers' Kit

Enterprise Architect is an intuitive, flexible and powerful UML
analysis and design tool for building robust and maintainable

software.

This booklet describes the facilities of the Software Developers
Kit, which enables you to customize and extend the facilities of

Enterprise Architect.

All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without the
written permission of the publisher.

Products that are referred to in this document may be either trademarks and/or registered trademarks of the
respective owners. The publisher and the author make no claim to these trademarks.

While every precaution has been taken in the preparation of this document, the publisher and the author assume no
responsibility for errors or omissions, or for damages resulting from the use of information contained in this document
or from the use of programs and source code that may accompany it. In no event shall the publisher and the author be
liable for any loss of profit or any other commercial damage caused or alleged to have been caused directly or
indirectly by this document.

Printed: May 2010

Enterprise Architect Software Developers' Kit

© 1998-2010 Sparx Systems Pty Ltd

Publisher
Special thanks to:

All the people who have contributed suggestions, examples, bug
reports and assistance in the development of Enterprise Architect.
The task of developing and maintaining this tool has been greatly
enhanced by their contribution.Managing Editor

Technical Editors

Sparx Systems

Geoffrey Sparks

Geoffrey Sparks
Salvatore Mancarella

Neil Capey

IContents

© 1998-2010 Sparx Systems Pty Ltd

Table of Contents

Foreword 1

SDK for Enterprise Architect 2

... 3Developing Profiles

.. 3Custom Stereotypes

.. 5Create Profiles

... 5Create a Profile Package

... 6Add Stereotypes and Metaclasses

... 8Define Stereotype Tagged Values

... 9With Predefined Tag Types

... 10With Supported Attributes

... 11Use the Tagged Value Connector

... 12Define Stereotype Constraints

... 14Add Enumeration Elements

... 15Add Shape Scripts

... 17Set Default Appearance

... 17Export a UML Profile

... 18Save Profile Options

... 19Supported Attributes

... 21Define a Stereotype as a Metatype

... 21Define Multiple-Stereotype Level

... 22Define Creation of Instance

... 23Create Composite Elements

... 23Define Child Diagram Types

... 24Stereotype Profiles

.. 25Quick Linker

... 25Quick Linker Definition Format

... 27Quick Linker Example

... 28Hide Default Quick Linker Settings

... 29Quick Linker Object Names

... 30MDG Technologies in SDK

.. 30Create MDG Technologies

... 35Add a Profile

... 35Add a Pattern

... 36Add a Diagram Profile

... 37Add a Toolbox Profile

... 38Add Task Panel Pages

... 39Add Tagged Value Types

... 40Add Code Modules

... 42Add MDA Transforms

... 43Add Images

... 43Add Scripts

... 44Add RTF Report Templates

... 45Add Linked Document Templates

.. 46Working with MTS Files

.. 47Customize Toolbox Profiles

... 47Create Toolbox Profiles

... 48Toolbox Page Attributes

... 48Create Hidden Sub-Menus

... 49Override Default Toolboxes

... 49Assign Icons To Toolbox Items

... 50Enterprise Architect Toolboxes

... 50Elements Used in Toolboxes

ContentsII

Enterprise Architect Software Developers' Kit

... 51Connectors Used In Toolboxes

.. 52Create Diagram Profiles

... 53Built-In Diagram Types

... 53Attribute Values - stylex & pdata

.. 54Create Tasks Pane Profiles

... 55Define Tasks Pane Toolboxes

... 55Built-In Tasks Pane Commands

... 56Run Add-In Functions

... 57Define Tasks Pane Contexts

... 57Allocate Tasks Pane Contexts

... 58Save a Tasks Pane Profile

.. 58Define Validation Configuration

.. 59Incorporate Model Templates

.. 59Deploy An MDG Technology

... 61Shape Scripts

.. 61Getting Started With Shape Scripts

.. 64Shape Editor

.. 65Write Scripts

... 65Syntax Grammar

... 66Shape Attributes

... 68Drawing Methods

... 72Color Queries

... 72Conditional Branching

... 72Query Methods

... 72Display Item Properties

... 75Sub-Shapes

... 76Reserved Names

... 76Miscellaneous

.. 77Example Scripts

... 81Tagged Value Types

.. 81Predefined Structured Types

.. 83Create Structured Tagged Values

.. 84Predefined Reference Data Types

.. 85Create Reference Data Tagged Values

.. 86Create Custom Tagged Value Type

... 88Code Template Framework in SDK

.. 88Code Template Syntax

... 88Literal Text

... 89Macros

... 89Template Substitution Macros

... 90Field Substitution Macros

... 102Tagged Value Macros

... 103Function Macros

... 106Control Macros

... 109EASL Code Generation Macros

... 111EASL Collections

... 113EASL Properties

... 117Variables

.. 118The Code Template Editor in SDK

... 119Custom Templates

... 120Override Default Templates

... 121Add New Stereotyped Templates

... 122Create Custom Language Template

... 123Enterprise Architect Add-In Model

.. 124Add-In Tasks

... 124Create Add-Ins

... 124Define Menu Items

IIIContents

© 1998-2010 Sparx Systems Pty Ltd

... 125Deploy Add-Ins

... 126Tricks and Traps

.. 128The Add-In Manager

.. 128Add-In Search

... 129XML Format (Search Data)

.. 129Add-In Events

... 130EA_Connect

... 130EA_Disconnect

... 131EA_GetMenuItems

... 131EA_GetMenuState

... 132EA_MenuClick

... 133EA_OnOutputItemClicked

... 133EA_OnOutputItemDoubleClicked

... 134EA_ShowHelp

.. 135Broadcast Events

... 135EA_FileOpen

... 136EA_FileClose

... 136EA_FileNew

... 137EA_OnPostCloseDiagram

... 137EA_OnPostOpenDiagram

... 138Pre-Deletion Events

... 138EA_OnPreDeleteElement

... 138EA_OnPreDeleteAttribute

... 139EA_OnPreDeleteMethod

... 139EA_OnPreDeleteConnector

... 140EA_OnPreDeleteDiagram

... 141EA_OnPreDeletePackage

... 141Pre-New Events

... 141EA_OnPreNewElement

... 142EA_OnPreNewConnector

... 143EA_OnPreNewDiagram

... 143EA_OnPreNewDiagramObject

... 144EA_OnPreNewAttribute

... 145EA_OnPreNewMethod

... 145EA_OnPreNewPackage

... 146EA_OnPreExitInstance

... 146Post-New Events

... 147EA_OnPostNewElement

... 147EA_OnPostNewConnector

... 148EA_OnPostNewDiagram

... 148EA_OnPostNewDiagramObject

... 149EA_OnPostNewAttribute

... 149EA_OnPostNewMethod

... 150EA_OnPostNewPackage

... 151EA_OnPostInitialized

... 151EA_OnPostTransform

... 152Technology Events

... 152EA_OnInitializeTechnologies

... 152EA_OnPreActivateTechnology

... 153EA_OnPostActivateTechnology

... 153EA_OnPreDeleteTechnology

... 154EA_OnDeleteTechnology

... 155EA_OnImportTechnology

... 155Context Item Events

... 155EA_OnContextItemChanged

... 156EA_OnContextItemDoubleClicked

... 157EA_OnNotifyContextItemModified

... 158Compartment Events

ContentsIV

Enterprise Architect Software Developers' Kit

... 158EA_QueryAvailableCompartments

... 159EA_GetCompartmentData

... 160Model Validation Broadcasts

... 160EA_OnInitializeUserRules

... 161EA_OnStartValidation

... 161EA_OnEndValidation

... 162EA_OnRunElementRule

... 162EA_OnRunPackageRule

... 162EA_OnRunDiagramRule

... 163EA_OnRunConnectorRule

... 163EA_OnRunAttributeRule

... 164EA_OnRunMethodRule

... 164EA_OnRunParameterRule

... 165Model Validation Example

... 168EA_OnRetrieveModelTemplate

.. 169Custom Views

... 169Create a Custom View

.. 170MDG Add-Ins

... 170MDG Events

... 171MDGBuild Project

... 171MDGConnect

... 172MDGDisconnect

... 173MDGGetConnectedPackages

... 173MDGGetProperty

... 174MDGMerge

... 175MDGNewClass

... 176MDGPostGenerate

... 176MDGPostMerge

... 177MDGPreGenerate

... 177MDGPreMerge

... 178MDGPreReverse

... 179MDGRunExe

... 179MDGView

... 181Enterprise Architect Object Model

.. 181Using the Automation Interface

... 181Connect to the Interface

... 183Set References In Visual Basic

... 184Examples and Tips

... 185Call from Enterprise Architect

... 186Available Resources

.. 186Reference

... 187Interface Overview

... 190App

... 191Enumerations

... 191ConstLayoutStyles Enum

... 192CreateBaselineFlag Enum

... 192CreateModelType Enum

... 192EAEditionTypes Enum

... 192EnumRelationSetType Enum

... 193ExportPackageXMIFlag Enum

... 193MDGMenus Enum

... 193ObjectType Enum

... 194PropType Enum

... 194ReloadType Enum

... 194ScenarioDiagramType Enum

... 195ScenarioStepType Enum

... 195ScenarioTestType Enum

... 195XMIType Enum

VContents

© 1998-2010 Sparx Systems Pty Ltd

... 196Repository

... 197Repository

... 210Author

... 210Client

... 211Collection

... 213Datatype

... 214EventProperties

... 214EventProperty

... 214ModelWatcher

... 215Package

... 219ProjectIssues

... 220ProjectResource

... 221PropertyType

... 222Reference

... 223Stereotype

... 223Task

... 224Term

... 225Element

... 227Constraint

... 227Effort

... 228Element

... 235File

... 235Issue (Maintenance)

... 236Metric

... 237Requirement

... 238Resource

... 239Risk

... 239Scenario

... 240ScenarioExtension

... 241ScenarioStep

... 242TaggedValue

... 243Test

... 243Element Features

... 244Attribute

... 246AttributeConstraint

... 247AttributeTag

... 248CustomProperties

... 248EmbeddedElements

... 249Method

... 251MethodConstraint

... 252MethodTag

... 252Parameter

... 253Partitions

... 254Properties

... 255Transitions

... 255Connector

... 256ConnectorConstraint

... 257Connector

... 260ConnectorEnd

... 262ConnectorTag

... 263RoleTag

... 263Diagram

... 264Diagram

... 267DiagramLinks

... 268DiagramObjects

... 269SwimlaneDef

... 270Swimlanes

... 271Swimlane

ContentsVI

Enterprise Architect Software Developers' Kit

... 271Project Interface

... 271Project

... 284Code Samples

... 284Open the Repository

... 284Iterate Through a .EAP File

... 285Add and Manage Packages

... 286Add and Manage Elements

... 286Add a Connector

... 287Add and Manage Diagrams

... 288Add and Delete Features

... 288Element Extras

... 290Repository Extras

... 292Stereotypes

... 292Work With Attributes

... 293Work With Methods

Index 295

Foreword

This user guide describes the facilities of the
Software Developers Kit, which enables you to

customize and extend the facilities of
Enterprise Architect.

1Foreword

© 1998-2010 Sparx Systems Pty Ltd

 | 2

Enterprise Architect Software Developers' Kit

SDK for Enterprise Architect

Introduction

Welcome to the Enterprise Architect Software Developers Kit (SDK). This is a special section of the Enterprise
Architect User Guide, covering the more advanced aspects of extending and customizing Enterprise Architect.

In describing aspects of extending Enterprise Architect, it is expected that you are familiar with the concepts
introduced in the main body of the Enterprise Architect User Guide. Wherever appropriate, cross-references to
these concepts are provided in the text.

Contents

· UML Profiles (incorporating UML Stereotypes)

· MDG Technologies

· Shape Scripts

· Tagged Value Types

· Code Template Framework

· Enterprise Architect Object Model (Automation Interface)

· Enterprise Architect Add-In Model

3 3

30

61

81

88

181

123

Developing Profiles | 3

© 1998-2010 Sparx Systems Pty Ltd

1 Developing Profiles

Introduction

UML Profiles provide a means of extending the UML Language, which enables you to build UML models in
particular domains. They are based on additional stereotypes and Tagged Values that are applied to
UML elements, connectors and their components. A Profile is a collection of such extensions that together
describe some particular modeling problem and facilitate modeling constructs in that domain. UML Profiles for
Enterprise Architect are specified in XML files, with a specific format. These XML files can be imported into
Enterprise Architect through the Resources window.

The imported Profile also automatically generates a page of elements and relationships in the Enterprise
Architect UML Toolbox.

The Resources window contains a tree structure with entries for items such as MDG Technologies,
Documents, Stylesheets, Matrix profiles and UML Profiles. The UML Profiles node initially contains no entries;
to be able to use Profiles you must import them into Enterprise Architect from supplied XML files.

Items in the Profile represent stereotypes. UML supports a large number of stereotypes, which are an inbuilt
mechanism for logically extending or altering the meaning, display, appearance and syntax of a model
element. Different model elements have different stereotypes associated with them.

For more information on the use of Profiles in Enterprise Architect, see the UML Profiles topic in Extending
UML With Enterprise Architect.

For information on developing your own Profiles, see the following topics:

· Custom Stereotypes

· Create Profiles

· Quick Linker

· Toolbox Profiles

· Diagram Profiles

· Task Pane Profiles

1.1 Custom Stereotypes

UML supports a large number of stereotypes, which are an inbuilt mechanism for logically extending or
altering the meaning, physical appearance and syntax of a model element. Different model elements have
different stereotypes associated with them. For more information on the use of stereotypes in Enterprise
Architect, see the UML Stereotypes topic in Extending UML With Enterprise Architect.

In Enterprise Architect you can create new stereotypes with their own custom appearance. The stereotypes
can be altered to make use of metafiles (image files) and customized colors, or you can make use of the
Enterprise Architect Shape Script to make new element shapes to determine the shape and dimensions of the
element.

To add your own custom stereotypes, follow the steps below:

1. From the main menu, select Settings | UML. The UML Types dialog displays, defaulted to the
Stereotypes tab.

3 81

3

5

25

47

52

54

Developing Profiles | Custom Stereotypes4

Enterprise Architect Software Developers' Kit

2. Type or select a Stereotype name.

3. Select a Base Class from the drop-down list.

4. To associate a Metafile with this stereotype, click on the Metafile radio button and the Assign button,
and locate the required .emf or .wmf file.

5. Enter optional Notes and select Default Colors for this stereotype.

6. Click on the Save button to save the stereotype.

The table below describes the functionality of the Stereotypes tab.

Option Use to

Stereotype Specify the name of the stereotype.

Group name Enable grouping of stereotype features by a plural name, for attributes and
operations, which is shown on diagrams in the attribute and operations
compartments.

Base Class Enable the stereotyped element to inherit the base characteristics from a pre-existing
element type.

Notes Type any notes concerning the stereotype (not the elements to which the stereotype
is to be applied).

Override Appearance

None Switch to the default element appearance.

Metafile Enable an image file to be used for the appearance of the stereotype.

Shape Script Specify custom shapes for the stereotype using the Enterprise Architect Shape

Developing Profiles | Custom Stereotypes 5

© 1998-2010 Sparx Systems Pty Ltd

Option Use to

Scripting language. For more information see the Shape Scripting topic.

Assign Add the associated metafile or Shape Script from the stereotyped element.

Remove Remove the associated metafile or Shape Script from the stereotyped element.

Default Colors

Fill Set the default background color of the element.

Border Control the border color.

Font Control the color of the stereotype font.

Reset Reset the appearance of the element to the default element appearance.

Note:

You can transport these custom stereotype definitions between models, using the Export Reference Data
and Import Reference Data options on the Tools menu. See the Reference Data topic in UML Model
Management.

1.2 Create Profiles

This topic describes how to create profiles and profile items. These creation tasks include creating the profile
stereotypes, defining the metaclasses they apply to, and defining Tagged Values and constraints. This topic
also describes how to export a profile for use in UML modeling.

To create a UML Profile, follow the steps below:

1. Create a Profile Package

2. Add Stereotypes and Metaclasses

3. Define Tagged Values for Stereotypes

4. Define Constraints for Stereotypes

5. Add Enumerations

6. Add Shape Scripts

7. Set Default Appearance

8. Export the Profile

1.2.1 Create a Profile Package

In Enterprise Architect, you must create a UML Profile in a Package that has the stereotype «profile». To
create a Profile Package, follow the steps below.

1. Open or create a Package diagram.

2. Open the Profile page of the Enterprise Architect UML Toolbox (More tools | Profile).

61

5

6

8

12

14

15

17

17

Developing Profiles | Create Profiles6

Enterprise Architect Software Developers' Kit

3. Drag the Profile item onto the Class diagram. The New Model Package dialog displays.

4. In the Package Name field, type a name for the Profile.

5. Select the Automatically add new diagram checkbox.

6. Click on the OK button. The New Diagram dialog displays.

7. Provide the required diagram name, and select the diagram group UML Structural and diagram type
Class.

8. Click on the OK button. Enterprise Architect creates a package with the stereotype «profile> and with a
child Class diagram.

9. Double-click on the Profile Package on the diagram to open the child diagram.

You now use this child diagram to add stereotypes to the Profile.

1.2.2 Add Stereotypes and Metaclasses

To add metaclasses and stereotypes to a Profile, follow the steps below for as many stereotypes and
metaclasses as you require:

1. Open the child diagram of the Profile Package.

2. Drag the Metaclass element from the Profile page of the Enterprise Architect UML Toolbox onto the
diagram. The Create New Metaclass dialog displays, in which you can tick multiple metaclasses for
dropping onto the diagram.

6

Developing Profiles | Create Profiles 7

© 1998-2010 Sparx Systems Pty Ltd

3. Scroll down the Element list and select the checkbox for Class.

4. Click on the OK button, display the Class Properties dialog, and in the Name field type a name for the
element. Click on the OK button again.

5. Drag a Stereotype element from the Toolbox onto the diagram. If the Properties dialog does not display,
double-click on the element on the diagram.

6. In the Name field, type a name for the stereotype.

7. Click on the OK button and, if it displays, Close the Generate Code dialog.

8. Click on the Extension relationship in the Toolbox and drag the connection from the stereotype element
to the metaclass element.

9. Your diagram should now resemble the one below:

Developing Profiles | Create Profiles8

Enterprise Architect Software Developers' Kit

Note:

If you want to have a stereotype extending more than one metaclass, do not create two stereotype Classes
with the same name. You cannot have two stereotypes with the same name in the same profile; one is
discarded when you save the profile. Therefore, create one stereotype Class with an Extension connector to
each of several Metaclass elements, as shown below.

You can now add stereotype Tags , Constraints , Enumerations , and/or Shape Scripts to your
Profile, and define the default appearance of the elements or connectors as required.

1.2.3 Define Stereotype Tagged Values

Stereotypes within a UML Profile can have one or more associated Tagged Values. When creating a UML
Profile, you define these Tagged Values as attributes of the stereotyped Class.

You can also:

· Define Stereotype Tags with Predefined Tag Types

· Define Stereotype Tags with Supported Attributes

· Use the Tagged Value Connector

To define Tagged Values for a stereotype, follow the steps below:

1. Open the Attributes dialog for the stereotyped element.

8 12 14 15

17

9

10

11

Developing Profiles | Create Profiles 9

© 1998-2010 Sparx Systems Pty Ltd

2. Click on the New button to create a new attribute.

3. In the Name field, type the name of the stereotype tag.

4. In the Type field, click on the drop-down arrow and select the attribute type.

5. In the Initial field, type the initial value of the tag. (See Add Enumerations to UML Profiles for the
steps for creating enumerated types for Tagged Values.)

6. In the Notes field, type a description of the tag.

7. Click on the Save button and Close button.

1.2.3.1 With Predefined Tag Types

Define Predefined Tag Types

To define a stereotype tag with a predefined Tagged Value Type, you must first create the predefined Tagged
Value Type. For full instructions on how to do this, see the Create Structured Tagged Values topic.

Assign Predefined Tag Types to Stereotypes

To assign a predefined tag type to a stereotype, just create an attribute with the same name. For example, to
make the Tagged Value Handicap appear in a stereotype, create an attribute named Handicap. You can set
the default value for the Tagged Value by giving the attribute an Initial value.

14

83

Developing Profiles | Create Profiles10

Enterprise Architect Software Developers' Kit

1.2.3.2 With Supported Attributes

Supported stereotype attribute tags are special tags that set the default behavior of stereotyped elements,
such as the initial size of the element and the default location of any image files associated with the
stereotype. For a list of supported attributes, see the Supported Attributes topic.

To define tags for a stereotype with supported attributes, follow the steps below:

1. Open the Attributes dialog for the stereotyped element.

19

Developing Profiles | Create Profiles 11

© 1998-2010 Sparx Systems Pty Ltd

2. In the Name field, type the name of the stereotype tag.

3. In the Initial field, type the initial value of the tag.

Note:

For supported attributes you set only the Name (which must match the attributes listed in the
supported attributes section) and the Initial value; do not set the other values.

4. Click on the Save button and Close button.

1.2.3.3 Use the Tagged Value Connector

In a Profile, you can use the Tagged Value connector to define a Tagged Value that has as its value the name
of an element containing the stereotype pointed to. You select the Tagged Value connector from the Profile
pages of the Enterprise Architect UML Toolbox.

The following diagram demonstrates how you might use the connector. It shows a (saved and imported) profile
that defines two stereotypes: «Collection» and «Node». The «Collection» stereotype has a Tagged Value
connector with the target role named rootNode, pointing to the «Node» stereotype.

Developing Profiles | Create Profiles12

Enterprise Architect Software Developers' Kit

In the Tagged Values window for the connector, against rootNode, you click on the selection button ([...]).
This displays the Select <Item> dialog, through which you locate the elements in the current model with the «
Node» stereotype. You can then select one of these elements as the value of the tag. (See the Work with
Elements section in UML Modeling With Enterprise Architect - UML Modeling Tool.)

1.2.4 Define Stereotype Constraints

Defining constraints for stereotypes uses the same procedure as defining constraints for any Class. To define
constraints for a stereotype, follow the steps below:

1. Open the Class Properties dialog of the stereotype element in a diagram.

2. Click on the Constraints tab and click on the New button to create a new constraint.

Developing Profiles | Create Profiles 13

© 1998-2010 Sparx Systems Pty Ltd

3. In the Constraint field, type the value of the constraint.

4. In the Type field, click on the drop-down arrow and select the appropriate type.

5. In the Status field, click on the drop-down arrow and select the appropriate status.

6. In the Notes field, type any additional information required.

7. Click on the Save button, and on the OK button to close the dialog.

Developing Profiles | Create Profiles14

Enterprise Architect Software Developers' Kit

1.2.5 Add Enumeration Elements

Enumerations can be used to restrict the values available to stereotype tags.

Note:

Enumerations defined under a Profile Package do not appear as elements in the profile when imported.

To add an Enumeration element, follow the steps below:

1. Open your Profile Package child Class diagram.

2. In the Enterprise Architect UML Toolbox, select More tools | Profile. The contents of the Profile page of
the Toolbox display.

3. Drag an Enumeration item from the toolbox onto the diagram. If the Properties dialog does not display,
double-click on the element on the diagram.

4. In the Name field, type the name of the new Enumeration.

5. Click on the Details tab and click on the Attributes button. The Attributes Properties dialog displays.

Developing Profiles | Create Profiles 15

© 1998-2010 Sparx Systems Pty Ltd

6. In the Name field, type the name of the Enumeration attribute.

7. In the Type field, click on the drop-down arrow and select the appropriate type.

8. In the Initial field, type the initial value of the attribute.

9. Click on the Save button, and repeat steps 6 to 9 for additional attributes.

10. When you are finished, click on the Close button.

11. Right-click on the Stereotype element and select the Attributes context menu option. The Attribute
Properties dialog displays for the stereotype.

12. In the Name field type a name for the attribute.

13. In the Type field type the name of the Enumeration element.

14. In the Initial field type the name of the first enumeration attribute you defined.

15. Click on the Save and Close buttons.

You have now generated a drop-down list for setting the value of the tag in the Tagged Values window.

1.2.6 Add Shape Scripts

To add a Shape Script to a stereotype in a UML Profile, follow the steps below:

1. On the Profile Package child diagram, select a Stereotype element.

2. Right-click on the element and select the Attributes context menu option.

3. In the Attributes Properties dialog, in the Name field, type _image.

61

Developing Profiles | Create Profiles16

Enterprise Architect Software Developers' Kit

4. Click on the [...] button next to the Initial field. The Shape Editor dialog displays.

5. Enter the Shape Script in the Shape Editor dialog, and click on the OK and Close buttons.

The Stereotype element now resembles the example below:

64

Developing Profiles | Create Profiles 17

© 1998-2010 Sparx Systems Pty Ltd

Note:

If you are creating a Shape Script for an Association Class (see The UML Dictionary), be aware that the
Shape Script is applied to both the Class part and the Association part. Therefore, you might have to include
logic in the shape main that tests the type of the element so that you can give separate drawing instructions
for Class and for Association. Such logic is not necessary in the:

· shape source or shape target, which are ignored by Classes, or the

· decoration shapes which are ignored by Associations.

1.2.7 Set Default Appearance

You can define the appearance of stereotyped elements and connectors as you create or edit the stereotypes
, using the Override Appearance and Default Colors panels of the UML Types dialog. However, an easier

way is to review your completed profile diagram and set the default appearance of the elements and
connectors in place.

Simply click on the required element or connector and press [F4], then define the background, font and border
colors and border thickness as appropriate, on the Default Appearance dialog. (See the Work with Elements
section in UML Modeling With Enterprise Architect - UML Modeling Tool.)

When you save the profile containing the stereotyped elements and connectors, make sure that you select
the Color and Appearance checkbox on the Save UML Profile dialog.

1.2.8 Export a UML Profile

Once you have created a Profile and defined the elements and metaclasses, you can save (export) the Profile
to disk for future UML models.

To save a Profile, follow the steps below:

1. If your profile is

· a single profile spread over multiple diagrams within the same Profile package, find the Profile
package in the Project Browser window, right-click on it and select the Save Package as UML
Profile context menu option

· one of multiple profiles within the same Profile package, right-click anywhere in the background of
the Profile diagram and select the Save as Profile context menu option

· a single diagram within the Profile package, choose either the Save Package as UML Profile
context menu option or the Save as Profile context menu option.

Note:

The two menu options give slightly different results. See Save Profile Options .

2. The Save UML Profile dialog displays.

3

17

18

Developing Profiles | Create Profiles18

Enterprise Architect Software Developers' Kit

3. Click on the [...] (Browse) button, and select the export destination for the XML Profile file. If
necessary, edit the profile filename, but do not delete the .xml extension.

4. In the Profile Type field, click on the drop-down arrow and select XMI (UML)2.0.

Note:

The drop-down list is not available unless the package has the <<profile>> stereotype.

5. Set the required export options for all stereotypes defined in the profile:

· Element Size - select the checkbox to export the element size attributes

· Color and Appearance - select the checkbox to export the color (background, border and font)
and appearance (border thickness) attributes

· Alternate Image - select the checkbox to export the metafile images

· Code Templates - select the checkbox to export the code templates, if they exist.

6. Click on the Save button to save the profile to disk.

For information on importing and using the profile in UML modeling, see the Use Profiles topic in Extending
UML With Enterprise Architect.

1.2.8.1 Save Profile Options

When you save a UML Profile, you can save it either from the package or from the diagram, depending on
whether the Profile is:

· a single profile spread over multiple diagrams within the same Profile package (find the Profile package in
the Project Browser, right-click on it and select the Save Package as UML Profile context menu option),
which is typically the case for a stereotypes profile

· one of multiple profiles within the same Profile package (right-click anywhere in the background of the
Profile diagram and select the Save as Profile context menu option); for example, when creating multiple
toolbox profiles

· a single diagram within the Profile Package (choose either the Save Package as UML Profile context
menu option or the Save as Profile context menu option).

The two context menu options produce slightly different results. You should take these into consideration,
especially in the third instance where you could choose either option.

Save From Diagram Save From Package Notes

The profile takes the diagram
name.

The profile takes the package
name.

Package and diagram names are not
necessarily the same, although you can
save a lot of confusion if you make them
the same or very similar. For example:

17

Developing Profiles | Create Profiles 19

© 1998-2010 Sparx Systems Pty Ltd

Save From Diagram Save From Package Notes

package GL with diagrams GL1, GL2,
GL3.

The profile takes the
diagram's notes.

The profile takes the package's
notes.

You can take the default size
and appearance (including
alternate image) from the
diagram object.

You cannot take the default size
and appearance from the
diagram object.

You can use the _sizeX, _sizeY
and _image properties, but there
is no equivalent for default
colors.

Can be much faster. Can be much slower. The difference arises because diagram
objects are kept in memory and Project
Browser elements aren't.

This is only likely to be an issue if the
profile is a large one and you are using a
slow network connection to a remote
repository.

1.2.9 Supported Attributes

Supported Stereotype Attributes in UML Profiles

The following attributes can be applied to stereotypes in UML Profiles:

Attribute Meaning

icon Contains the path to a bitmap file to be used as the Project Browser icon for all
elements other than Package, with the given stereotype. The bitmap must be
16x16 pixels. For a transparent background, use light grey - RGB(192,192,192).

_image Shape script definition.

_instanceMode Used for defining behavior on creating an instance .

_instanceOwner Used for defining behavior on creating an instance .

_instanceType Used for defining behavior on creating an instance .

_lineStyle Sets the line style of a connector. The value of the attribute can be one of:

· direct

· auto

· custom

· bezier

· treeH (horizontal)

· treeV (vertical)

· treeLH (lateral horizontal)

· treeLV (lateral vertical).

_metatype Used for defining stereotypes as metatypes .

22

22

22

21

Developing Profiles | Create Profiles20

Enterprise Architect Software Developers' Kit

Attribute Meaning

_sizeY Initial height of the element, in pixels at 100% zoom.

_sizeX Initial width of the element, in pixels at 100% zoom.

_strictness Used for restricting application of multiple stereotypes .

Supported Metatype Attributes in UML Profiles

The following attributes can be applied to metatype Classes in UML Profiles, and refer to the stereotypes that
extend them:

Attribute Meaning

_AttInh If set to 1, switches on the Inherited Features: Show Attributes setting.

_AttPkg If set to 1, switches on the Attribute Visibility: Package setting.

_AttPri If set to 1, switches on the Attribute Visibility: Private setting.

_AttPro If set to 1, switches on the Attribute Visibility: Protected setting.

_AttPub If set to 1, switches on the Attribute Visibility: Public setting.

_ConInh If set to 1, switches on the Show Element Compartments: Inherited Constraints
setting.

_Constraint If set to 1, switches on the Show Element Compartments: Constraints setting.

_DefaultDiagramType Used for defining child diagram types .

_HideStype If set to a comma-separated list of stereotypes, sets the Hide Stereotyped Features
filter.

_MakeComposite Used for creating composite elements .

_OpInh If set to 1, switches on the Inherited Features: Show Operations setting.

_OpPkg If set to 1, switches on the Operation Visibility: Package setting.

_OpPri If set to 1, switches on the Operation Visibility: Private setting.

_OpPro If set to 1, switches on the Operation Visibility: Protected setting.

_OpPub If set to 1, switches on the Operation Visibility: Public setting.

_PType If set to 1, switches on the Show element type (Port and Part only) setting.

_ResInh If set to 1, switches on the Show Element Compartments: Inherited Responsibilities
setting.

_Responsibility If set to 1, switches on the Show Element Compartments: Responsibilities setting.

_Runstate If set to 1, switches on the Hide Object Runstate in current diagram setting.

_SourceAggregation Used to set the aggregation type at the end of a connector; do not set both
_SourceAggregation and _TargetAggregation.

Set to 1 for shared, 2 for composite.

_SourceMultiplicity Used to set the multiplicity of the source element, such as 1..* or 0..1.

_SourceNavigability If the connector is non-navigable, set this attribute to Non-Navigable. For other
values, set the direction attribute.

_Tag If set to 1, switches on the Show Element Compartments: Tags setting.

_TagInh If set to 1, switches on the Show Element Compartments: Inherited Tags setting.

_TargetAggregation Used to set the aggregation type at the end of a connector; do not set both
_SourceAggregation and _TargetAggregation.

21

23

23

257

Developing Profiles | Create Profiles 21

© 1998-2010 Sparx Systems Pty Ltd

Attribute Meaning

Set to 1 for shared, 2 for composite.

_TargetMultiplicity Used to set the multiplicity of the target element, such as 1..* or 0..1.

_TargetNavigability If the connector is non-navigable, set this attribute to Non-Navigable. For other
values, set the direction attribute.

1.2.9.1 Define a Stereotype as a Metatype

The _metatype attribute is applied to a stereotype element. This is used where users want to hide the identity
of an element as a stereotyped UML element. It is also a method of getting custom types to appear in contexts
where only Enterprise Architect's inbuilt types would normally appear; for example in the lists of element types
in the Relationship Matrix.

In the following example from SysML, block is defined as a stereotype that extends a UML Class.

However, a SysML user isn't interested in UML Classes, only in SysML Blocks. An element created from a
stereotype defined this way, while behaving like a stereotyped Class in most contexts:

· Shows Block Properties rather than Class Properties as the title of its Properties dialog

· Is auto-numbered as Block1 not Class1 on creation, and

· Appears as Block not Class in many other contexts throughout Enterprise Architect.

1.2.9.2 Define Multiple-Stereotype Level

The _strictness attribute is applied to a stereotype element. It defines to what level multiple stereotypes can
be applied to an element. The type of the attribute is StereotypeStrictnessKind and it can have one of four
values:

· profile, which states that an element of this type cannot be given more than one different stereotype from
the same profile

· technology, which states that an element of this type cannot be given more than one different stereotype
from the same technology

· all, which states that an element of this type cannot have multiple stereotypes at all, or

· none, which is the default Enterprise Architect behaviour and states that there are no restrictions on the
use of multiple stereotypes.

The following example is from SysML and shows that a «flowPort» cannot have any other stereotype applied
to it.

257

Developing Profiles | Create Profiles22

Enterprise Architect Software Developers' Kit

1.2.9.3 Define Creation of Instance

The _instanceType attribute is applied to a stereotype element and defines what kind of element is created as
an instance of this element type. The value corresponds to the metatype given to a stereotype using the
_metatype attribute. It is shown on the Paste Element dialog (see the Work with Diagrams section in UML
Modeling With Enterprise Architect - UML Modeling Tool) and is translated if it matches an Enterprise Architect
element type.

The _instanceMode attribute is applied to a stereotype element and controls the text in the Paste Element
dialog after being translated. Valid values are instance and property, with the default being instance.

The _instanceOwner attribute is applied to a stereotype element and controls the text in the Paste Element
dialog. It is translated if it matches an Enterprise Architect element type. The default value is Element.

The following example from SysML shows that when an instance of a Block is created, it is created as a
BlockProperty element.

Developing Profiles | Create Profiles 23

© 1998-2010 Sparx Systems Pty Ltd

1.2.9.4 Create Composite Elements

The _makeComposite attribute is applied to a metaclass element, not a stereotype element. It defines
whether an element is always made composite when created.

Notes:

· A stereotyped package is not by default created with a child diagram, so you should use the
_makeComposite attribute to ensure the child diagram is created.

· Unless you also use the _defaultDiagramType attribute to define the child diagram type , the child
diagram created is a Package diagram.

The following example from BPMN shows that a BusinessProcess element is always created as a Composite
element with a BPMN custom child diagram.

1.2.9.5 Define Child Diagram Types

The _defaultDiagramType attribute is applied to a metaclass element, not a stereotype element. It defines
the type of diagram created when an element is made composite . This attribute can take as its name any
of the inbuilt diagram types of Enterprise Architect (these are listed below). Alternatively, if a custom diagram
type is required, it should be prefixed with the diagram profile name and '::'.

The following examples show a «BusinessProcess»Activity that, when made a composite element,
automatically creates an Analysis diagram, and a «block» stereotype that creates a SysML InternalBlock
custom diagram.

23

23

Developing Profiles | Create Profiles24

Enterprise Architect Software Developers' Kit

You can also use the _defaultDiagramType attribute for packages, extending the Package metaclass.

Values For _defaultDiagramType

The following initial values should be used to refer to Enterprise Architect's inbuilt diagram types:

· UML Behavioral::Use Case

· UML Behavioral::Activity

· UML Behavioral::State Machine

· UML Behavioral::Communication

· UML Behavioral::Sequence

· UML Behavioral::Timing

· UML Behavioral::Interaction Overview

· UML Structural::Package

· UML Structural::Class

· UML Structural::Object

· UML Structural::Composite Structure

· UML Structural::Component

· UML Structural::Deployment

· Extended::Custom

· Extended::Requirements

· Extended::Maintenance

· Extended::Analysis

· Extended::User Interface

· Extended::Data Modeling

· Extended::ModelDocument.

1.2.10 Stereotype Profiles

In Enterprise Architect 6, an MDG Technology could consist of many UML Profiles, each representing an
Enterprise Architect UML Toolbox page. Each profile could include stereotype definitions alongside
redefinitions of standard UML elements. This meant that to define a stereotype in a technology, it had to
appear in one of the Toolbox pages.

Releases from Enterprise Architect 7 take a different approach, splitting the task of defining the stereotypes
and the task of defining the Toolbox pages into separate profiles. The MDG Technology's stereotypes are
contained in one or more profiles. The stereotypes within each profile use the profile name as the namespace.

Create one or more packages with the «profile» stereotype, each package name being the namespace. Within

Developing Profiles | Create Profiles 25

© 1998-2010 Sparx Systems Pty Ltd

each package create profile diagrams defining all the stereotypes in the namespace. You can use multiple
diagrams to do this, but do not use nested packages.

Give the «profile» package a description in the Notes field (e.g. MDG Technology for BPMN). When all of the
stereotypes are defined (make sure that every stereotype extends at least one Metaclass) right-click on the
profile package in the Project Browser and select the Save Package as UML Profile context menu option,
then proceed as usual.

1.3 Quick Linker

Introduction

The Quick Linker provides a simple and fast way to create new elements and connectors on a diagram. When
an element is selected in a diagram, the Quick Linker icon is displayed in the upper right corner of a element.
Simply clicking and dragging the icon enables you to create new connectors and elements. The philosophy
behind the built-in Quick Linker definitions has always been to provide not a complete list of valid or legal
connections, but a short and convenient list of the commonest connections for the given context. As part of a
UML Profile, you can add to or replace the built-in Quick Linker definitions; the following sections of this
document explain how:

· Quick Linker Definition Format

· Quick Linker Example

· Hide Default Quick Linker Settings

· Quick Linker Object Names .

Customized Quick Linker Settings

A Quick Linker definition is a Comma Separated Value (CSV) format file. It is best manipulated in a
spreadsheet which should be set up to save the CSV file as comma-separated text without quotation marks
around text fields.

To add a Quick Linker definition file to a profile or technology, simply place a DocumentArtifact element onto
the Profile diagram. Give it the name 'QuickLink' then double-click on it. Open your CSV file in a text editor
such as Notepad and copy and paste the contents into the DocumentArtifact element. The definitions are
saved with the profile and are processed and applied when the profile is imported. The same applies if a
profile is included within a technology, with the proviso that the QuickLink element must be in the same profile
as the link stereotype definitions. This means that a technology could have a set of Quick Link definitions for
each profile.

1.3.1 Quick Linker Definition Format

A Quick Linker definition is a text file consisting of records terminated by new-line characters. Each record
must consist of 23 comma-separated fields, as defined by the table below. The values of each field must not
be in quotes (" "). A Quick Linker definition can include comments: all lines that begin with // are ignored by
Enterprise Architect.

Each record of the Quick Linker definition represents a single entry on the Quick Linker menu. Some fields
define the menu command; some fields can be thought of as filters, with the entry being ignored if the filter
condition isn't met.

A Quick Linker definition has the following fields.

Column Field Description

A Source Element
Type

The row is ignored unless a connector is being dragged away from this
type of element.

B Source Stereotype
Filter

If set, the row is ignored unless a connector is being dragged away from
an element with this stereotype.

C Target Element Type If set, the row is ignored unless a connector is being dragged onto this
type of element.

If blank, the row is ignored unless a connector is being dragged onto an

25

27

28

29

Developing Profiles | Quick Linker26

Enterprise Architect Software Developers' Kit

Column Field Description

empty piece of diagram.

D Target Stereotype
Filter

If set and Target Element Type also set, the row is ignored unless a
connector is being dragged onto an element with this stereotype.

E Diagram Filter Contains either an inclusive or exclusive list of diagrams, which limits the
diagrams the given kind of connector can be included on.

Each diagram name is terminated by a semi-colon. Excluded diagram
names are preceded by an exclamation mark.

Example of an inclusive list: Collaboration;Object;Custom;

Example of an Exclusive list: !Sequence;

F New Element Type If set and Create Element also set, results in the creation of an element of
this type.

G New Element
Stereotype

If set and Create Element also set, results in the creation of an element
with this stereotype.

H New Link Type If set and Create Link also set, results in the creation of a connector of
this type.

I New Link Stereotype If set and Create Link also set, results in the creation of a connector with
this stereotype.

J New Link Direction Can be:

· directed (always creates an association from source to target)

· from (always creates an association from target to source)

· undirected (always creates an association with unspecified direction)

· bidirectional (always creates a bi-directional association), or

· to (creates either a directed or undirected association, depending on
the value of the Association Direction option).

Note:

Not all of the above work with all connector types; for example, you
cannot create a bi-directional Generalization.

K New Link Caption If a new connector is being created but not a new element, then this is the
text that appears on the context menu.

L New Link & Element
Caption

If a new connector AND a new element are being created, then this is the
text that appears on the context menu.

M Create Link If set to TRUE, results in creation of a new connector; otherwise should be
left blank.

N Create Element If set to TRUE the row is ignored unless a connector is being dragged
onto an empty piece of diagram and results in creation of a new element;
otherwise should be left blank.

This overrides the values of Target Element Type and Target Stereotype
Filter.

O Disallow Self
connector

Should be set to TRUE if self connectors are invalid for this kind of
connector; otherwise should be left blank.

P Exclusive to ST
Filter +
No inherit from
Metatype

If set to TRUE, indicates that elements of type Source Element Type with
the stereotype Source Stereotype Filter do not display the Quick Linker
definitions of the equivalent unstereotyped element.

Developing Profiles | Quick Linker 27

© 1998-2010 Sparx Systems Pty Ltd

Column Field Description

Q Menu Group If set, indicates the name of a sub-menu in which a menu item is created.

R Complexity Level Not implemented, always set to 0.

S Target Must Be
Parent

If set to TRUE this menu item only appears when dragging from a child
element to its parent; for example from a port to its containing Class.

T Embed element If set to TRUE the element being created is embedded in the target
element; otherwise should be left blank.

U Precedes Separator
LEAF

If set to TRUE results in a menu separator being added to the Quick
Linker menu; otherwise should be left blank.

V Precedes Separator
GROUP

If set to TRUE results in a menu separator being added to the Quick
Linker sub-menu; otherwise should be left blank.

W Dummy Column Depending on which spreadsheet application you use, this column might
require a value in every cell to force CSV export to work correctly with
trailing blank values.

1.3.2 Quick Linker Example

This example uses a Class element with the stereotype «quick». The example scenario is this: when you drag
a connector away from one of these elements, you want to create a Dependency either to or from a
component element. When you drag a connector onto an existing Port or component element, you want a
Dependency either to or from the component or, in the case of a component, you want to be able to create an
embedded Port element.

This results in 8 records in the Quick Linker definition file.

1. Dependency to new Component

2. Dependency from new Component

3. Dependency to existing Component

4. Dependency from existing Component

5. Dependency to existing Port

6. Dependency from existing Port

7. Dependency to existing Component, create new Port

8. Dependency from existing Component, create new Port

In the spreadsheet, this is implemented by the following values:

25

Developing Profiles | Quick Linker28

Enterprise Architect Software Developers' Kit

This saves to the following CSV:

Class,quick,,,,Component,,Dependency,,to,,Dependency to,TRUE,TRUE,TRUE,TRUE,Component,0,,,,,
Class,quick,,,,Component,,Dependency,,from,,Dependency from,TRUE,TRUE,TRUE,TRUE,Component,0,,,TRUE,,
Class,quick,Component,,,,,Dependency,,to,Dependency to,,TRUE,,TRUE,TRUE,,0,,,,,
Class,quick,Component,,,,,Dependency,,from,Dependency from,,TRUE,,TRUE,TRUE,,0,,,TRUE,,
Class,quick,Port,,,,,Dependency,,to,Dependency to,,TRUE,,TRUE,TRUE,,0,,,,,
Class,quick,Port,,,,,Dependency,,from,Dependency from,,TRUE,,TRUE,TRUE,,0,,,TRUE,,
Class,quick,Component,,,Port,,Dependency,,to,,Dependency to,TRUE,TRUE,TRUE,TRUE,Port,0,,TRUE,,,
Class,quick,Component,,,Port,,Dependency,,from,,Dependency from,TRUE,TRUE,TRUE,TRUE,Port,0,,TRUE,TRUE,,

You can create the following profile and cut and paste the CSV data into the document artifact to test the
effect.

1.3.3 Hide Default Quick Linker Settings

If you have a Quick Linker definition with the Exclusive to stereotype flag (column P) set to TRUE, then the
default Quick Linker definitions between the given source and target are overridden. However, you might want
to override the defaults without actually having a Quick Linker definition. For example, if you don't define any
Quick Links for a «quick» Class to another «quick» Class, Enterprise Architect displays the default Quick Links
for a Class to another Class. To override this behaviour, create a Quick Linker definition that has the source
element type, source stereotype filter, target element type and target stereotype filter fields (columns A, B, C
and D) all set, with the Exclusive to stereotype flag (column P) set to TRUE, and with the new link type field
(column H) set to <none>.

For example, add this line to the example in Quick Linker Example :

Class,quick,Interface,,,,,<none>,,,,,,,,TRUE,,0,,,,,

This overrides the default Class-to-Interface Quick Links when a Quick Link is dragged from a «quick» Class
to an Interface element.

27

Developing Profiles | Quick Linker 29

© 1998-2010 Sparx Systems Pty Ltd

Note:

This technique does not affect the automatic appearance of Dependency, Trace, Information Flow and Help
items on the Quick Linker menu.

1.3.4 Quick Linker Object Names

List of Element Types

The following element names can be used in Quick Linker definitions:

Action

ActionPin

Activity

ActivityParameter

ActivityPartition

Actor

Artifact

Boundary

CentralBufferNode

Change

ChoiceState

Class

Collaboration

Component

DataType

Decision

DeepHistoryState

Deployment Specification

Device

DiagramGate

EntryPoint

EntryState

ExecutionEnvironment

ExitPoint

ExitState

ExpansionNode

ExpansionRegion

Feature

GUIElement

HistoryState

InformationItem

InitialActivity

InitialState

InteractionOccurrence

Interface

Issue

InterruptableActivityRegion

JunctionState

MergeNode

MessageEndpoint

n-ary Association

Node

Object

ObjectNode

Package

Part

Port

PrimitiveType

ProvidedInterface

Receive

RequiredInterface

Requirement

Screen

Send

Sequence

Signal

State

StateLifeline

StateMachine

Synchronization_H

Synchronization_V

SynchState

UMLDiagram

UseCase

ValueLifeline

List of Connector Types

The following connector names can be used in Quick Linker definitions:

Aggregation

Association

AssociationClass

CommunicationPath

Composition

ConnectorLink

ControlFlow

DelegateLink

Dependency

Deployment

Extension

Generalization

InterfaceLink

Manifest

Nesting

ObjectFlow

PackageImport

PackageMerge

Realization

Redefinition

Sequence

StateFlow

UCExtends

UCIncludes

UseCase

MDG Technologies in SDK | 30

Enterprise Architect Software Developers' Kit

2 MDG Technologies in SDK

The Model Driven Generation (MDG) Technologies enable Enterprise Architect users to access and use
resources pertaining to a specific technology in Enterprise Architect. There are various options for an
administrator or individual user to bring MDG Technologies into use with Enterprise Architect, as described in
Extending UML With Enterprise Architect. You should read the MDG Technology topics to understand how
MDG Technologies are accessed and used within Enterprise Architect, especially the Manage MDG
Technologies topic.

A further option is that Technology Developers can develop new MDG Technologies and deploy them to the
project team as appropriate; this is described in the following topics:

· Create MDG Technologies

· Working With MTS Files

· Customize Toolbox Profiles

· Create Diagram Profiles

· Create Tasks Pane Profiles

· Define Validation Configuration

· Incorporate Model Templates

· Deploy an MDG Technology

An example of creating an MDG Technology for an Enterprise Architecture framework is provided in the white
paper: Enterprise Architecture Framework Design with Sparx Systems Enterprise Architect.

2.1 Create MDG Technologies

Using the MDG Technology Wizard, you can create MDG Technology files that can include UML Profiles, code
modules, Patterns, images, Tagged Value Types, RTF report templates, linked document templates, Toolbox
pages and Task Pane pages. To create an MDG Technology file, follow the steps below:

1. Select the Tools | Generate MDG Technology File menu option. The MDG Technology Creation
Wizard screen displays.

30

46

47

52

54

58

59

59

http://sparxsystems.com/downloads/whitepapers/enterprise_architecture_framework_design.pdf

MDG Technologies in SDK | Create MDG Technologies 31

© 1998-2010 Sparx Systems Pty Ltd

2. Click on the Next button to proceed. The MDG Technology Wizard prompts you to:

· Create an MDG Technology File by creating a new MDG Technology Selection (MTS) file

· Create an MDG Technology File using an existing MTS file

· Not use any MTS file.

(An MTS file stores the selected options that you define during the creation of an MDG Technology File.
If you use an MTS file, you can later modify it to add or remove specific items in the MDG Technology
File. This is the recommended process.)

MDG Technologies in SDK | Create MDG Technologies 32

Enterprise Architect Software Developers' Kit

3. Select the appropriate MTS file option. Click on the Next button.

If you selected an MTS file, the MDG Technology Wizard prompts you to save the changes in the
existing MTS file or into a new MTS file. This enables you to create a modification based on the existing
MTS file, while preserving the original file.

4. If necessary, type in or browse for the required file path and name. Click on the Next button. The MDG
Technology Wizard - Create screen displays.

MDG Technologies in SDK | Create MDG Technologies 33

© 1998-2010 Sparx Systems Pty Ltd

5. Complete the fields on this screen as follows:

Option Use to

Technology Type the name of the MDG Technology.

Filename Type or select the path and filename of the MDG Technology File (the file
extension for this file is .xml).

ID Type a reference for the MDG Technology File, up to 12 characters long.

Version Type the version number of the MDG Technology File.

Icon (Optional) Type or select the path and file name of the graphics file
containing the technology icon. The icon is a 16x16 bitmap image that is
shown in the list of technologies on the left of the MDG Technologies
dialog.

Logo (Optional) Type or select the path and file name of the graphics file
containing the technology logo. The logo is a 64x64 bitmap image that is
shown in the display pane on the top-right corner of the MDG
Technologies dialog.

URL (Optional) If you have any website product information that might be
helpful for users of this Technology, type or paste the URL in this field.

Support (Optional) If you have any web-based or other support facility that might
be helpful for users of this Technology, type or paste the contact address
in this field.

Notes Type a short explanation of the functionality of the MDG Technology.

6. Click on the Next button. The MDG Technology Wizard - Contents screen displays.

7. Select the checkbox for each item to be included in the MDG Technology file. Each selection runs
specific dialogs to enable definition of the specific items to be included in the MDG Technology, as

MDG Technologies in SDK | Create MDG Technologies 34

Enterprise Architect Software Developers' Kit

described in the following topics:

· Add a Profile

· Add a Pattern

· Add a Diagram Profile

· Add a Toolbox Profile

· Add Task Panel Pages

· Add Tagged Value Types

· Add Code Modules

· Add MDA Transformations

· RTF Report Templates

· Linked Document Templates

· Add Images

· Add Scripts (Corporate and 'Suite' editions).

8. Work through the dialogs displayed in response to your choices, and when all are complete, click on
the Next button. The MDG Technology Wizard - Finish screen displays, providing information on the
items included in the MDG Technology File.

9. If you have used an MTS file and want to update it, select the Save to MTS checkbox.

10. If you are satisfied with the selection of items, click on the Finish button.

You can now edit the MTS file , if required, to add further items such as:

· Model Search definitions

· Model Views

· Model Validation configurations

· Model Templates.

To make the MDG Technology File accessible to an Enterprise Architect model, you must add the technology
file path to the MDG Technologies - Advanced dialog. See the Access Remote MDG Technologies topic in
Extending UML With Enterprise Architect.

35

35

36

37

38

39

40

42

44

45

43

43

46

MDG Technologies in SDK | Create MDG Technologies 35

© 1998-2010 Sparx Systems Pty Ltd

2.1.1 Add a Profile

When creating an MDG Technology file, you can include UML 2.1-compliant profiles that you have defined
. To use the Profiles section of the MDG Technology Wizard, follow the steps below:

1. Follow the steps in the Create MDG Technologies topic up to and including Step 6 , where you
select the Profiles checkbox. The MDG Technology Wizard - Profile files selection dialog displays.

2. In the Directory field, navigate to the directory containing the required Profile or Profiles. The Profile
files are automatically listed in the Available Files panel.

3. To select each required Profile individually, highlight the Profile in the Available Files list and click on
the --> button. The file name displays in the Selected Files list. Alternatively, to select all available
Profiles, click on the -->> button.

Notes:

· DO NOT select diagram profiles or toolbox profiles on this dialog; this would generate conflicting
commands in the .MTS file.

· Make sure you do include your stereotypes profile .

4. Click on the Next button to proceed.

2.1.2 Add a Pattern

When creating an MDG Technology file, you can include patterns (see Extending UML With Enterprise
Architect). To use the Patterns section of the MDG Technology Wizard, follow the steps below:

1. Follow the steps in the Create MDG Technologies topic up to and including Step 6 , where you
select the Patterns checkbox. The MDG Technology Wizard - Pattern files selection dialog displays.

5

30 33

24

30 33

MDG Technologies in SDK | Create MDG Technologies 36

Enterprise Architect Software Developers' Kit

2. In the Directory field, navigate to the directory containing the required pattern or patterns. The pattern
files are automatically listed in the Available Files panel.

3. To select each required pattern individually, highlight the pattern in the Available Files list and click on
the --> button. The file name displays in the Selected Files list. Alternatively, to select all available
patterns, click on the -->> button.

4. Click on the Next button to proceed.

2.1.3 Add a Diagram Profile

When creating an MDG Technology file, you can include a diagram profile that you have defined . To use
the diagram profiles section of the MDG Technology Wizard, follow the steps below:

1. Follow the steps in the Create MDG Technologies topic up to and including Step 6 , where you
select the Diagram Types checkbox. The MDG Technology Wizard - Diagram Types dialog displays.

52

30 33

MDG Technologies in SDK | Create MDG Technologies 37

© 1998-2010 Sparx Systems Pty Ltd

2. In the Directory field, navigate to the directory containing the required diagram profiles. The profiles in
the directory are automatically listed in the Available Files panel.

3. To select each required diagram profile individually, highlight the file name in the Available Files list and
click on the --> button. The file name displays in the Selected Files list. Alternatively, to select all
available profiles (assuming they are all diagram profiles), click on the -->> button.

4. Click on the Next button to proceed.

2.1.4 Add a Toolbox Profile

When creating an MDG Technology file, you can include Enterprise Architect Toolbox page definitions that
you have created . To use the Toolboxes section of the MDG Technology Wizard, follow the steps below:

1. Follow the steps in the Create MDG Technologies topic up to and including Step 6 , where you
select the Toolboxes checkbox. The MDG Technology Wizard - Toolboxes dialog displays.

47

30 33

MDG Technologies in SDK | Create MDG Technologies 38

Enterprise Architect Software Developers' Kit

2. In the Directory field, navigate to the directory containing the required toolbox profiles. The profile files
are automatically listed in the Available Files panel.

3. To select each required toolbox profile individually, highlight the file name in the Available Files list and
click on the --> button. The file name displays in the Selected Files list. Alternatively, to select all
available profiles (assuming they are all toolbox profiles), click on the -->> button.

4. Click on the Next button to proceed.

2.1.5 Add Task Panel Pages

When creating an MDG Technology file, you can include Enterprise Architect Task Panel profiles that you
have created . To use the Taskpages section of the MDG Technology Wizard, follow the steps below:

1. Follow the steps in the Create MDG Technologies topic up to and including Step 6 , where you
select the Taskpages checkbox. The MDG Technology Wizard - Taskpages dialog displays.

54

30 33

MDG Technologies in SDK | Create MDG Technologies 39

© 1998-2010 Sparx Systems Pty Ltd

2. In the Directory field, navigate to the directory containing the required taskpage profiles. The profile
files are automatically listed in the Available Files panel.

3. To select each required taskpage profile individually, highlight the file name in the Available Files list
and click on the --> button. The file name displays in the Selected Files list. Alternatively, to select all
available profiles (assuming they are all taskpage profiles), click on the -->> button.

4. Click on the Next button to proceed.

2.1.6 Add Tagged Value Types

When creating an MDG Technology file, you can include Tagged Value Types . To use the Tagged Value
Types section of the MDG Technology Types Wizard, follow the steps below:

1. Follow the steps in the Create MDG Technologies topic up to and including Step 6 , where you
select the Tagged Value Types checkbox. The MDG Technology Wizard - Tagged Value Types dialog
displays.

81

30 33

MDG Technologies in SDK | Create MDG Technologies 40

Enterprise Architect Software Developers' Kit

2. To select each required Tagged Value Type individually, highlight the file name in the Available Files list
and click on the --> button. The file name displays in the Selected Files list. Alternatively, to select all
available Tagged Value Types, click on the -->> button.

3. Click on the Next button to proceed.

2.1.7 Add Code Modules

When creating an MDG Technology file, you can include code modules. To use the code modules section of
the MDG Technology Types Wizard, follow the steps below:

1. Follow the steps in the Create MDG Technologies topic up to and including Step 6 , where you
select the Code Modules checkbox. The MDG Technology Wizard - Code Modules dialog displays.

30 33

MDG Technologies in SDK | Create MDG Technologies 41

© 1998-2010 Sparx Systems Pty Ltd

2. Click on the checkboxes (Product, Data Types, and Code Templates) for each of the required Code
Modules.

Note:

The code modules listed are those defined in your current project. These could be the Enterprise
Architect default languages, or those you have defined yourself using code templates and the Code
Template Editor (see Code Engineering Using UML Models). Before you can set up a code template
for the new language in the editor, you must define at least one data type for the language (see the
Data Types topic in UML Model Management). Once the MDG Technology file is created it can be
loaded into your current model and into other models.

3. To select any code options for a module, click on the [...] button in the Code Options column for that
module. This enables you to select an XML document that provides additional settings for the language
that are not covered by the data types or code templates.

The root node of the XML document should be CodeOptions. The child nodes should be called
CodeOption and should contain a name attribute. The supported code options are as follows:

Code Option Description

ConstructorName The name of a function used as a constructor. Used by the
classHasConstructor code template macro.

CopyConstructorName The name of a function used as a copy constructor. Used by the
classHasCopyConstructor code template macro.

DefaultExtension The default extension when generating code.

DefaultSourceDirectory The default path to which Enterprise Architect generates new files.

DestructorName The name of a function used as a destructor. Used by the
classHasDestructor code template macro.

Editor The external editor used for editing source of this language.

ImplementationExtensio The extension used by Enterprise Architect to generate an implementation

90

90

90

MDG Technologies in SDK | Create MDG Technologies 42

Enterprise Architect Software Developers' Kit

Code Option Description

n file.

ImplementationPath The relative path from the source file to generate the implementation file.

PackagePathSeparator The delimiter used to separate package names when using the
packagePath macro from the code templates.

An example of a valid code options file is shown below.

<CodeOptions>
 <CodeOption name="DefaultExtension">.ext</CodeOption>
 <CodeOption name="Editor">C:\Windows\notepad.exe</CodeOption>
</CodeOptions>

4. Click on the Next button to proceed.

You can edit the code option values for source code engineering and for each required language using the
appropriate Language Options page of the Options dialog (see the Code Engineering Settings section in Code
Engineering Using UML Models).

2.1.8 Add MDA Transforms

When creating an MDG Technology file, you can include the MDA Transformations that have been modified in
the model. To use the Transform Modules section of the MDG Technology Wizard, follow the steps below:

1. Follow the steps in the Create MDG Technologies topic up to and including Step 6 , where you
select the MDA Transforms checkbox. The MDG Technology Wizard - Transform Modules dialog
displays.

2. Click the checkbox against the template name of each required template that is present in the current
model.

3. Click on the Next button to proceed.

30 33

MDG Technologies in SDK | Create MDG Technologies 43

© 1998-2010 Sparx Systems Pty Ltd

2.1.9 Add Images

When creating an MDG Technology file, you can include the images that have been imported into the model.
To use the Image Selection section of the MDG Technology Wizard, follow the steps below:

1. Follow the steps in the Create MDG Technologies topic up to and including Step 6 , where you
select the Images checkbox. The MDG Technology Wizard - Image Selection dialog displays.

2. For each required model image available in the current model, select the checkbox next to the image
name. A preview of each image displays on the right of the dialog as you select the checkbox.

3. Click on the Next button to proceed.

2.1.10 Add Scripts

When creating an MDG Technology file, you can include scripts that you have created in the model (see Using
Enterprise Architect - UML Modeling Tool).

Note:

This facility is available in the Corporate, Business and Software Engineering, Systems Engineering and
Ultimate editions of Enterprise Architect.

To use the Script Selection section of the MDG Technology Wizard, follow the steps below:

1. Follow the steps in the Create MDG Technologies topic up to and including Step 6 , where you
select the Scripts checkbox. The MDG Technology Wizard - Scripts dialog displays.

30 33

30 33

MDG Technologies in SDK | Create MDG Technologies 44

Enterprise Architect Software Developers' Kit

2. For each required script available in the current model, select the checkbox next to the script name.

3. Click on the Next button to proceed.

2.1.11 Add RTF Report Templates

When creating an MDG Technology file, you can include user-defined RTF Report templates. To use the
report templates section of the MDG Technology Wizard, follow the steps below:

1. Follow the steps in the Create MDG Technologies topic up to and including Step 6 , where you
select the RTF Templates checkbox. The MDG Technology Wizard - RTF Report Templates dialog
displays.

30 33

MDG Technologies in SDK | Create MDG Technologies 45

© 1998-2010 Sparx Systems Pty Ltd

2. For each required user-defined report template available in the current model, select the checkbox next
to the template name.

3. Click on the Next button to proceed.

2.1.12 Add Linked Document Templates

When creating an MDG Technology file, you can include Linked Document templates. To use the Linked
Document templates section of the MDG Technology Wizard, follow the steps below:

1. Follow the steps in the Create MDG Technologies topic up to and including Step 6 , where you
select the Linked Document Templates checkbox. The MDG Technology Wizard - Linked Document
Templates dialog displays.

30 33

MDG Technologies in SDK | Create MDG Technologies 46

Enterprise Architect Software Developers' Kit

2. For each required document template available in the current model, select the checkbox next to the
template name.

3. Click on the Next button to proceed.

2.2 Working with MTS Files

An MDG Technology Selection (.MTS) file stores the selected options that you define when creating an MDG
Technology File using the MDG Technology Wizard. If you use a .MTS file, you can edit it to change the
features selected when you generated the file, and to add or remove the advanced features described in this
topic.

Create a .MTS File

To create a .MTS file, select the Tools | Generate MDG Technology File menu option to launch the MDG
Technology Wizard, and work through the screens as described in Create MDG Technologies . On the
second page, select the Create a new MTS file option.

Advanced Options For Your .MTS File

Once you have created the .MTS file, you can add:

· Model Search definitions (see Using Enterprise Architect - UML Modeling Tool)

Note:

If you use a custom SQL search, the SQL must include ea_guid AS CLASSGUID and the object type.

· Model Views (see Using Enterprise Architect - UML Modeling Tool)

Notes:

· Technology views do not store Favorite packages, only Views.

· If your exported views run searches that you have defined you must also include those searches in your
MDG Technology.

· Model Validation configurations

· Model Templates.

30

58

59

MDG Technologies in SDK | Working with MTS Files 47

© 1998-2010 Sparx Systems Pty Ltd

Open the .MTS file in a text editor. To make it easier for you, you can copy the following lines and paste them
into the file before the last line of the file (that is, just before the </MDG.Selections> lines:

<ModelSearches file=""/>
<ModelViews file=""/>

(The code for the model validation configurations and model templates is provided in the corresponding
sections, accessed via the links in the list above.)

You can, if necessary, have more than one line for each inclusion; for example, more than one ModelSearch.
For each inserted line:

· In the file attribute, enter the filename of the Model Search XML file or Model View XML file.

Save the .MTS file.

Update the MDG Technology

Again select the Tools | Generate MDG Technology File menu option, but this time on the second page
select Open an Existing MTS file and specify the file path of the .MTS file you have updated. Click on <Next>
until the wizard is finished. Your MDG Technology file is updated.

2.3 Customize Toolbox Profiles

The following is a road map of how to create a set of custom toolboxes for Enterprise Architect.

1. Create a set of Toolbox Profiles that contain the definitions that Enterprise Architect requires to
create the toolboxes.

2. Create a .MTS file containing instructions on how to build your MDG Technology. Use this .MTS file
to build your MDG Technology.

3. Add some finishing touches:

· Create hidden sub-menus

· Override Enterprise Architect's default toolboxes

· Change the default icons for toolbox items .

2.3.1 Create Toolbox Profiles

You can create multiple toolbox profiles within an MDG Technology. Each toolbox profile contains definitions
that determine what appears in the Enterprise Architect UML Toolbox when a specific Toolbox page is open,
either by selecting from the More tools... option in the Enterprise Architect UML Toolbox window, or by
opening or creating a diagram of the type that is linked to the toolbox profile.

To create a toolbox profile, follow the steps below:

1. Create a diagram in a profile package. Give it a name by which you can refer to it later, such as
MyClassDiagram. In the Notes field for the diagram give it an alias and a description in the following
format:
Alias=MyClass;Notes=Structural elements for class diagrams;

2. On the diagram, create a Class, name it ToolboxPage and give it the «metaclass» stereotype.

3. Create a «stereotype» element for each of the toolbox pages to create within your toolbox, such as
MyClassElements and MyClassRelationships. Set their Alias to the text to display in the title bar of each
toolbox page, such as My Class Elements and My Class Relationships respectively. Use the Notes field
to define the tool-tip for each toolbox page; that is, Elements for Class Diagrams and Relationships
for Class Diagrams. Use the «extends» connector to set the stereotype elements to extend
ToolboxPage. See also: Toolbox Page Attributes .

4. In the «stereotype» elements, create an attribute for each toolbox item. The name of the attribute
should be the name of the element or connector to be dropped, including namespace, for example,
UML::Package, UML::Class and UML::Interface. The toolbox items display in the same order as the
attributes in the Class, so make use of the attribute ordering buttons to define the order of your toolbox.

47

30

48

49

49

48

MDG Technologies in SDK | Customize Toolbox Profiles48

Enterprise Architect Software Developers' Kit

Note:

To name an attribute for an item from your own technology, precede it with your profile name as the
namespace, and then follow it in brackets with the element or connector type that you are extending
(so that Enterprise Architect knows what object to create). For example, a SysML block element would
appear as SysML::Block(UML::Class). Click on the following links for a complete list of elements
and connectors that can be extended.

To define a toolbox item that allows a pattern to be dropped onto a diagram, name the attribute My
Technology::MyPattern(UMLPattern) where MyTechnology is the ID of the technology and MyPattern is
the name of the pattern to drop. For example, BusFramework::Builder(UMLPattern).

To define a model-based pattern in a custom toolbox (such as the GoF patterns - see Extending UML
With Enterprise Architect) create an attribute with a name of the format
PatternCategory::PatternName(UML Pattern). For example: GoF Behavioral Patterns:: Mediator(UML
Pattern).

You might not want to use names such as UML::Package or UML::Class in your toolbox, so give the
attributes an Initial Value of, for example, Package or Class.

5. To save the toolbox profile, right-click on the diagram and select the Save as Profile context menu
option.

Note:

Each profile element incorporated into an MDG Toolbox page enables synchronization of the Tagged Values
and Constraints of all elements created from them (see Extending UML With Enterprise Architect).

2.3.1.1 Toolbox Page Attributes

The following attributes can be added to a stereotype Class that extends the ToolboxPage metaclass:

· ImagesOnly: if you give a toolbox page an attribute named imagesOnly with Initial Value set to true, the
toolbox page displays without the text labels next to the icons

· isCommon: if you give a toolbox page an attribute named IsCommon with Initial Value set to true, the
toolbox page is common to all defined toolboxes while your technology is active; the page is initially
displayed as collapsed

· isCollapsed: if you give a toolbox page an attribute named IsCollapsed with Initial Value set to true, the
toolbox page is initially minimized.

· Icon: see Icons for Toolbox Items

· isHidden: see Create Hidden Sub-Menus .

2.3.2 Create Hidden Sub-Menus

To create a sub-menu, create an additional «stereotype» element in the same toolbox profile and give it an
attribute named isHidden with Initial Value of true. Define the toolbox item attributes as before. In the parent
«stereotype» element, create an attribute with the identical name to the sub-menu element. The sub-menu
element can have an alias.

This technique is very useful for 'disambiguating' stereotypes that can be applied to multiple metaclasses. In
the example below, the «MyStereo» stereotype can be applied to either a Class or an Interface. On dragging
and dropping one from the toolbox, a hidden menu displays giving the choice of Class or Interface, then the
appropriate element is dropped:

50

51

49

48

MDG Technologies in SDK | Customize Toolbox Profiles 49

© 1998-2010 Sparx Systems Pty Ltd

2.3.3 Override Default Toolboxes

Enterprise Architect has many default Toolbox Profiles, one for each of its inbuilt diagram types. These define
the Toolbox pages that are displayed, by default, every time a diagram of a specific type is opened or brought
into view.

To replace one of Enterprise Architect's default toolboxes with one of your own (for example, if you have your
own version of the UML::Class toolbox that you want to be opened every time a Class diagram is opened - as
long as your technology is active) then include a RedefinedToolbox clause in the Notes field for the diagram
properties of your Toolbox Profile diagram. For example, the profile diagram's Notes field could resemble the
following:

RedefinedToolbox=UML::Class;Alias=Class;Notes=Structural elements for Class diagrams;

This states that the toolbox defined by this profile replaces the Enterprise Architect toolbox UML::Class as the
default toolbox for all UML Class diagrams. For a list of inbuilt toolboxes, see the Enterprise Architect
Toolboxes topic.

2.3.4 Assign Icons To Toolbox Items

To assign an icon to a toolbox item, create a new «stereotype» element in the same toolbox profile as the
toolbox item. Have the stereotype element extend a «metaclass» element named ToolboxItemImage. The «
stereotype» element must have the same name as the attribute that it is assigning an image to (for example,
MyTech::MyStereo(UML::Class) in the diagram below) and must have an attribute named Icon with Initial
Value set to the full path and file name of the image to be used. The image must be a 16x16 .BMP file.

50

MDG Technologies in SDK | Customize Toolbox Profiles50

Enterprise Architect Software Developers' Kit

2.3.5 Enterprise Architect Toolboxes

The following is a list of the Enterprise Architect UML Toolboxes that can be overridden:

· UML::Activity · Extended::Analysis

· UML::Class · Extended::Custom

· UML::Communication · Extended::DataModeling

· UML::Component · Extended::Maintenance

· UML::Composite · Extended::Requirements

· UML::Deployment · Extended::UserInterface

· UML::Interaction · Extended::WSDL

· UML::Metamodel · Extended::XMLSchema

· UML::Object

· UML::Profile

· UML::State

· UML::Timing

· UML::UseCase

2.3.6 Elements Used in Toolboxes

The following elements (all preceded with the namespace UML::) can be extended or redefined in Enterprise
Architect Toolbox pages. The text in red indicates the label name displayed in the default Enterprise Architect
Toolbox pages, where this differs in any way from the UML:: statement text.

When these profile elements are incorporated into an MDG Toolbox page, they enable synchronization of the
Tagged Values and Constraints of all elements created from them (see Extending UML With Enterprise
Architect).

You can also extend connectors .

· Action

· Activity

· ActivityFinal (Final)

· ActivityInitial (Initial)

· ActivityParameter

· ActivityPartition (Partition)

· ActivityRegion (Region)

· Actor

· Artifact

· AssociationElement (Association)

· Boundary (for Use Cases)

· CentralBufferNode (Central Buffer Node)

· Change

· Choice

· Class

· InteractionState (State/Continuation)

· Interface

· Issue

· Junction

· Lifeline

· MergeNode (Merge)

· MessageEndPoint (Endpoint or Message Endpoint)

· MessageLabel (Message Label)

· Metaclass

· Node

· Object

· ObjectBoundary (Boundary)

· ObjectControl (Control)

· ObjectEntity (Entity)

· Package

51

MDG Technologies in SDK | Customize Toolbox Profiles 51

© 1998-2010 Sparx Systems Pty Ltd

· Collaboration

· CollaborationOccurrence

· Comment (Note)

· Component

· Constraint

· Datastore

· Decision

· DeploymentSpecification (Deployment
Specification)

· Device

· DiagramLegend (Diagram Legend)

· DiagramNotes (Diagram Notes)

· DocumentArtifact (Document Artifact or Document)

· Entity (Information)

· EntityObject (Entity)

· EntryState (Entry)

· Enumeration

· ExceptionHandler (Exception)

· ExecutionEnvironment (Execution Environment)

· ExitState (Exit)

· Feature

· FinalState (Final)

· FlowFinalNode (Flow Final)

· ForkJoinH (Fork/Join - Horizontal)

· ForkJoinV (Fork/Join - Vertical)

· Gate (Diagram Gate)

· GUIElement (UI Control)

· HistoryState (History)

· Hyperlink

· InformationItem (Information Item)

· InitialState (Initial)

· InteractionFragment (Fragment)

· PackagingComponent

· Part

· Port

· Primitive

· Process

· Profile

· ProvidedInterface (Expose Interface)

· ReceiveEvent (Receive)

· Requirement

· RobustBoundary (Boundary)

· RobustControl (Control)

· RobustEntity (Entity)

· Screen

· SendEvent (Send)

· SequenceBoundary (Boundary)

· SequenceControl (Control)

· SequenceEntity (Entity)

· Signal

· State

· StateMachine (State Machine)

· StateTimeLine (State Lifeline)

· Stereotype

· StructuredActivity (Structured Activity)

· SynchState (Synch)

· Table

· Terminate

· TestCase (Test Case)

· Text

· UseCase (Use Case)

· UMLBoundary (Boundary)

· ValueTimeLine (Value Lifeline)

2.3.7 Connectors Used In Toolboxes

The following connectors (all preceded with the namespace UML::) can be extended or redefined in Enterprise
Architect toolboxes. The text in red indicates the label name displayed in the default Enterprise Architect
Toolbox pages, where this differs in any way from the UML:: statement text.

You can also extend elements .

· Aggregation (Aggregate)

· Assembly

· NoteLink (Note Link)

· ObjectFlow (Object Flow)

50

MDG Technologies in SDK | Customize Toolbox Profiles52

Enterprise Architect Software Developers' Kit

· Association (Associate)

· AssociationClass (Association Class)

· CallFromRecursion (Call)

· CommunicationPath (Communication Path)

· Composition (Compose)

· Connector

· ControlFlow (Control Flow)

· Delegate

· Dependency

· Deployment

· Extension

· Generalization (Generalize or Inheritance)

· InformationFlow (Information Flow)

· InterruptFlow (Interrupt Flow)

· Invokes

· Manifest

· Message

· Nesting

· Occurrence

· PackageImport (Package Import)

· PackageMerge (Package Merge)

· Precedes

· ProfileApplication (Application)

· Realization (Realize or Implements)

· Recursion

· Redefinition

· Representation

· Represents

· RoleBinding (Role Binding)

· SelfMessage (Self-Message)

· TagValAssociation (Tagged Value)

· TraceLink (Trace)

· Transition

· UCExtend (Extend)

· UCInclude (Include)

· UseCaseLink (Use)

2.4 Create Diagram Profiles

Custom Diagram Types

You can create extended diagram types in Enterprise Architect and include them in MDG Technologies. To do
this, perform the following steps.

1. Create a profile with the same name as the MDG Technology in which it is to be included; for example,
SysML.

2. Create a «stereotype» Class element that is named as the custom diagram, for example,
BlockDefinition.

3. Create a Class element and name it as one of the Built-In Diagram Types prefixed with Diagram_,
for example Diagram_Logical for Class diagrams or Diagram_Use Case for Use Case diagrams.

4. Give the Diagram_x Class the «metaclass» stereotype and draw an «extends» connector from the
stereotype to the metaclass.

5. In the Notes field, give the stereotype Class a brief description of what the diagram is used for. This
description displays in the bottom right-hand corner of the New Diagram dialog.

6. Give the Diagram_x Class the following attributes as required:

· alias: string = Type (where Type appears before the word 'Diagram' on the diagram title bar)

· diagramID: string = abc (where abc is the diagram type that appears in the diagram frame label - see
the UML Dictionary)

· toolbox: string = ToolboxName (where ToolboxName is the name of the toolbox profile for the
toolbox that opens automatically each time a diagram is opened)

· frameString: string = FrameFormatString (where FrameFormatString is a string containing
substitution macros for defining the frame title, with or without additional delimiters such as []; m
acros that can be used are:

· #DGMSTEREO#

· #DGMID#

· #DGMTYPE#

· #DGMALIAS#

53

MDG Technologies in SDK | Create Diagram Profiles 53

© 1998-2010 Sparx Systems Pty Ltd

· #DGMOWNERNAME#

· #DGMOWNERNAMEFULL#

· #DGMNAME#

· #DGMNAMEFULL#

· swimlanes: string = Lanes=2;Orientation=Horizontal;Lane1=Title1;Lane2=Title2; (where Lanes can
be any value, but the number of Lane<n> values must equal the value of Lanes; Orientation can be
omitted, in which case the swimlanes default to vertical)

· styleex: string = one or more of a range of values; see Attribute Values - stylex & pdata

· pdata: string = one or more of a range of values; see Attribute Values - stylex & pdata .

The following example shows the DFD diagram profile which defines a DFD diagram as an extension of
the Enterprise Architect Analysis diagram.

7. Save the diagram as a profile in the usual manner.

8. Add the diagram profile to the .MTS file used in the MDG Technology.

2.4.1 Built-In Diagram Types

The following is a full list of built-in diagram types provided by Enterprise Architect.

· Activity

· Analysis

· Collaboration

· Component

· CompositeStructure

· Custom

· Deployment

· InteractionOverview

· Logical

· Object

· Package

· Sequence

· Statechart

· Timing

· Use Case

Note the use of Logical for Class diagrams and also notice the space in the middle of Use Case. These names
are used in Defining Child Diagram Types , or prefixed by Diagram_ in creating Diagram Profiles .

2.4.2 Attribute Values - stylex & pdata

When creating a diagram profile, you can use the pdata and stylex attributes to define a range of
characteristics of the diagrams created with the profile. If the attribute is defining several characteristics at
once, put the values in a single string separated by semicolons. For example:

53

53

36

23 52

MDG Technologies in SDK | Create Diagram Profiles54

Enterprise Architect Software Developers' Kit

styleEx: string = HideQuals=0;AdvanceElementProps=1;ShowNotes=1;

styleex: string =

· TConnectorNotation=Option; (where Option is one of UML 2.1, IDEF1X, or Information Engineering)

· ShowAsList=1; (to make the diagram open directly into the Element List - see the View Options topic in
Using Enterprise Architect - UML Modeling Tool)

· AdvanceElementProps=1; (to show the element property string)

· ShowTests=1; (to show the element Testing compartment)

· ShowMaint=1; (to show the element Maintenance compartment)

· ShowNotes=1; (to show the element Notes compartment)

· HideQuals=0; (to show qualifiers and visibility indicators)

· AdvancedFeatureProps=1; (to show the feature property string)

· ShowOpRetType=1; (to show the operation return type)

· SuppressBrackets=1; (to suppress brackets on operations without parameters)

· AttPkg=1; (to show package visible class members)

· VisibleAttributeDetail=1; (to show attribute details on the diagram)

· TExplicitNavigability=1; (to show non-navigable connector ends)

· AdvancedConnectorProps=1; (to show connector property strings)

· SuppConnectorLabels=1; (to suppress all connector labels).

pdata: string =

· UseAlias=1; (to use the aliases or elements in the diagram, if available)

· HideParents=0; (to show additional parents of elements in the diagram)

· HideEStereo=0; (to show element stereotypes in the diagram)

· ShowSN=1; (to show sequence notes)

· ShowIcons=1; (to use stereotype icons)

· HideAtts=0; (to show the element Attributes compartment)

· HideOps=0; (to show the element Operations compartment)

· ShowTags=1; (to show the element Tagged values compartment)

· ShowReqs=1; (to show the element Requirements compartment)

· ShowCons=1; (to show the element Constraints compartment)

· HideStereo=0; (to show attribute and operation stereotypes)

· HideProps=0; (to show property methods)

· OpParams=3; (to show operation parameters)

· HideRel=0; (to show relationships)

· SuppCN=0;(to show collaboration numbers).

2.5 Create Tasks Pane Profiles

Defining Tasks Pane profiles is a four-part process:

1. Define Toolboxes . Create any number of stereotype elements that each define a Tasks Pane
toolbox page

2. Define Contexts . Create any number of stereotype elements that each define a named Context. A
context might be when a specific diagram type is open, or when a specific element type is selected.

3. Allocate Contexts to Toolboxes. Define the many-to-many relationships between the Tasks Pane
toolboxes and the available contexts.

4. Create the Profile and incorporate it into your Technology.

55

57

57

58 38

MDG Technologies in SDK | Create Tasks Pane Profiles 55

© 1998-2010 Sparx Systems Pty Ltd

2.5.1 Define Tasks Pane Toolboxes

A Tasks Pane toolbox is defined by a «stereotype» Class that extends a «metaclass»ToolboxPage element.
These elements must be owned by a «profile» package. Each «stereotype» Class represents the contents of
the Tasks Pane for a given context, and each attribute of the «stereotype» Class defines a command button in
the Tasks Pane. The following diagram shows an example of a Tasks Pane toolbox.

The title bar of the Tasks Pane toolbox is defined by the Alias of the «stereotype» Class, in this case
Debugging Profile. This example uses the following standard attribute types:

· EASystem::MenuCmd. These entries name an Enterprise Architect main menu command inside round
brackets. See the complete list of inbuilt commands . Type the text to appear in the Tasks Pane into the
Initial Value field.

· EASystem::ShowHelp. These entries name a page from the Enterprise Architect User Guide inside round
brackets. To find out the names of pages in the Enterprise Architect User Guide, right-click on the page
and select the Properties context menu option. Type the text to appear in the Tasks Pane into the Initial
Value field.

· EASystem::ShowMovie. These entries give the URL of a movie inside round brackets. Type the text to
appear in the Tasks Pane into the Initial Value field.

· SEPARATOR. This entry indicates that a separator should be placed in the Tasks Pane toolbox. If it is
necessary to place multiple separators in a single toolbox, note that Enterprise Architect does not allow
identically named attributes for a Class: simply change the case of one or more letters to get around the
problem.

Other useful attributes include:

· EASystem::ShowURL. This entry gives the URL of a web page inside round brackets. Type the text to
appear in the Tasks Pane into the Initial Value field.

· isCommon: A boolean attribute with Initial Value set to True, defines a Tasks Pane toolbox as context-
free and common, appearing for all contexts

· You can also run Add-In functions from the Tasks Pane.

Next Step

The next step is to create a set of Tasks Pane Contexts .

2.5.1.1 Built-In Tasks Pane Commands

The following Enterprise Architect commands can all be used in user-defined Tasks Pane profiles. Tasks Pane
pages have attributes named in the form EASystem::MenuCmd(<CommandName>) where <CommandName>
is the name chosen from the following list:

55

56

57

MDG Technologies in SDK | Create Tasks Pane Profiles56

Enterprise Architect Software Developers' Kit

· AddDiagram

· AddElement

· AddPackage

· AutoRecordThread

· AddModelFromPattern

· Build

· BuildScripts

· ConfigureCSV

· ConfigureValidation

· CreateBaseLine

· CreateSequenceDiagram

· DebugPause

· DebugRun

· DebugStop

· Deploy

· DiagramsOnlyReport

· ElementUsage

· ExportXMI

· FileNew

· FileOpen

· GenerateDDL

· GenerateWSDL

· GenerateXMLSchema

· ImplementationDetails

· ImportBinary

· ImportExportCSV

· ImportSchema

· ImportSourceDirectory

· ImportWSDL

· ImportXMI

· ImportXMLSchema

· Run

· RunHTMLReport

· RunRTFReport

· SetClassifier

· ShowHideExecution

· StartDebugRecording

· StepInto

· StepOut

· StepOver

· StopDebugRecording

· Test

· TestingReport

· ToggleLevelNumbering

· TransformPackage

· TransformSelectedElements

· ValidateModel

· ViewAuditing

· ViewDebug

· ViewElementList

· ViewForum (for Team Review
window)

· ViewHierarchy (for Traceability
window)

· ViewMaintenance

· ViewOutput

· ViewProjectManagement

· ViewRelationships

· ViewRelMatrix

· ViewRequirementTypes

· ViewRules

· ViewSearch

· ViewSourceCode

· ViewTaggedValues

· ViewTesting

· ViewTestingDetails

· ViewWebBrowser

2.5.1.2 Run Add-In Functions

To run Add-In functions from the Tasks Pane, you create an attribute in the Tasks Pane «stereotype» Class
with the following format:

"Assembly::FunctionName()"

where Assembly is the name of the Add-In and FunctionName is the name of a public function in the Add-In.
Give the attribute an initial value of the text that is to appear in the Tasks Pane. The function receives two
parameters and returns a success status, as in the following VB.Net example:

Public Function ShowMyDiagram(ByRef Repository As EA.Repository, ByVal args As Object) As String
 Dim ret As String
 ret = Repository.SQLQuery("select ea_guid from t_diagram where diagram_type='Custom' and StyleEx like

 '*;MDGDgm=MyDiagrams::MyCustomDiagram;*'")
 If ret Is Nothing Then

ShowMyDiagram = False
Exit Function

 End If

 Dim oXML As MSXML2.DOMDocument = New MSXML2.DOMDocument
 oXML.loadXML(ret)

 Dim NodeList As MSXML2.IXMLDOMNodeList = oXML.selectNodes("//ea_guid")
 If NodeList.length = 0 Then

ShowMyDiagram = False
Exit Function

 End If

MDG Technologies in SDK | Create Tasks Pane Profiles 57

© 1998-2010 Sparx Systems Pty Ltd

 Dim Node As MSXML2.IXMLDOMNode
 Dim diag As EA.Diagram
 If NodeList.length >= 1 Then

Node = NodeList.item(0)
 diag = Repository.GetDiagramByGuid(Node.text)

Repository.OpenDiagram(diag.DiagramID)
Repository.ShowInProjectView(diag)

 End If

 ShowMyDiagram = True
End Function

2.5.2 Define Tasks Pane Contexts

Named Contexts

To create a context-sensitive set of Tasks Panes, you must define a set of named contexts that can be used in
the definition. A named context is a «stereotype» Class which extends a «metaclass» named ToolboxContext.
These elements must be owned by the same «profile» package that owns the Task Pane toolbox definitions

. The context Class has one of the following attributes:

· contextDiagramType; this should have an Initial Value set to a valid diagram type

· contextItemType; this should have an Initial Value set to a valid element type

· contextKey.

Example Context Profile

Next Step

The next step is to allocate Tasks Pane contexts to Tasks Pane toolboxes .

2.5.3 Allocate Tasks Pane Contexts

Once you have defined your Tasks Pane toolboxes and Tasks Pane contexts , you can allocate your
toolboxes to as many contexts as apply, and any number of toolboxes can be allocated to a single context.
This is done by creating a «taggedValue» connector from the toolbox element to the context element. The
Association end at the context end must be named. The following diagram shows how this might appear.

55

57

55 57

MDG Technologies in SDK | Create Tasks Pane Profiles58

Enterprise Architect Software Developers' Kit

Next Step

The next step is to Save your Tasks Pane Profile .

2.5.4 Save a Tasks Pane Profile

The best organization structure for the model in which you are creating your Tasks Pane Profile is:

· A single «profile» package

· Three diagrams within the «profile» package named Toolboxes, Contexts and Context Allocations

· Each toolbox page «stereotype» element is owned by the «profile» package and appears on the Toolboxes
and Context Allocations diagrams

· Each context «stereotype» element is owned by the «profile» package and appears on the Contexts and
Context Allocations diagrams

· Each «metaclass» element is owned by the «profile» package and appears on the Toolboxes or Contexts
diagram.

From this structure, creating a Tasks Pane Profile is as simple as right-clicking on the «profile» package in the
 Project Browser and selecting the Save Package as UML Profile context menu option.

2.6 Define Validation Configuration

The Model Validation Configuration dialog can be opened using the Project | Model Validation | Configure...
menu option. Using this dialog, you can choose which sets of validation rules are and are not executed when a
user performs a validation. Rather than perform this configuration manually and potentially have to change the
settings every time Enterprise Architect is started and a different technology is set active, you can define the
configuration settings within the MTS file.

To specify a set of rules as a white-list (that is, anything added to this list is turned ON), open your MTS file in
a text editor and copy and paste the following <ModelValidation> block at the top level inside the <MDG.Selections
> block:

<ModelValidation>
<RuleSet name="BPMNRules"/> <!-- ruleset ID defined in the Project.DefineRuleCategory call -->
<RuleSet name="MVR7F0001"/> <!-- notice you can turn on/off system rules as well! -->

</ModelValidation>

58

MDG Technologies in SDK | Define Validation Configuration 59

© 1998-2010 Sparx Systems Pty Ltd

Ensure that the ruleset IDs do not contain any spaces.

To specify a set of rules as a black-list (that is, anything added to this list is turned OFF), open your MTS file in
a text editor and copy and paste the following <ModelValidation> block at the top level inside the <MDG.Selections
> block:

<ModelValidation isBlackList="true">
<RuleSet name="BPMNRules"/>
<RuleSet name="MVR7F0001"/>

</ModelValidation>

In the examples above, "BPMNRules" is the rule-set ID defined in the Project.DefineRuleCategory call - see
Project Interface for details. "MVR7F0001" is one of Enterprise Architect's built-in rule-sets. These validation
options are applied when you activate the appropriate technology. The global (default) technology has all rules
turned on.

2.7 Incorporate Model Templates

Enterprise Architect has a number of Model Templates (see Using Enterprise Architect - UML Modeling Tool)
that can be added into a model, either on creation of the model, or at any time by right-clicking on a package
in the Project Browser and selecting the Add | Add a New Model using Wizard... context menu option (see
UML Model Management). You can create your own templates and include them in your MDG Technology.
The first step is to create a template package and save it to the MTS file.

Open your MTS file in a text editor and copy and paste the following <ModelTemplates> block at the top level
inside the <MDG.Selections> block:

<ModelTemplates>
 <Model name="Template Name"
 description="This is the description."
 location="MyTemplatePackage.xml"
 default="yes"
 icon = "34"
 filter= "Filter Name"/>
</ModelTemplates>

You can include as many <ModelTemplates> blocks as you have model templates. The attributes have the
following meanings:

· Model name: The name of the model template as shown in the Select model(s) dialog, which displays
when you create a new model or when you execute the Add a New Model using Wizard menu option.

· description: The text that is displayed in the Select model(s) dialog when the name is selected.

· location: Contains the path of the XML file that contains the XMI export of the model template package,
relative to the location of the MDG Technology file. If the XMI file is in the same folder as the technology file
then this just contains the file name.

· default: Contains either yes indicating that the model template is checked by default, or no indicating that
the model template is un-checked by default.

· icon: Contains an index to Enterprise Architect's base icons list. To show the appropriate view icon, use
one of the following values: 29 = Use Case, 30 = Dynamic; 31 = Class; 32 = Component; 33 =
Deployment; 34 = Simple.

· filter: If you have a large number of model templates, you can group them on the Select model(s) dialog by
giving all the model templates in the same group the same filter name. The filter name given appears in
the Select from: list box in the Select model(s) dialog.

2.8 Deploy An MDG Technology

An MDG Technology can be deployed in one of two ways: as a file or from an Add-In.

Deploy From a File

To deploy your technology as a file, you have a number of choices:

· Copy it to a folder named MDGTechnologies, which you must create under your Enterprise Architect
installation directory (by default this is C:\Program Files\Sparx Systems\EA. When you restart Enterprise
Architect, your MDG Technology is deployed.

· Copy it to any folder in your file system, including network drives: use the Enterprise Architect Settings |
MDG Technologies... menu option, press the Advanced button and add the folder to the Technologies

path. This deployment method enables you to quickly and easily deploy a technology to all Enterprise

271

MDG Technologies in SDK | Deploy An MDG Technology60

Enterprise Architect Software Developers' Kit

Architect users on a LAN.

· Upload it to an internet or intranet location: use the Enterprise Architect Settings | MDG Technologies...
menu option, press the Advanced button and add the URL to the Technologies path. This deployment
method enables you to quickly and easily deploy a technology to an even wider group of Enterprise
Architect users.

Deploy From an Add-in

To deploy your technology from an Add-In, you must write an EA_OnInitializeTechnologies function. The
following example is written in VB.Net:

Public Function EA_OnInitializeTechnologies(ByVal Repository As EA.Repository) As Object
 EA_OnInitializeTechnologies = My.Resources.MyTechnology
 End Function

152

Shape Scripts | 61

© 1998-2010 Sparx Systems Pty Ltd

3 Shape Scripts

Introduction

Enterprise Architect Shape Scripts enable you to specify custom shapes via a scripting language. These
custom shapes are drawn instead of the standard UML notation. Each script is associated with a particular
stereotype, and is drawn for every element of that stereotype. The following topics describe how to create and
apply Shape Scripts:

· Getting Started with Shape Scripts

· Write Scripts

· Example Scripts

· Shape Editor

· Add Shape Scripts to UML Profiles

3.1 Getting Started With Shape Scripts

Shape Scripts are associated with stereotypes and are defined via the Stereotypes tab of the UML Types
dialog. To access this dialog, select the Settings | UML menu option. Each stereotype defined can have a
Shape Script.

61

65

77

64

15

61

Shape Scripts | Getting Started With Shape Scripts62

Enterprise Architect Software Developers' Kit

You can create a Shape Script for an existing stereotype by selecting the stereotype from the list. Alternatively,
you can create new stereotypes by clicking on the New button and giving the stereotype a name. Select a
base Class and click on the Save button. Once the stereotype is saved, it displays in the list.

To override the appearance, select the Shape Script radio button and then click on the Assign button. The
Shape Script Editor displays.64

Shape Scripts | Getting Started With Shape Scripts 63

© 1998-2010 Sparx Systems Pty Ltd

Type the example Shape Scripts in the Edit window. You can click on the Refresh button in order to view the
shape in the preview window.

Note:

If you define a composite Shape Script (such as the connector at the end of the Example Scripts topic),
click on the Next Shape button to page through the components of the shape.

Once you have finished writing your Shape Script , click on the OK button. To save the Shape Script you
must click on the Save button on the Stereotypes tab.

Once you have created your Shape Script for a particular stereotype, you can assign that stereotype to an
element or connector. The appearance reflects the Shape Script you created. To do this, drag and drop the
appropriate element or connector into your diagram.

Note:

If an element's appearance is modified by a Shape Script, many of the options on the Advanced context
menu for that element are disabled (see UML Modeling With Enterprise Architect - UML Modeling Tool).

Right-click on the element or connector and select the Properties context menu option. Click on the
Stereotype field drop-down arrow, select the stereotype you created and click on the OK button. The object's
shape now reflects the Shape Script you created.

77

65

Shape Scripts | Getting Started With Shape Scripts64

Enterprise Architect Software Developers' Kit

3.2 Shape Editor

The Shape Editor enables you to create Shape Scripts . It provides the facilities of the Common Code
Editor, including intellisense for shape script attributes and functions. For more information on intellisense and
the Common Code Editor, see the Code Editors topic in Using Enterprise Architect - UML Modeling Tool.

To access the Shape Editor, follow the steps below:

1. Select the Settings | UML menu option; the UML Types dialog displays, defaulted to the Stereotypes
tab.

2. Type a name in the Stereotype field, or click on an the required stereotype in the list.

3. From the Override Appearance panel, select the Shape Script radio button.

4. Click on the Assign button. The Shape Editor dialog displays.

61

Shape Scripts | Shape Editor 65

© 1998-2010 Sparx Systems Pty Ltd

Option Use to

Format Select the Shape Script version.

Import Import a Shape Script from a text file.

Export Export a Shape Script to a text file.

OK Exit from the Shape Editor, don't forget to save your script from the
Stereotypes tab. See Getting Started .

Next Shape Rotate though the multiple shape definitions.

Refresh Parse your script and display the result in the Preview window.

3.3 Write Scripts

This topic is a detailed reference for writing Shape Scripts . For an introduction to writing Shape Scripts,
see the Getting Started and Example Scripts topics.

See the following reference topics for more detailed information on shape scripting:

· Syntax grammar

· Shape attributes

· Drawing methods

· Color queries

· Conditional branching

· Query methods

· Display Item properties

· Sub-shapes

· Reserved names

· Miscellaneous

3.3.1 Syntax Grammar

Grammar symbols:

· * = zero or more

· + = one or more

61

61

61 77

65

66

68

72

72

72

72

75

76

76

Shape Scripts | Write Scripts66

Enterprise Architect Software Developers' Kit

· | = or

· ; = terminator

ShapeScript ::= <Shape>*;

Shape ::= <ShapeDeclaration> <ShapeBody>;

ShapeDeclaration ::= <ShapeType> <ShapeName>;

ShapeType ::= "shape" | "decoration";

ShapeName ::= <ReservedShapeName> | <stringliteral>;

ReservedShapeName ::= See Reserved Names for fulled reserved shape listing

ShapeBody ::= "{" <InitialisationAttributeAssignment>* <DrawingStatement>*
<SubShape>* "}";

InitialisationAttributeAssign
ment

::= <Attribute> "=" <Value> ";";

Attribute ::= See Shape Attributes for full listing of attribute names

DrawingStatement ::= <IfElseSection> | <Method>;

IfElseSection ::= "if" "(" <QueryExpression> ")" <TrueSection> [<ElseSection>];

QueryExpression ::= <QueryName> "(" <ParameterList> ")";

QueryName ::= See Query Methods for a full listing of Query names

TrueSection ::= "{" <DrawingStatement>* "}"

ElseSection ::= "else" "{" <DrawingStatement>* "}"

Method ::= <MethodName> "(" <ParameterList> ")" ";";

MethodName ::= See Drawing Methods for a full listing of method names

3.3.2 Shape Attributes

syntax: attribute "=" value ";"

example:

shape main
{

//Initialisation attributes - must be before drawing commands
noshadow = "true";
h_align = "center";

//drawing commands
rectangle(0,0,100,100);
println("foo bar");

}

Attribute Name Type Description

bottomAnchorOffse
t

(int,int) When creating a Shape Script for an embedded element (such as a Port),
use this attribute to offset the shape from the bottom edge of its parent.

For example:

bottomAnchorOffset=(0,-10); move embedded element up 10 pixels from
the bottom edge

76

66

72

68

Shape Scripts | Write Scripts 67

© 1998-2010 Sparx Systems Pty Ltd

Attribute Name Type Description

dockable string Makes the shape default to dockable, so that it can be aligned with and
joined to other elements (both other Shape Scripts and standard elements)
on a diagram. You cannot reverse the dockable status with the
Appearance menu option; to change the status, you must edit the Shape
Script.

Valid values: standard or off

editableField string Defines a shape as an editable region of the element.

This field impacts element shapes only, line glyphs are not supported.

Valid Values: alias, name, note, stereotype

endPointY,
endPointX

integer Only used for the reserved target and source shapes for connectors; this
point determines where the main connector line connects to the end
shapes.

Default: 0 and 0

fixedAspectRatio string Set to true to fix the aspect ratio. Do not use if you do not want to fix the
aspect ratio.

h_Align string Affects horizontal placement of printed text and subshapes depending on
the layoutType attribute.

Valid values: left, center, or right

layoutType string Determines how subshapes are sized and positioned. See Subshape
Layout for further details.

Valid values: leftright, topdown, border

leftAnchorOffset (int,int) When creating a Shape Script for an embedded element (such as a Port),
use this attribute to offset the shape from the left edge of its parent.

For example:

leftAnchorOffset=(10,0); move embedded element right 10 pixels from the
left edge

noShadow string Set to true to suppress the shapes shadow from being rendered.

Valid values: true or false (default= false)

orientation string Applies to decoration shapes only. Determines where the decoration is
positioned within the containing element glyph.

Valid values: NW, N, NE, E, SE, S, SW, W

preferredHeight Used by border layoutType - north and south

Used in drawing the source and target shapes for connectors to determine
how wide the line is.

preferredWidth Used by border layoutType - east and west.

Used by leftright layoutType, shapes where scalable is false to determine
how much space they occupy for layout purposes.

rightAnchorOffset (int,int) When creating a Shape Script for an embedded element (such as a Port),
use this attribute to offset the shape from the right edge of its parent.

For example:

rightAnchorOffset=(-10,0); move embedded element left 10 pixels from the
right edge

rotatable string Set to false to prevent rotation of the shape. This attribute is only

75

Shape Scripts | Write Scripts68

Enterprise Architect Software Developers' Kit

Attribute Name Type Description

applicable to the source and target shapes for lines glyphs.

Valid values: true or false (default = true)

scalable string Set to false to stop the shape from being relatively sized to the associated
diagram glyph.

Valid values: true or false (default= true)

topAnchorOffset (int,int) When creating a Shape Script for an embedded element (such as a Port),
use this attribute to offset the shape from the top edge of its parent.

For example:

topAnchorOffset=(0,10); move embedded element down 10 pixels from the
top edge

v_Align string Affects vertical placement of printed text and subshapes depending on the
layoutType attribute.

Valid values: top, center, or bottom

3.3.3 Drawing Methods

Method Name Description

addsubshape(
string shapename[,
int width,
int height])

Adds a sub-shape with the name shapename that must be defined within
the current shape definition.

arc(
int left,
int top,
int right,
int bottom,
int startingpointx,
int startingpointy,
int endingpointx,
int endingpointy)

Draws an elliptical anticlockwise arc with the ellipse having extents at left,
top, right and bottom. The start point of the arc is defined by the
intersection of the ellipse and the line from the center of the ellipse to the
point (startingpointx, startingpointy). The end of the arc is similarly
defined by the intersection of the ellipse and the line from the center of the
ellipse to the point (endingpointx, endingpointy).

For example:

Arc(0, 0, 100, 100, 95, 0, 5, 0);

arcto(
int left,
int top,
int right,

As for the arc method, except that a line is drawn from the current position
to the starting point of the arc, and then the current position is updated to
the end point of the arc.

Shape Scripts | Write Scripts 69

© 1998-2010 Sparx Systems Pty Ltd

Method Name Description

int bottom,
int startingpointx,
int startingpointy,
int endingpointx,
int endingpointy)

bezierto(
int controlpoint1x,
int controlpoint1y,
int controlpoint2x,
int controlpoint2y,
int endpointx,
int endpointy)

Draws a bezier curve and updates the pen position.

defSize(int width, int height) Sets the default size of the element.

This can appear in IF and ELSE clauses with different values in each, and
causes the element to be resized automatically each time the values
change. For example:

 if(HasTag("horizontal","true")) {
 defSize(100,20);
 rectangle(0,0,100,100);
 }
 else {
 defSize(20,100);
 rectangle(0,0,100,100);
 }

The above example sets the shape to the specified default size each time
the
Tagged Value horizontal is changed.

When this is set, [Alt]+[Z] also resizes the shape to the defined dimensions.

Note:

The minimum value for both int width and int height is 10.

drawnativeshape() Causes Enterprise Architect to render the shape using its usual,
non-Shapescript notation. Subsequent drawing commands are
super-imposed over the native notation.

This method is only enabled for element Shape Scripts; line Shape Scripts
are not supported.

ellipse(
int left,
int top,
int right,
int bottom)

Draws an ellipse with extents defined by left, top, right and bottom.

endpath() Ends the sequence of drawing commands that define a path.

fillandstrokepath() Fills the previously defined path with the current fill color, then draws its
outline with the current pen.

fillpath() Fills the previously defined path with the current fill color.

hidelabel(
string labelname)

Hides the label specified by labelname.

image(
string imageId,

Draws the image that has the name imageId in the Image Manager.

Shape Scripts | Write Scripts70

Enterprise Architect Software Developers' Kit

Method Name Description

int left,
int top,
int right,
int bottom)

Note:

The image must exist within the model in which the stereotype is used. If it
does not already exist in the model, you must import it as reference data
(see UML Model Management).

lineto(
int x,
int y)

Draws a line from the current cursor position to a point specified by x and y,
and then updates the pen cursor to that position.

moveto(
int x,
int y)

Moves the pen cursor to the point specified by x and y.

polygon(
int centerx,
int centery,
int numberofsides,
int radius,
float rotation)

Draws a regular polygon with center at the point (centerx, centery), and
numberofsides number of sides.

print(
string text)

Prints the specified text string.

Note:

You cannot change the font size, type or color of this text.

printifdefined(
string

propertyname,
string truepart[,
string falsepart])

Prints the truepart if the given property exists and has a non-empty value,
otherwise prints the optional falsepart.

Note:

You cannot change the font size, type or color of this text.

println(
string text)

Appends a line of text to the shape and a line break.

Note:

You cannot change the font size, type or color of this text.

printwrapped(
string text)

Prints the specified text string, wrapped over multiple lines if the text is wider
than its containing shape.

Note:

You cannot change the font size, type or color of this text.

rectangle(
int left,
int top,
int right,
int bottom)

Draws a rectangle with extents at left, top, right, bottom. Values are
percentages.

roundrect(
int left,

 int top,
 int right,
 int bottom,
 int
abs_cornerwidth,
 int

Draws a rectangle with rounded corners, with extents defined by left, top,
right and bottom. The size for the corners is defined by abs_cornerwidth
and abs_cornerheight; these values do not scale with the shape.

Shape Scripts | Write Scripts 71

© 1998-2010 Sparx Systems Pty Ltd

Method Name Description

abs_cornerheight)

setdefaultcolors() Returns the brush and pen color to the default settings, or to the
user-defined colors if available. See Color Queries .

setfillcolor(
int red,
int green,
int blue)

setfillcolor(
Color newColor)

Sets the fill color.

You can specify the required color by defining RGB values or using a color
value returned by any of the Color Queries ; for example:

GetUserFillColor()

setlinestyle(
string linestyle)

Changes the stroke pattern for commands that use the pen.

Parameters:

string linestyle: the following styles are valid:

· solid

· dash

· dot

· dashdot

· dashdotdot

setorigin(
string relativeTo,
int xOffset,
int yOffset)

Positions floating text labels relative to the main shape.

relativeTo is one of N, NE, E, SE, S, SW, W, NW, CENTER

xOffset and yOffset are in pixels, not percentage values, and can be
negative.

setpen(
int red,
int green,
int blue[,
int penwidth])

Sets the pen to the defined color and optionally sets the pen width.

Note:

This method is only for line-drawing commands. It does not affect any text
commands.

setpencolor(
int red,
int green,
int blue)

setpencolor(
Color newColor)

Sets the pen color.

You can specify the required color by defining RGB values or using a color
value returned by any of the Color Queries ; for example:

GetUserFillColor()

Note:

This method is only for line-drawing commands. It does not affect any text
commands.

setpenwidth(
int penwidth)

Sets the width of the pen. Pen width should be between 1 and 5.

Note:

This method is only for line-drawing commands. It does not affect any text
commands.

showlabel(
string labelname)

Reveals the hidden label specified by labelname.

startcloudpath(
puffWidth,
puffHeight,
noise)

Similar to StartPath, except that it draws the path with cloud-like curved
segments (puffs).

Parameters:

72

72

72

Shape Scripts | Write Scripts72

Enterprise Architect Software Developers' Kit

Method Name Description

· float puffWidth (default = 30), the horizontal distance between puffs

· float puffHeight (default = 15), the vertical distance between puffs

· float noise (default = 1.0), the randomization of the puffs' positions.

startpath() Starts the sequence of drawing commands that define a path.

strokepath() Draws the outline of the previously defined path with the current pen.

3.3.4 Color Queries

Color queries can only be used to retrieve arguments for the SetPenColor and SetFillColor commands. These
queries can be used in place of the arguments.

getUserFillColor()
getUserBorderColor()
getUserFontColor()
getUserPenSize()

shape main
{

setfillcolor(getuserbordercolor());
setpencolor(getuserfillcolor());

rectangle(0,0,100,100);
}

3.3.5 Conditional Branching

Shape Scripts provide condition branching with the if else statement, and query methods that evaluate to
either True or False. See:

· Syntax Grammar for IF statement syntax.

· Query Methods for methods that can be used as the conditional expression for IF statements.

· Example Scripts for an example.

3.3.6 Query Methods

Two query methods are available for seeing if the associated element has certain tags or properties; these
methods can be used as the conditional expression for an if else statement.

Method Description

boolean HasTag(
string tagname,
[string

tagvalue])

Returns true if the associated element has a tag value with the name tagname.
If the second parameter tagvalue is provided, the tag tagname must be present,
and the value of the tag has to be equal to tagvalue for the method to return true
.

boolean HasProperty(
string

propertyname,
[string

propertyvalue])

Returns true if the associated element has a property with the name
propertyname. If the second parameter propertyvalue is provided, the property
must be present, and the value of the property has to be equal to propertyvalue
for the method to return true.

See Display Item Properties for a list of valid values for propertyname.

3.3.7 Display Item Properties

The commands print, println, and printwrapped all take a string parameter representing the text to be
printed. Element and connector properties can be added to the text using the substitution macro
#propertyname#.

65

72

77

72

Shape Scripts | Write Scripts 73

© 1998-2010 Sparx Systems Pty Ltd

For example: println("name: #NAME#");

In addition to the properties listed below, Tagged Values can also be displayed by prefixing the Tagged Value
name with TAG:.

For example: print("#TAG:condition#");

You can also test against and display an element's custom properties in the same way as you do the named
properties.

For example: if(hasproperty("Name","Value"))
...

and: print("#Name#");

Properties Visible to Shape Scripts

Properties for Element Shape Scripts

· addin (value returned from an Add-In)

· alias

· author

· cardinality

· classifier

· classifier.alias

· classifier.metatype

· classifier.stereotype

· classifier.type

· complexity

· concurrency

· datecreated

· datemodified

· diagram.mdgtype

· diagram.name

· diagram.stereotype

· diagram.type

· haslinkeddocument

· isabstract

· isactive

· iscomposite

· isembedded

· isinparent

· isleaf

· islocked

· isroot

· isspec

· istagged

· keywords

· language

· metatype

· multiplicity

· name

· notes

· packagename

· parentedge ("Right", "Left", "Top", "Bottom")

· parent.metatype

· persistence

Shape Scripts | Write Scripts74

Enterprise Architect Software Developers' Kit

· phase

· propertytype

· propertytype.alias

· propertytype.metatype

· propertytype.name

· propertytype.stereotype

· scope

· status

· stereotype

· type

· version

· visibility.

Properties for Connector Shape Scripts

· addin (value returned from an Add-In)

· alias

· diagram.connectornotation

· diagram.mdgtype

· diagram.name

· diagram.stereotype

· diagram.type

· direction

· isroot

· isleaf

· name

· notes

· source.aggregation

· source.alias

· source.changeable

· source.constraints

· source.element.name

· source.element.stereotype

· source.metatype

· source.multiplicity

· source.multiplicityisordered

· source.qualifiers

· source.stereotype

· source.targetscope

· stereotype

· subtype

· target.aggregation

· target.alias

· target.changable

· target.constraints

· target.element.name

· target.element.stereotype

· target.metatype

· target.multiplicity

· target.multiplicityisordered

· target.qualifiers

· target.stereotype

· target.targetscope

Shape Scripts | Write Scripts 75

© 1998-2010 Sparx Systems Pty Ltd

· type.

3.3.8 Sub-Shapes

Shapes can contain - and be composed of - other shapes.

Subshape Layout

To set the layout type, the layoutType attribute must be set in the initialization attributes section of the script;
in other words, before any of the methods are called. Valid values for this attribute are:

LeftRight

Shapes with leftright layout position subshapes side by side, with the first added on the left, and subsequent
subshapes to the right.

TopDown

TopDown places subshapes in a vertical arrangement, with the first shape added to the top and subsequent
shape added below.

Border

Border layout requires an additional argument to the addsubshape method to specify which region of the
containing shape the subshape is to occupy: N, E, S, W or CENTER. Each region can only be occupied by
one subshape.

A subshape that is assigned to the E or W region must have its preferredwidth attribute specified in its
declaration. Similarly, subshapes added to N or S must have their preferredheight attribute set. In this case,
the values for these attributes are treated as static lengths and do not scale glyphs.

For example:

shape main
{

layouttype="topdown";
setfillcolor{0,0,255};
rectangle{0,0,100,100};
addsubshape{"sub",50,100,20,0};
addsubshape{"sub",50,100,30,-100};
addsubshape{"sub",50,100,40,-200};
addsubshape{"sub",50,100,50,-300};

shape sub
{

setfillcolor{0,255,0};
ellipse{0,0,100,100};

}
}

The above script provides the following shape:

Shape Scripts | Write Scripts76

Enterprise Architect Software Developers' Kit

3.3.9 Reserved Names

Elements

Elements (such as Class, State or Event) have the following reserved names for parts of the shape.

Name Description

shape main The main shape is the whole shape.

shape label The shape label gives the shape a detached label.

decoration
<identifier>

Decoration gives the shape a decoration as defined by the
name in <identifier>.

Connectors

Connectors (such as Association, Dependency or Generalization) have the following reserved names for parts
of the shape.

Name Description

shape main The main shape is the whole shape.

shape source The source shape is an extra shape at the source end of the
connector.

shape target The target shape is an extra shape at the target end of the
connector.

shape <labelID> The <labelID> gives the connector a detached label, where
<labelID> is one of the following:

· LeftTopLabel

· MiddleTopLabel

· RightTopLabel

· LeftBottomLabel

· MiddleBottomLabel

· RightBottomLabel

3.3.10 Miscellaneous

Return Command

Execution of the script can be terminated by using the return command. Please see Example Scripts for an
example.

Looping

The Shape Script feature does not support looping constructs.

Comments

C-style comments are supported. For example:

// C Style Single Line comment
/* Multi Line
comment supported */

String Manipulation

Not Supported.

77

Shape Scripts | Write Scripts 77

© 1998-2010 Sparx Systems Pty Ltd

Arithmetical Operations

Not Supported.

Variables Declaration

Not Supported.

Change ShapeScript Fonts

Not possible.

Can I apply a Shapescript without using Stereotypes?

No.

3.4 Example Scripts

Below is a selection of example Shape Scripts.

Code Result

//BASIC SHAPES
shape main
{

setfillcolor(255,0,0); // (R,G,B)
rectangle(0,0,90,30); // (x1,y1,x2,y2)

setfillcolor(0,255,0); // (R,G,B)
ellipse(0,30,90,60); // (x1,y1,x2,y2)

setfillcolor(0,0,255); // (R,G,B)
rectangle(0,60,90,90); // (x1,y1,x2,y2)

}

//SINGLE CONDITIONAL SHAPE
shape main
{

if (HasTag("Trigger","Link"))
{// Only draw if the object has a Tagged Value

 // Trigger=Link
// Set the fill color for the path
setfillcolor(0,0,0);
startpath(); // Start to trace out a path
moveto(23,40);
lineto(23,60);
lineto(50,60);
lineto(50,76);
lineto(76,50);
lineto(50,23);
lineto(50,40);
endpath(); // End tracing out a path
// Fill the traced path with the fill color
fillandstrokepath();
return;

}
}

//MULTI CONDITIONAL SHAPE
shape main
{

startpath();
ellipse(0,0,100,100);
endpath();
fillandstrokepath();
ellipse(3,3,27,27);

Shape Scripts | Example Scripts78

Enterprise Architect Software Developers' Kit

Code Result

if (HasTag("Trigger","None"))
{

return;
}

if (HasTag("Trigger","Error"))
{

setfillcolor(0,0,0);
startpath();
moveto(23,77);
lineto(37,40);
lineto(60,47);
lineto(77,23);
lineto(63,60);
lineto(40,53);
lineto(23,77);
endpath();
fillandstrokepath();
return;

}
if (HasTag("Trigger","Message"))
{
rectangle(22,22,78,78);
moveto(22,22);
lineto(50,50);
lineto(78,22);
return;
}

}

//SUB SHAPES
shape main
{

rectangle(0,0,100,100);

addsubshape("red", 10, 20);
addsubshape("blue", 30, 40);
addsubshape("green", 50, 20);
addsubshape("red", 100, 20);

shape red
{

setfillcolor(200, 50, 100);
rectangle(0,0,100,100);

}

shape blue
{

setfillcolor(100, 50, 200);
rectangle(0,0,100,100);

}

shape green
{

setfillcolor(50, 200, 100);
rectangle(0,0,100,100);

}
}

//Editable Field Shape
shape main
{

rectangle(0,0,100,100);

addsubshape("namecompartment", 100, 20);
addsubshape("stereotypecompartment", 100, 40);

shape namecompartment
{

h_align = "center";
editablefield = "name";

rectangle(0,0,100,100);
println("name: #name#");

}

Shape Scripts | Example Scripts 79

© 1998-2010 Sparx Systems Pty Ltd

Code Result

shape stereotypecompartment
{

h_align = "center";
editablefield = "stereotype";

rectangle(0,0,100,100);
println("stereotype: #stereotype#");

}
}

//Return Statement Shape
shape main
{

if(hasTag("alternatenotation", "false"))
{

//draw ea's inbuild glyph
drawnativeshape();
//exit script with the return statement
return;

}

//alternate notation commands
//...
rectangle(0,0,100,100);

}

//Cloud Path Example Shape
shape main
{
 StartCloudPath();
 Rectangle(0,0,100,100);
 EndPath();
 FillAndStrokePath();
}

// Connector Example
shape main
{
 // draw a dashed line
 noshadow=true;
 setlinestyle("DASH");
 moveto(0,0);
 lineto(100,0);
}

shape source
{
 // draw a circle at the source end
 rotatable = true;
 startpath();
 ellipse(0,6,12,-6);
 endpath();
 fillandstrokepath();
}

shape target
{
 // draw an arrowhead at the target end
 rotatable = true;
 startpath();
 moveto(0,0);
 lineto(16,6);

Shape Scripts | Example Scripts80

Enterprise Architect Software Developers' Kit

Code Result

 lineto(16,-6);
 endpath();
 fillandstrokepath();
}

// Double Line
shape main
{
 noshadow=true;
 moveto(0,-10);
 lineto(100,-10);
 moveto(0,10);
 lineto(100,10);
}

Tagged Value Types | 81

© 1998-2010 Sparx Systems Pty Ltd

4 Tagged Value Types

Enterprise Architect provides a number of predefined Tagged Value Types that enable you to create your own:

· Tagged Values that are structured with a specific format, with or without tag filters , or

· Tagged Values that return values from the various reference data tables.

You can also use a masking parameter to create your own customized masked Tagged Value Type .

Note:

You can transport Tagged Value Type definitions between models, using the Export Reference Data and
Import Reference Data options on the Tools menu. Tagged Value Types are exported as Property Types.
See UML Model Management.

4.1 Predefined Structured Types

This table details the predefined structured Tagged Value types, along with the syntax used to create the initial
values for their use. You use these to create your own structured Tagged Values .

Note:

Tagged Value Type and Format entries are case-sensitive.

Tagged Value Type Format Description

Boolean Type=Boolean;
Default=Val;

Enables input of True or False, either of which can be
the default value.

Classifier Type=Classifier;
Values=Type1,Type2;
Stereotypes=Stereotype
1;

Deprecated. Use RefGUID and RefGUIDList.

Returns the name of a user-selected element from the
model, where Type1 and Type2 specify one or more
allowed element types and Stereotype1 represents an
allowed stereotype.

Color Type=Color;
Default=Val;

Enables input of a color value from a color chooser
menu, where the value is the decimal integer
translation of the color's Hex RGB value. For example,
the RGB for Red is FF, and the decimal value is 255.

Const Type=Const;
Default=Val;

Enables creation of a read-only constant value.

Custom Type= Custom; Enables you to create your own template for predefined
types; more information is provided in the Create
Custom Tagged Value Type topic.

DateTime Type=DateTime; Enables input of the date and time for the Tagged
Value from a calendar menu.

Directory Type=Directory;
Default=Val;

Enables entry of a directory path from a browser.

You can set a default directory path as a string value.

81 82

84

86

83

86

Tagged Value Types | Predefined Structured Types 82

Enterprise Architect Software Developers' Kit

Tagged Value Type Format Description

Enum Type=Enum;
Values=Val1,Val2,Val3;
Default=Val2;

Enables definition of a comma-separated list, where
Val1, Val2 and Val3 represent values in the list and
Default represents the default value of the list.

File Type=File;
Default=Val;

Enables input of a filename from a file browser dialog.
The named file can be launched in its default
application.

You can set a default file as a string containing the file
path and file name.

Float, Decimal, Double Type=Float;
Type=Decimal;
Type=Double;
Default=Val;

Enable entry of a Float, Decimal or Double value.
These types all map to the same type of data.

You can set a default for any or all of these.

Integer Type=Integer;
Default=Val;

Enables entry of an Integer value, and a default.

Memo Type=Memo; Enables input of large and complex Tagged Values.

RefGUID Type=RefGUID;
Values=Type1,Type2;
Stereotypes=Stereotype
1;

Enables the Tagged Value to reference an element
from the model by specifying the element's GUID,
where Type1 and Type2 specify one or more allowed
diagram objects (such as Class, Component,
Attribute or Operation) and Stereotype1 represents
an allowed stereotype.

Set the classifier (see UML Modeling With Enterprise
Architect - UML Modeling Tool), attribute or operation
(see the UML Dictionary) for a Tagged Value of this
type by clicking on the [...] button against the Tagged
Value in the Tagged Value window.

RefGUIDList Type=RefGUIDList;
Values=Type1,Type2;
Stereotypes=Stereotype
1;

Enables the Tagged Value to reference a list of
elements from the model by specifying each element's
GUID, where Type1 and Type2 specify one or more
allowed diagram objects (such as Class or
Component) and Stereotype1 represents an allowed
stereotype.

Set the classifier (see UML Modeling With Enterprise
Architect - UML Modeling Tool), attribute or operation
(see the UML Dictionary) for a Tagged Value of this
type by clicking on the [...] button against the Tagged
Value in the Tagged Value window.

Spin Type=Spin;
LowerBound=x;
UpperBound=x;
Default=Val;

Enables creation of a spin control with the value of
LowerBound being the lowest value and UpperBound
being the highest value.

You can also set a default within that range.

String Type=String;
Default=Val;

Enables entry of a string value, up to 255 characters in
length, and a default text string.

For longer texts, use Type=Memo .

Tag Filters

The following table details filters that can be used to restrict where a Tagged Value can be applied.

82

Tagged Value Types | Predefined Structured Types 83

© 1998-2010 Sparx Systems Pty Ltd

Filter Format Description

AppliesTo AppliesTo=Type1,
Type2;

Restricts the element types this filter can be applied to,
where Type1 and Type2 are the valid types.

Possible values are:

· all element types

· all connector types

· Attribute

· Operation and

· OperationParameter.

BaseStereotype BaseStereotype=S1,S2; Restricts the stereotypes that this tag belongs to,
where S1 and S2 are the allowed stereotypes.

4.2 Create Structured Tagged Values

To create your own Tagged Value based on a predefined structured Tagged Value Type , follow the steps
below:

1. Select the Settings | UML menu option. The UML Types dialog displays. Select the Tagged Value
Types tab.

2. Click on the New button.

3. In the Tag Name field type an appropriate Tagged Value name.

81

Tagged Value Types | Create Structured Tagged Values84

Enterprise Architect Software Developers' Kit

4. In the Description field type the purpose of the Tagged Value, if required.

5. In the Detail field copy-and-paste or type the syntax of the predefined structured Tagged Value Type.

In the example above (which is used in the definition of a field to enable a user to set a sports handicap)
the predefined type is Spin, with the Upper and Lower Bounds set for the field values. (Spin is the
Microsoft term for selection arrows in a variable field - the user clicks on the arrows to increase or
decrease the value between the upper and lower bound limits.)

6. Click on the Save button.

The Tagged Value type displays in the Defined Tag Types list.

4.3 Predefined Reference Data Types

This table details the predefined Reference Data Tagged Value types that are used to return the values held in
a relevant table in Enterprise Architect, along with the syntax required for their use. You use these to create
your own Reference Data Tagged Values .

Tagged Value
Type

Format Drop-Down List Returned

Authors Type=Enum;
List=Authors;

Authors that have been defined for the Enterprise Architect
model.

Cardinality Type=Enum;
List=Cardinality;

Cardinality types that have been defined for the Enterprise
Architect model.

Clients Type=Enum;
List=Clients;

Clients that have been defined for the Enterprise Architect
model.

ComplexityTypes Type=Enum;
List=ComplexityTypes;

Complexity types that have been defined for the Enterprise
Architect model.

Whilst complexity types can be exported and imported as
project reference data (see UML Model Management), they
cannot be updated and so are effectively standard across
all projects.

ConstraintTypes Type=Enum;
List=ConstraintTypes;

Constraint types that have been defined for the Enterprise
Architect model.

EffortTypes Type=Enum;
List=EffortTypes;

Effort types that have been defined for the Enterprise
Architect model.

MaintenanceType
s

Type=Enum;
List=MaintenanceTypes
;

Maintenance types that have been defined for the
Enterprise Architect model.

ObjectTypes Type=Enum;
List=ObjectTypes;

Object types that have been defined for the Enterprise
Architect model.

Phases Type=Enum;
List=Phases;

Phases that have been defined for the Enterprise Architect
model.

ProblemTypes Type=Enum;
List=ProblemTypes;

Problem types that have been defined for the Enterprise
Architect model.

RoleTypes Type=Enum;
List=RoleTypes;

Role types that have been defined for the Enterprise
Architect model.

RequirementType
s

Type=Enum;
List=RequirementTypes
;

Requirement types that have been defined for the
Enterprise Architect model.

Resources Type=Enum; Resources that have been defined for the Enterprise

85

Tagged Value Types | Predefined Reference Data Types 85

© 1998-2010 Sparx Systems Pty Ltd

Tagged Value
Type

Format Drop-Down List Returned

List=Resources; Architect model.

RiskTypes Type=Enum;
List=RiskTypes;

Risk types that have been defined for the Enterprise
Architect model.

RTFTemplates Type=Enum;
List=RTFTemplates;

RTF Templates that have been defined for the Enterprise
Architect model.

ScenarioTypes Type=Enum;
List=ScenarioTypes;

Scenario types that have been defined for the Enterprise
Architect model.

TestTypes Type=Enum;
List=TestTypes;

Test types that have been defined for the Enterprise
Architect model.

4.4 Create Reference Data Tagged Values

To create your own Tagged Value based on a predefined Reference Data Tagged Value Type , follow the
steps below:

1. Select the Settings | UML menu option. The UML Types dialog displays; select the Tagged Value
Types tab.

2. In the Tag field type an appropriate Tagged Value name.

3. In the Description field type a description of the purpose of the Tagged Value, if required.

4. In the Detail field copy-and-paste or type the syntax of the predefined Reference Data Tagged Value
Type. In the example above, the Tagged Value returns the values for all of the Authors in the Enterprise
Architect model.

This enables you to assign any of the previously defined Authors to a model feature (model features
that can have Tagged Values applied to them are detailed in the Model Elements and Features with
Tagged Values topic in Using Enterprise Architect - UML Modeling Tool).

84

Tagged Value Types | Create Reference Data Tagged Values86

Enterprise Architect Software Developers' Kit

Note:

If the values in the reference data are changed after the Tagged Value Type is created, Enterprise Architect
must be reloaded in order to reflect the changes in the Tagged Value Type.

4.5 Create Custom Tagged Value Type

Creating a custom masked Tagged Value gives you great flexibility in designing model components that
accept data entries. To create a masked Tagged Value follow the steps below:

1. Select the Settings | UML menu option. The UML Types dialog displays; select the Tagged Value
Types tab.

2. In the Tag field type an appropriate name for the Tagged Value.

3. In the Description field type the purpose of the Tagged Value, if required.

4. In the Detail field type Type=Custom;

The type Custom enables you to set up the appropriate mask, using the following characters to define the
format of the mask:

Mask Description

D Enables the Tagged Value to display digits only.

d Enables the Tagged Value to display digits or spaces.

+ Enables the use of +, - or spaces.

C Enables the use of alpha characters only.

c Enables the Tagged Value to be an alpha character or a space.

A Enables the use of alphanumeric characters.

a Enables the Tagged Value to use alphanumeric values or a space.

In the diagram below the Mask configuration option shows syntax that first defines seven blank spaces, which
are occupied by characters determined by the template option. The first two visible characters in the Mask
option are represented by a lower case c indicating that the enableable information can entered as either an
alpha character or as a space. The following blank spaces again indicate space defined by the template option
and the remaining characters are defined by the d character, which represents the enableable characters as
digits or spaces. The hyphen is present in the final output, splitting up the digits.

With the Template configuration option, the syntax defines the template of the masked option by occupying
the blank spaces that are present in the Mask option. The template is used to ensure that this information is

Tagged Value Types | Create Custom Tagged Value Type 87

© 1998-2010 Sparx Systems Pty Ltd

present with every use of this custom Tagged Value. The underscored values indicate the area that is to be
occupied by data input by the user as defined in the Mask option.

Code Template Framework in SDK | 88

Enterprise Architect Software Developers' Kit

5 Code Template Framework in SDK

The Code Template Framework (CTF) is used during forward engineering of UML models. It is introduced in
Code Engineering Using UML Models . This section of the SDK discusses how you customize the way in
which Enterprise Architect generates source code, using the Code Template Editor.

Enterprise Architect's code templates specify the transformation from UML elements to the various parts of a
given programming language. The templates are written as plain text with a syntax that shares some
aspects of both mark-up languages and scripting languages. The Base Templates provided in Enterprise
Architect are described in the Base Templates topic of Code Engineering Using UML Models.

5.1 Code Template Syntax

Code Templates are written as plain text, using Enterprise Architect's code template editor (see The Code
Template Editor). The template syntax centers on three basic constructs:

· Literal Text

· Macros

· Variables

Templates can contain any or all of these constructs.

5.1.1 Literal Text

All text within a given template that is not part of a macro or a variable definition/reference, is considered literal
text. With the exception of blank lines, which are ignored, literal text is directly substituted from the template
into the generated code.

Consider the following excerpt from the java Class Declaration template:

%PI=" "%
%CONVERT_SCOPE(classScope)%

%classStereotype=="static" ? "static": ""%
%classStereotype=="final" ? "final": ""%
%classStereotype=="static final" ? "static final": ""%
%classAbstract=="T" ? "abstract": ""%
%PI=""%
class %className%$bases

On the final line, the word class, including the subsequent space, would be treated as literal text and thus
reproduced in the output. The blank line following the CONVERT_SCOPE macro, however, would have no
effect on the output.

The %, $ and " characters have special meaning in the template syntax and cannot always be used as literal
text. If these characters must be generated from within the templates, they can be safely reproduced using the
following direct substitution macros:

Macro Use to

%dl% Produce a literal $ character.

%pc% Produce a literal % character.

%qt% Produce a literal " character.

118

88

118

88

89

117

Code Template Framework in SDK | Code Template Syntax 89

© 1998-2010 Sparx Systems Pty Ltd

5.1.2 Macros

Macros provide access to element fields within the UML model and are also used to structure the generated
output. All macros are enclosed within percent (%) signs. The CTF contains six basic types of macros:

· Template substitution macros

· Field substitution macros

· Tagged Value substitution macros

· Control macros

· Function macros

· EASL code generation macros

In general, macros (including the % delimiters) are substituted with literal text in the output. For example
consider the following item from the Class Declaration template:

... class %className% ...

The field substitution macro, %className%, would result in the current Class name being substituted in the
output. So if the Class being generated was named Foo, the output would be:

... class Foo ...

5.1.2.1 Template Substitution Macros

Template substitution macros correspond to Base templates see Code Engineering Using UML Models. These
macros result in the execution of the named template. By convention, template macros are named according
to Pascal casing.

Structure: %<TemplateName>%

where <TemplateName> can be one of the templates listed below.

When a template is referenced from within another template, it is generated with respect to the elements
currently in scope. The specific template is selected based on the stereotypes of the elements in scope.

As noted previously, there is an implicit hierarchy among the various templates. Some care should be taken in
order to preserve a sensible hierarchy of template references. For example, it does not make sense to use
the %ClassInherits% macro within any of the attribute or operation templates. Conversely, the Operation and
Attribute templates are designed for use within the ClassBody template.

The CTF contains the following template substitution macros:

· AttributeDeclaration · ClassParameter · NamespaceBody

· AttributeNotes · File · NamespaceDeclaration

· Attribute · FileImpl · NamespaceImpl

· Class · ImportSection · Operation

· ClassImpl · ImportSectionImpl · OperationBody

· ClassBase · InnerClass · OperationBodyImpl

· ClassBody · InnerClassImpl · OperationDeclaration

· ClassBodyImpl · LinkedAttribute · OperationDeclarationImpl

· ClassDeclaration · LinkedAttributeNotes · OperationImpl

· ClassDeclarationImpl · LinkedAttributeDeclaration · OperationNotes

· ClassInherits · LinkedClassBase · Parameter

· ClassInterface · LinkedClassInterface

· ClassNotes · Namespace

89

90

102

106

103

109

Code Template Framework in SDK | Code Template Syntax90

Enterprise Architect Software Developers' Kit

5.1.2.2 Field Substitution Macros

The field substitution macros provide access to data in the model. In particular, they are used to access data
fields from:

· Packages

· Classes

· Attributes

· Operations

· Parameters.

Field substitution macros are named according to Camel casing. By convention, the macro is prefixed with an
abbreviated form of the corresponding model element. For example, attribute-related macros begin with att, as
in the %attName% macro, to access the name of the attribute in scope.

The following table lists each of the field substitution macros with a description of the result.

Note:

Macros that represent checkboxes return a value of T if the box is selected. Otherwise the value is empty.

Macro Name Description

attAlias Attributes dialog: Alias.

attAllowDuplicates Attributes Detail dialog: Allow Duplicates checkbox.

attClassifierGUID The unique GUID for the classifier of the current attribute.

attCollection Attributes Detail dialog: Attribute is a Collection checkbox.

attConst Attributes dialog: Const checkbox.

attContainerType Attributes Detail dialog: Container Type.

attContainment Attributes dialog: Containment.

attDerived Attributes dialog: Derived checkbox.

attGUID The unique GUID for the current attribute.

attInitial Attributes dialog: Initial.

attIsEnumLiteral Attributes dialog: Is Literal checkbox.

attLength Column dialog: Length.

attLowerBound Attributes Detail dialog: Lower Bound.

attName Attributes dialog: Name.

attNotes Attributes dialog: Notes.

attOrderedMultiplicity Attributes Detail dialog: Ordered Multiplicity checkbox.

attProperty Attributes dialog: Property checkbox.

attQualType The attribute type qualified by the namespace path (if generating
namespaces) and the classifier path (dot delimited). If the attribute
classifier has not been set, is equivalent to the attType macro.

attScope Attributes dialog: Scope.

attStatic Attributes dialog: Static checkbox.

Code Template Framework in SDK | Code Template Syntax 91

© 1998-2010 Sparx Systems Pty Ltd

Macro Name Description

attStereotype Attributes dialog: Stereotype.

attType Attributes dialog: Type.

attUpperBound Attributes Detail dialog: Upper Bound.

attVolatile Attributes Detail dialog: Transient checkbox.

classAbstract Class dialog: Abstract checkbox.

classAlias Class dialog: Alias.

classArguments Class Detail dialog: C++ Templates: Arguments.

classAuthor Class dialog: Author.

classBaseName Type Hierarchy dialog: Class Name (for use where no connector exists
between child and base Classes).

classBaseScope The scope of the inheritance as reverse engineered. (For use where no
connector exists between child and base Classes.)

classBaseVirtual The virtual property of the inheritance as reverse engineered. (For use
where no connector exists between child and base Classes.)

classComplexity Class dialog: Complexity.

classCreated The date and time the Class was created.

classGUID The unique GUID for the current Class.

classHasConstructor Looks at the list of methods in the current object and, depending on the
conventions of the current language, returns T if one is a default
constructor. Typically used with the genOptGenConstructor macro.

classHasCopyConstructor Looks at the list of methods in the current object and, depending on the
conventions of the current language, returns T if one is a copy
constructor. Typically used with the genOptGenCopyConstructor
macro.

classHasDestructor Looks at the list of methods in the current object and, depending on the
conventions of the current language, returns T if one is a destructor.
Typically used with the genOptGenDestructor macro.

classHasParent True, if the Class in scope has one or more base Classes.

classImports Code Gen dialog: Imports.

classIsActive Class Advanced dialog: Is Active checkbox.

classIsInstantiated True, if the Class is an instantiated template Class.

classIsLeaf Class Advanced dialog: Is Leaf checkbox.

classIsRoot Class Advanced dialog: Is Root checkbox.

classIsSpecification Class Advanced dialog: Is Specification checkbox.

classKeywords Class dialog: Keywords.

classLanguage Class dialog: Language.

classMacros A space separated list of macros defined for the Class.

96

96

96

Code Template Framework in SDK | Code Template Syntax92

Enterprise Architect Software Developers' Kit

Macro Name Description

classModified The date and time the Class was last modified.

classMultiplicity Class Advanced dialog: Multiplicity.

className Class dialog: Name.

classNotes Class dialog: Note.

classParamDefault Class Detail dialog.

classParamName Class Detail dialog.

classParamType Class Detail dialog.

classPersistence Class dialog: Persistence.

classPhase Class dialog: Phase.

classQualName The Class name prefixed by its outer Classes. Class names are
separated by double colons (::).

classScope Class dialog: Scope.

classStereotype Class dialog: Stereotype.

classStatus Class dialog: Status.

classVersion Class dialog: Version.

connectorAlias Connector Properties dialog: Alias.

connectorDestAccess Connector Properties dialog, Target Role tab: Access.

connectorDestAggregation Connector Properties dialog, Target Role tab: Aggregation.

connectorDestAlias Connector Properties dialog, Target Role tab: Alias.

connectorDestAllowDuplicates Connector Properties dialog, Target Role tab: Allow Duplicates
checkbox.

connectorDestChangeable Connector Properties dialog, Target Role tab: Changeable.

connectorDestConstraint Connector Properties dialog, Target Role tab: Constraint(s).

connectorDestContainment Connector Properties dialog, Target Role tab: Containment.

connectorDestDerived Connector Properties dialog, Target Role tab: Derived checkbox.

connectorDestDerivedUnion Connector Properties dialog, Target Role tab: DerivedUnion checkbox.

connectorDestElem* A set of macros that access a property of the element at the target end
of a connector. The * (asterisk) is a wildcard that corresponds to any
class substitution macro in this list; for example:
connectorDestElemAlias (classAlias), connectorDestElemAuthor (
classAuthor).

connectorDestElemType The element type of the connector destination element. (Separate from
the connectorDestElem* macros because there is no classType
substitution macro.)

connectorDestMemberType Connector Properties dialog, Target Role tab: Member Type.

connectorDestMultiplicity Connector Properties dialog, Target Role tab: Multiplicity.

Code Template Framework in SDK | Code Template Syntax 93

© 1998-2010 Sparx Systems Pty Ltd

Macro Name Description

connectorDestNavigability Connector Properties dialog, Target Role tab: Navigability.

connectorDestNotes Connector Properties dialog, Target Role tab: Role Notes.

connectorDestOrdered Connector Properties dialog, Target Role tab: Ordered checkbox.

connectorDestOwned Connector Properties dialog, Target Role tab: Owned checkbox.

connectorDestQualifier Connector Properties dialog, Target Role tab: Qualifier(s).

connectorDestRole Connector Properties dialog, Target Role tab: Role.

connectorDestScope Connector Properties dialog, Target Role tab: Target Scope.

connectorDestStereotype Connector Properties dialog, Target Role tab: Stereotype.

connectorDirection Connector Properties: Direction.

connectorEffect Transition Constraints dialog: Effect.

connectorGuard Object Flow and Transition Constraints dialog: Guard.

connectorGUID The unique GUID for the current connector.

connectorName Connector Properties: Name.

connectorNotes Connector Properties: Notes.

connectorSourceAccess Connector Properties dialog, Source Role tab: Access.

connectorSourceAggregation Connector Properties dialog, Source Role tab: Aggregation.

connectorSourceAlias Connector Properties dialog, Source Role tab: Alias.

connectorSourceAllowDuplicates Connector Properties dialog, Source Role tab: Allow Duplicates
checkbox.

connectorSourceChangeable Connector Properties dialog, Source Role tab: Changeable.

connectorSourceConstraint Connector Properties dialog, Source Role tab: Constraint(s).

connectorSourceContainment Connector Properties dialog, Source Role tab: Containment.

connectorSourceDerived Connector Properties dialog, Source Role tab: Derived checkbox.

connectorSourceDerivedUnion Connector Properties dialog, Source Role tab: DerivedUnion
checkbox.

connectorSourceElem* A set of macros that access a property of the element at the source end
of a connector. The * (asterisk) is a wildcard that corresponds to any
class substitution macro in this list; for example:
connectorSourceElemAlias (classAlias), connectorSourceElemAuthor (
classAuthor).

connectorSourceElemType The element type of the connector source element. (Separate from the
connectorSourceElem* macros because there is no classType
substitution macro.)

connectorSourceMemberType Connector Properties dialog, Source Role tab: Member Type.

connectorSourceMultiplicity Connector Properties dialog, Source Role tab: Multiplicity.

connectorSourceNavigability Connector Properties dialog, Source Role tab: Navigability.

Code Template Framework in SDK | Code Template Syntax94

Enterprise Architect Software Developers' Kit

Macro Name Description

connectorSourceNotes Connector Properties dialog, Source Role tab: Role Notes.

connectorSourceOrdered Connector Properties dialog, Source Role tab: Ordered checkbox.

connectorSourceOwned Connector Properties dialog, Source Role tab: Owned checkbox.

connectorSourceQualifier Connector Properties dialog, Source Role tab: Qualifier(s).

connectorSourceRole Connector Properties dialog, Source Role tab: Role.

connectorSourceScope Connector Properties dialog, Source Role tab: Target Scope.

connectorSourceStereotype Connector Properties dialog, Source Role tab: Stereotype.

connectorStereotype Connector Properties dialog: Stereotype.

connectorTrigger Transition Constraints dialog: Trigger.

connectorType The connector type; for example, Association or Generalization.

connectorWeight Object Flow Constraints dialog: Weight.

constraintName Class dialog, Constraints tab: Name.

constraintNotes Class dialog, Constraints tab: Notes.

constraintStatus Class dialog, Constraints tab: Status.

constraintType Class dialog, Constraints tab: Type.

constraintWeight Class dialog, Constraints tab: ordering (hand up/down) keys.

eaDateTime The current time with format: DD-MMM-YYYY HH:MM:SS AM/PM.

eaGUID A unique GUID for this generation.

eaVersion Program Version (Located in an Enterprise Architect dialog by
selecting Help | About EA.).

effortName Project Management window: Effort.

effortNotes Project Management window: Notes (unlabelled).

effortTime Project Management window: Time.

effortType Project Management window: Type.

elemType The element type: Interface or Class.

fileExtension The file type extension of the file being generated.

fileName The name of the file being generated.

fileNameImpl The filename of the implementation file for this generation, if applicable.

fileHeaders Code Gen dialog: Headers.

fileImports Code Gen dialog: Imports. For supported languages this also includes
dependencies derived from associations.

filePath The full path of the file being generated.

filePathImpl The full path of the implementation file for this generation, if applicable.

Code Template Framework in SDK | Code Template Syntax 95

© 1998-2010 Sparx Systems Pty Ltd

Macro Name Description

genOptActionScriptVersion ActionScript Specifications dialog: Default Version.

genOptCDefaultAttributeType C Specifications dialog: Default Attribute Type.

genOptCGenMethodNotesInBody C Specifications dialog: Method Notes In Implementation.

genOptCGenMethodNotesInHead
er

C Specifications dialog: Method Notes In Header.

genOptCSynchNotes C Specifications dialog: Synchronize Notes in Generation.

genOptCSynchCFile C Specifications dialog: Synchronise Implementation file in
Generation.

genOptCDefaultSourceDirectory C Specifications dialog: Default Source Directory.

genOptCNamespaceDelimiter C Specifications dialog: Namespace Delimiter.

genOptCOperationRefParam C Specifications dialog: Reference as Operation Parameter.

genOptCOperationRefParamStyle C Specifications dialog: Reference Parameter Style.

genOptCOperationRefParamNam
e

C Specifications dialog: Reference Parameter Name.

genOptCConstructorName C Specifications dialog: Default Constructor Name.

genOptCDestructorName C Specifications dialog: Default Destructor Name.

genOptCPPCommentStyle C++ Specifications dialog: Comment Style.

genOptCPPDefaultAttributeType C++ Specifications dialog: Default Attribute Type.

genOptCPPDefaultReferenceType C++ Specifications dialog: Default Reference Type.

genOptCPPDefaultSourceDirector
y

C++ Specifications dialog: Default Source Directory.

genOptCPPGenMethodNotesInHe
ader

C++ Specifications dialog: Method Notes In Header checkbox.

genOptCPPGenMethodNotesInBo
dy

C++ Specifications dialog: Method Notes In Body checkbox.

genOptCPPGetPrefix C++ Specifications dialog: Get Prefix.

genOptCPPHeaderExtension C++ Specifications dialog: Header Extension.

genOptCPPSetPrefix C++ Specifications dialog: Set Prefix.

genOptCPPSourceExtension C++ Specifications dialog: Source Extension.

genOptCPPSynchCPPFile C++ Specifications dialog: Synchronize Notes.

genOptCPPSynchNotes C++ Specifications dialog: Synchronize CPP File.

genOptCSDefaultAttributeType C# Specifications dialog: Default Attribute Type.

genOptCSSourceExtension C# Specifications dialog: Default file extension.

genOptCSGenDispose C# Specifications dialog: Generate Dispose.

genOptCSGenFinalizer C# Specifications dialog: Generate Finalizer.

Code Template Framework in SDK | Code Template Syntax96

Enterprise Architect Software Developers' Kit

Macro Name Description

genOptCSGenNamespace C# Specifications dialog: Generate Namespace.

genOptCSDefaultSourceDirectory C# Specifications dialog: Default Source Directory.

genOptDefaultAssocAttName Attribute Specifications dialog: Default name for associated attrib.

genOptDefaultConstructorScope Object Lifetimes dialog: Default Constructor Visibility.

genOptDefaultCopyConstructorSc
ope

Object Lifetimes dialog: Default Copy Constructor Visibility.

genOptDefaultDatabase Code Editors dialog: Default Database.

genOptDefaultDestructorScope Object Lifetimes dialog: Default Destructor Constructor Visibility.

genOptGenCapitalisedProperties Source Code Engineering dialog: Capitalize Attribute Names for
Properties checkbox.

genOptGenComments Source Code Engineering dialog: Generate Comments checkbox.

genOptGenConstructor Object Lifetimes dialog: Generate Constructor checkbox.

genOptGenConstructorInline Object Lifetimes dialog: Constructor Inline checkbox.

genOptGenCopyConstructor Object Lifetimes dialog: Generate Copy Constructor checkbox.

genOptGenCopyConstructorInline Object Lifetimes dialog: Copy Constructor Inline checkbox.

genOptGenDestructor Object Lifetimes dialog: Generate Destructor checkbox.

genOptGenDestructorInline Object Lifetimes dialog: Destructor Inline checkbox.

genOptGenDestructorVirtual Object Lifetimes dialog: Virtual Destructor checkbox.

genOptGenImplementedInterface
Ops

Attribute/Operations Specifications dialog: Generate methods for
implemented interfaces checkbox.

genOptGenPrefixBoolProperties Source Code Engineering dialog: Use is prefix for boolean property
Get().

genOptGenRoleNames Source Code Engineering dialog: Autogenerate role names when
creating code.

genOptGenUnspecAssocDir Source Code Engineering dialog: Do not generate members where
Association direction is unspecified checkbox.

genOptJavaDefaultAttributeType Java Specifications dialog: Default attribute type.

genOptJavaGetPrefix Java Specifications dialog: Get Prefix.

genOptJavaDefaultSourceDirector
y

Java Specifications dialog: Default Source Directory.

genOptJavaSetPrefix Java Specifications dialog: Set Prefix.

genOptJavaSourceExtension Java Specifications dialog: Source code extension.

genOptPHPDefaultSourceDirector
y

PHP Specifications dialog: Default Source Directory.

genOptPHPGetPrefix PHP Specifications dialog: Get Prefix.

genOptPHPSetPrefix PHP Specifications dialog: Set Prefix.

Code Template Framework in SDK | Code Template Syntax 97

© 1998-2010 Sparx Systems Pty Ltd

Macro Name Description

genOptPHPSourceExtension PHP Specifications dialog: Default file extension.

genOptPHPVersion PHP Specifications dialog: PHP Version.

genOptPropertyPrefix Source Code Engineering dialog: Remove prefixes when generating
Get/Set properties.

genOptVBMultiUse VB Specifications dialog: Multiuse checkbox.

genOptVBPersistable VB Specifications dialog: Persistable checkbox.

genOptVBDataBindingBehavior VB Specifications dialog: Data binding behavior checkbox.

genOptVBDataSourceBehavior VB Specifications dialog: Data source behavior checkbox.

genOptVBGlobal VB Specifications dialog: Global namespace checkbox.

genOptVBCreatable VB Specifications dialog: Creatable checkbox.

genOptVBExposed VB Specifications dialog: Exposed checkbox.

genOptVBMTS VB Specifications dialog: MTS Transaction Mode.

genOptVBNetGenNamespace VB.Net Specifications dialog: Generate Namespace.

genOptVBVersion VB Specifications dialog: Default Version.

genOptWrapComment Source Code Engineering dialog: Wrap length for comment lines.

importClassName The name of the Class being imported.

importFileName The filename of the Class being imported.

importFilePath The full path of the Class being imported.

importFromAggregation T if the Class has an Aggregation connector to a Class in this file, F
otherwise.

importFromAssociation T if the Class has an Association connector to a Class in this file, F
otherwise.

importFromAtt T if an attribute of a Class in the current file is of the type of this Class,
F otherwise.

importFromDependency T if the Class has a Dependency connector to a Class in this file, F
otherwise.

importFromGeneralization T if the Class has a Generalization connector to a Class in this file, F
otherwise.

importFromMeth T if a method return type of a Class in the current file is the type of this
Class, Fotherwise.

importFromParam T if an method parameter of a Class in the current file is of the type of
this Class, Fotherwise.

importFromRealization T if the Class has a Realization connector to a Class in this file, F
otherwise.

importInFile T if the Class is in the current file, F otherwise.

importPackagePath The package path with a '.' separator of the Class being imported.

Code Template Framework in SDK | Code Template Syntax98

Enterprise Architect Software Developers' Kit

Macro Name Description

ImportRelativeFilePath The relative file path of the Class being imported from the file path of
the file being generated.

linkAttAccess Association Properties Target Role dialog: Access.

linkAttCollectionClass The collection appropriate for the linked attribute in scope.

linkAttContainment Association Properties Target Role dialog: Containment.

linkAttName Association Properties dialog: Target.

linkAttNotes Association Properties Target Role dialog: Role Notes.

linkAttQualName The Association target qualified by the namespace path (if generating
namespaces) and the classifier path (dot delimited).

linkAttRole Association Properties Target Role dialog: Role.

linkAttStereotype Association Properties Target Role dialog: Stereotype.

linkAttTargetScope Association Properties Target Role dialog: Target Scope.

linkCard Link Properties Target Role dialog: Multiplicity.

linkedFileLastWrite Class Properties dialog: Last Write.

linkedFileNotes Class Properties dialog: Notes.

linkedFilePath Class Properties dialog: File Path.

linkedFileSize Class Properties dialog: Size.

linkedFileType Class Properties dialog: Type.

linkGUID The unique GUID for the current connector.

linkParentName Generalization Properties dialog: Target.

linkParentQualName The Generalization target qualified by the namespace path (if
generating namespaces) and the classifier path (dot delimited).

linkStereotype The stereotype of the current connector.

linkVirtualInheritance Generalization Properties dialog: Virtual Inheritance.

metricName Project Management dialog, Metrics tab: Metric field.

metricNotes Project Management dialog, Metrics tab: (Notes) field.

metricType Project Management dialog, Metrics tab: Type field.

metricWeight Project Management dialog, Metrics tab: Weight field.

opAbstract Operation dialog: Virtual checkbox.

opAlias Operation dialog: Alias.

opBehavior Operation Behavior dialog: Behavior.

opCode Operation Behavior dialog: Initial Code.

opConcurrency Operation dialog: Concurrency.

Code Template Framework in SDK | Code Template Syntax 99

© 1998-2010 Sparx Systems Pty Ltd

Macro Name Description

opConst Operation dialog: Const checkbox.

opGUID The unique GUID for the current operation.

opImplMacros A space-separated list of macros defined in the implementation of this
operation.

opIsQuery Operation dialog: IsQuery checkbox.

opMacros A space-separated list of macros defined in the declaration for this
operation.

opName Operation dialog: Name.

opNotes Operation dialog: Notes.

opPure Operation dialog: Pure checkbox.

opReturnArray Operation dialog: Return Array checkbox.

opReturnClassifierGUID The unique GUID for the classifier of the current operation.

opReturnQualType The operation return type qualified by the namespace path (if
generating namespaces) and the classifier path (dot delimited). If the
return type classifier has not been set, is equivalent to the
opReturnType macro.

opReturnType Operation dialog: Return Type.

opScope Operation dialog: Scope.

opStatic Operation dialog: Static checkbox.

opStereotype Operation dialog: Stereotype.

opSynchronized Operation dialog: Synchronized checkbox.

packageAbstract Package dialog: Abstract.

packageAlias Package dialog: Alias.

packageAuthor Package dialog: Author.

packageComplexity Package dialog: Complexity.

packageGUID The unique GUID for the current package.

packageKeywords Package dialog: Keywords.

packageLanguage Package dialog: Language.

packageName Package dialog: Name.

packagePath The string representing the hierarchy of packages, for the Class in
scope. Each package name is separated by a dot (.).

packagePhase Package dialog: Phase.

packageScope Package dialog: Scope.

packageStatus Package dialog: Status.

packageStereotype Package dialog: Stereotype.

Code Template Framework in SDK | Code Template Syntax100

Enterprise Architect Software Developers' Kit

Macro Name Description

packageVersion Package dialog: Version.

paramClassifierGUID The unique GUID for the classifier of the current parameter.

paramDefault Operation Parameters dialog: Default.

paramFixed Operation Parameters dialog: Fixed checkbox.

paramGUID The unique GUID for the current parameter.

paramIsEnum True, if the parameter uses the enum keyword (C++).

paramKind Operation Parameters dialog: Kind.

paramName Operation Parameters dialog: Name.

paramNotes Operation Parameters dialog: Notes.

paramQualType The parameter type qualified by the namespace path (if generating
namespaces) and the classifier path (dot delimited). If the parameter
classifier has not been set, is equivalent to the paramType macro.

paramType Operation Parameters dialog: Type.

problemCompletedBy Maintenance dialog, Element Issues tab: Completed by.

problemCompletedDate Maintenance dialog, Element Issues tab: Completed.

problemHistory Maintenance dialog, Element Issues tab: History.

problemName Maintenance dialog, Element Issues tab: Name.

problemNotes Maintenance dialog, Element Issues tab: Description.

problemPriority Maintenance dialog, Element Issues tab: Priority.

problemRaisedBy Maintenance dialog, Element Issues tab: Raised by.

problemRaisedDate Maintenance dialog, Element Issues tab: Raised.

problemStatus Maintenance dialog, Element Issues tab: Status.

problemVersion Maintenance dialog, Element Issues tab: Version.

requirementDifficulty Properties dialog: Require tab: Difficulty.

requirementLastUpdated Properties dialog: Require tab: Last Update.

requirementName Properties dialog: Require tab: Short Description.

requirementNotes Properties dialog: Require tab: Notes.

requirementPriority Properties dialog: Require tab: Priority.

requirementStatus Properties dialog: Require tab: Status.

requirementType Properties dialog: Require tab: Type.

resourceAllocatedTime Project Management window, Resource Allocation tab: Allocated Time.

resourceEndDate Project Management window, Resource Allocation tab: End Date.

resourceExpectedTime Project Management window, Resource Allocation tab: Expected Time.

Code Template Framework in SDK | Code Template Syntax 101

© 1998-2010 Sparx Systems Pty Ltd

Macro Name Description

resourceExpendedTime Project Management window, Resource Allocation tab: Time Expended
.

resourceHistory Project Management window, Resource Allocation tab: History.

resourceName Project Management window, Resource Allocation tab: Resource.

resourceNotes Project Management window, Resource Allocation tab: Description.

resourcePercentCompleted Project Management window, Resource Allocation tab: Completed(%).

resourceRole Project Management window, Resource Allocation tab: Role.

resourceStartDate Project Management window, Resource Allocation tab: Start Date.

riskName Project Management window, Risks tab: Risk.

riskNotes Project Management window, Risks tab: (Notes).

riskType Project Management window, Risks tab: Type.

riskWeight Project Management window, Risks tab: Weight.

scenarioGUID The unique ID for a scenario. Identifies the scenario unambiguously
within a model.

scenarioName Properties dialog, Scenario tab: Scenario.

scenarioNotes Properties dialog, Scenario tab: (Notes).

scenarioType Properties dialog, Scenario tab: Type.

testAcceptanceCriteria Testing window: Acceptance Criteria.

testCheckedBy Testing window: Checked By.

testDateRun Testing window: Last Run.

testClass The Testing window tab (the type of test defined): Unit, Integration,
System, Acceptance, Scenario.

testInput Testing window: Input.

testName Testing window: Test.

testNotes Testing window: Description.

testResults Testing window: Results.

testRunBy Testing window: Run By.

testStatus Testing window: Status.

testType Testing window: Type.

Field substitution macros can be used in one of two ways:

Use 1: Direct Substitution

This form directly substitutes the corresponding value of the element in scope into the output.

Structure: %<macroName>%

Code Template Framework in SDK | Code Template Syntax102

Enterprise Architect Software Developers' Kit

Where <macroName> can be any of the macros listed above.

Examples:

· %className%

· %opName%

· %attName%

Use 2: Conditional Substitution

This form of the macro enables alternative substitutions to be made depending on the macro's value.

Structure: %<macroName> [== "<test>"] ? <subTrue> [: <subFalse>]%

Where:

· [<text>] denotes that <text> is optional

· <test> is a string representing a possible value for the macro

· <subTrue> and <subFalse> can be a combination of quoted strings and the keyword value; where the value is
used, it is replaced with the macro's value in the output.

Examples:

· %classAbstract=="T" ? "pure" : ""%

· %opStereotype=="operator" ? "operator" : ""%

· %paramDefault != "" ? " = " value : ""%

The above three examples output nothing if the condition fails. In this case the false condition can be omitted,
resulting in the following usage:

Examples:

· %classAbstract=="T" ? "pure"%

· %opStereotype=="operator" ? "operator"%

· %paramDefault != "" ? " = " value%

The third example of both blocks shows a comparison checking for a non-empty value or existence. This test
can also be omitted.

· %paramDefault ? " = " value : ""%

· %paramDefault ? " = " value%

All of the above examples containing paramDefault are equivalent. If the parameter in scope had a default
value of 10, the output from each of them would normally be:

 = 10

Note:

In a conditional substitution macro, any white space following <macroName> is ignored. If white space is
required in the output, it should be included within the quoted substitution strings.

5.1.2.3 Tagged Value Macros

Tagged Value macros are a special form of field substitution macros, which provide access to element tags
and the corresponding Tagged Values.

Use 1: Direct Substitution

This form of the macro directly substitutes the value of the named tag into the output.

Structure: %<macroName>:"<tagName>"%

<macroName> can be one of:

· attTag

· classTag

· connectorDestElemTag

Code Template Framework in SDK | Code Template Syntax 103

© 1998-2010 Sparx Systems Pty Ltd

· connectorDestTag

· connectorSourceElemTag

· connectorSourceTag

· connectorTag

· linkAttTag

· linkTag

· opTag

· packageTag

· paramTag

This corresponds to the tags for attributes, Classes, operations, packages, parameters, connectors with both
ends, elements at both ends of connectors and connectors including the attribute end.

<tagName> is a string representing the specific tag name.

Examples:
%opTag:"attribute"%

Use 2: Conditional Substitution

This form of the macro mimics the conditional substitution defined for field substitution macros.

Structure: %<macroName>:"<tagName>" [== "<test>"] ? <subTrue> [: <subFalse>]%

Where:

· <macroName> and <tagName> are as defined above

· [<text>] denotes that <text> is optional

· <test> is a string representing a possible value for the macro

· <subTrue> and <subFalse> can be a combination of quoted strings and the keyword value. Where the
value is used, it gets replaced with the macro's value in the output.

Examples:
%opTag:"opInline" ? "inline" : ""%
%opTag:"opInline" ? "inline"%
%classTag:"unsafe" == "true" ? "unsafe" : ""%
%classTag:"unsafe" == "true" ? "unsafe"%

Tagged Value macros use the same naming convention as field substitution macros.

5.1.2.4 Function Macros

Function macros are a convenient way of manipulating and formatting various element data. Each function
macro returns a result string. There are two primary ways to use the results of function macros:

· Direct substitution of the returned string into the output, such as: %TO_LOWER(attName)%

· Storing the returned string as part of a variable definition such as: $name = %TO_LOWER(attName)%

Function macros can take parameters, which can be passed to the macros as:

· String literals, enclosed within double quotation marks

· Direct substitution macros without the enclosing percent signs

· Variable references

· Numeric literals.

Multiple parameters are passed using a comma-separated list.

The available function macros are described below. Parameters are denoted by angle brackets, as in:
FUNCTION_NAME(<param>).

Note:

Function macros are named according to the All-Caps style, as in: %CONVERT_SCOPE(opScope)%

Code Template Framework in SDK | Code Template Syntax104

Enterprise Architect Software Developers' Kit

CONVERT_SCOPE(<umlScope>)

For use with supported languages. Converts <umlScope> to the appropriate scope keyword for the language
being generated. The following table shows the conversion of <umlScope> with respect to the given language.

Language Package Public Private Protected

C++ public public private protected

C# internal public private protected

Delphi protected public private protected

Java public private protected

PHP public public private protected

VB Protected Public Private Protected

VB .Net Friend Public Private Protected

COLLECTION_CLASS(<language>)

Gives the appropriate collection Class for the language specified for the current linked attribute.

CSTYLE_COMMENT(<wrap_length>)

Converts the notes for the element currently in scope to plain C-style comments, using /* and */.

DELPHI_PROPERTIES(<scope>, <separator>, <indent>)

Generates a Delphi property.

DELPHI_COMMENT(<wrap_length>)

Converts the notes for the element currently in scope to Delphi comments.

EXEC_ADD_IN(<addin_name>, <function_name>, <prm_1>, ..., <prm_n>)

Invokes an Enterprise Architect Add-In function, which can return a result string. <addin_name> and
<function_name> specify the names of the Add-In and function to be invoked. Parameters to the Add-In
function can be specified via parameters <prm_1> to <prm_n>. For example:

$result = %EXEC_ADD_IN("MyAddin","ProcessOperation",classGUID, opGUID)%

Any function that is to be called by the EXEC_ADD_IN macro must have two parameters: an EA.Repository
object, and a Variant array that contains any additional parameters from the EXEC_ADD_IN call. Return type
should be Variant. For example:

Public Function ProcessOperation(Repository As EA.Repository, args As Variant) As Variant

FIND(<src>, <subString>)

Position of the first instance of <subString> in <src>; -1 if none.

GET_ALIGNMENT()

Returns a string where all of the text on the current line of output is converted into spaces and tabs.

JAVADOC_COMMENT(<wrap_length>)

Converts the notes for the element currently in scope to javadoc-style comments.

LEFT(<src>, <count>)

The first <count> characters of <src>.

Code Template Framework in SDK | Code Template Syntax 105

© 1998-2010 Sparx Systems Pty Ltd

LENGTH(<src>)

Length of <src>.

MID(<src>, <count>)
MID(<src>, <start>, <count>)

Substring of <src> starting at <start> and including <count> characters. Where <count> is omitted the rest of
the string is included.

PI(<option>, <value>, ...)

Sets the PI for the current template to <value>. <option> controls when the new PI takes effect. Valid values
are:

· I, Immediate: the new PI is generated before the next non-empty template line

· N, Next: the new PI is generated after the next non-empty template line.

Multiple pairs of options are allowed in one call. For more details, see the description of PI.

PROCESS_END_OBJECT(<template_name>)

Enables the Classes that are one Class further away from the base Class, to be transformed into objects
(such as attributes, operations, packages, parameters and columns) of the base Class. <template_name>
refers to the working template that temporarily stores the data.

REMOVE_DUPLICATES(<source>, <separator>)

Where <source> is a <separator> separated list; this removes any duplicate or empty strings.

REPLACE(<string>, <old>, <new>)

Replaces all occurrences of <old> with <new> in the given string <string>.

RESOLVE_OP_NAME()

Resolves clashes in interface names where two method-from interfaces have the same name.

RESOLVE_QUALIFIED_TYPE()
RESOLVE_QUALIFIED_TYPE(<separator>)
RESOLVE_QUALIFIED_TYPE(<separator>, <default>)

Generates a qualified type for the current attribute, linked attribute, linked parent, operation, or parameter.
Enables the specification of a separator other than . and a default value for when some value is required.

RIGHT(<src>, <count>)

The last <count> characters of <src>.

TO_LOWER(<string>)

Converts <string> to lower case.

TO_UPPER(<string>)

Converts <string> to upper case.

TRIM(<string>)
TRIM(<string>, <trimChars>)

Removes trailing and leading white spaces from <string>. If <trimChars> is specified, all leading and trailing
characters in the set of <trimChars> are removed.

TRIM_LEFT(<string>)
TRIM_LEFT(<string>, <trimChars>)

Removes the specified leading characters from <string>.

106

Code Template Framework in SDK | Code Template Syntax106

Enterprise Architect Software Developers' Kit

TRIM_RIGHT(<string>)
TRIM_RIGHT(<string>, <trimChars>)

Removes the specified trailing characters from <string>.

VB_COMMENT(<wrap_length>)

Converts the notes for the element currently in scope to Visual Basic style comments.

WRAP_COMMENT(<comment>, <wrap_length>, <indent>, <start_string>)

Wraps the text <comment> at width <wrap_length> putting <indent> and <start_string> at the beginning of
each line. For example:

$behavior = %WRAP_COMMENT(opBehavior, "40", " ", "//")%

Note:

<wrap_length> must still be passed as a string, even though WRAP_COMMENT treats this parameter as an
integer.

WRAP_LINES(<text>, <wrap_length>, <start_string>[, <end_string])

Wraps <text> as designated to be <wrap_length>, adding <start_string> to the beginning of every line and
<end_string> to the end of the line if it is specified.

XML_COMMENT(<wrap_length>)

Converts the notes for the element currently in scope to XML-style comments.

5.1.2.5 Control Macros

Control macros are used to control the processing and formatting of the templates. The basic types of control
macro include:

· The list macro, for generating multiple element features, such as attributes and operations

· The branching macros, which form if-then-else constructs to conditionally execute parts of a template

· The PI macro, which takes effect from the next non-empty line

· A PI function macro that enables setting PI to a variable and adds the ability to set the PI that is
generated before the next line

· The PI macro for formatting new lines in the output

· The synchronization macros.

In general, control macros are named according to Camel casing.

List

The list macro is used to generate multiple elements. The basic structure is:

%list=<TemplateName> @separator=<string> @indent=<string> [<conditions>]%

where <string> is a double-quoted literal string and <TemplateName> can be one of the following template
names:

· Attribute

· Class

· ClassBase

· ClassImpl

· ClassInterface

· Constraint

· Custom Template (custom templates enable you to define your own templates; for more information see
Custom Templates) .

· Effort

· InnerClass

· InnerClassImpl

103

119

Code Template Framework in SDK | Code Template Syntax 107

© 1998-2010 Sparx Systems Pty Ltd

· LinkedFile

· Metric

· Namespace

· Operation

· OperationImpl

· Parameter

· Problem

· Requirement

· Resource

· Risk

· Scenario

· Test

<conditions> is optional and appears the same as the conditions for if and elseIf statements.

Example:
%list="Attribute" @separator="\n" @indent=" "%

The separator attribute, denoted above by @separator, specifies the space that should be used between the
list items. This excludes the last item in the list.

The indent attribute, denoted by @indent, specifies the space by which each line in the generated output
should be indented.

The above example would output the result of processing the Attribute template, for each attribute element of
the Class in scope. The resultant list would separate its items with a single new line and indent them two
spaces respectively. If the Class in scope had any stereotyped attributes, they would be generated using the
appropriately specialized template.

There are some special cases to consider when using the list macro:

· If the Attribute template is used as an argument to the list macro, this also generates attributes derived
from associations by executing the appropriate LinkedAttribute template

· If the ClassBase template is used as an argument to the list macro, this also generates Class bases
derived from links in the model by executing the appropriate LinkedClassBase template

· If the ClassInterface template is used as an argument to the list macro, this also generates Class bases
derived from links in the model by executing the appropriate LinkedClassInterface template

· If InnerClass or InnerClassImpl is used as an argument to the list macro, these Classes are generated
using the Class and ClassImpl templates respectively. These arguments tell Enterprise Architect that it
should process the templates based on the inner Classes of the Class in scope.

Branching (if-then-else Constructs)

The CTF supports a limited form of branching through the following macros:

· if

· elseIf

· endIf

· endTemplate

The basic structure of the if and elseIf macros is:

%if <test> <operator> <test>%

where <operator> can be one of:

· ==

· !=

and <test> can be one of:

· a string literal, enclosed within double quotation marks

· a direct substitution macro, without the enclosing percent signs

· a variable reference.

Branches can be nested, and multiple conditions can be specified using one of:

· and

Code Template Framework in SDK | Code Template Syntax108

Enterprise Architect Software Developers' Kit

· or.

Note:

When specifying multiple conditions, and and or have the same order of precedence, and conditions are
processed left to right.

The endif or endTemplate macros must be used to signify the end of a branch. In addition, the endTemplate
macro causes the template to return immediately, if the corresponding branch is being executed.

Example:
%if elemType == "Interface"%
;
%else%
%OperationBody%
%endIf%

Example:
$bases=%list="ClassBase" @separator=", "%
$interfaces=%list="ClassInterface" @separator=", "%
%if $bases != "" and $interfaces != ""%
: $bases, $interfaces
%elseIf $bases != ""%
: $bases
%elseIf $interfaces != ""%
: $interfaces
%endIf%

The PI Macro

There are two primary means of generating whitespace from the templates:

· Explicitly using the newline, space and tab characters (\n, ,\t) as part of Literal Text

· Using the PI macro to format lines in the template that result in non-empty substitutions in the output.

By default, each template line that generates a non-empty substitution also results in a newline being
produced in the output. This behavior can be changed through the PI macro.

To demonstrate the use of the PI macro, consider the default C# Operation template:

%opTag:"Attribute"%

%PI=" "%
%opTag:"unsafe"=="true" ? "unsafe" : ""%
%CONVERT_SCOPE(opScope)%
%opTag:"new"=="true" ? "new" : ""%
%opAbstract=="T" ? "abstract" : ""%
%opConst=="T" ? "sealed" : ""%
%opStatic=="T" ? "static" : ""%
%opTag:"extern"=="true" ? "extern" : ""%
%opTag:"delegate"=="true" ? "delegate" : ""%
%opTag:"override"=="true" ? "override" : ""%
%opTag:"virtual"=="true" ? "virtual" : ""%
%opReturnType%%opReturnArray=="T" ? "[]" : ""%
%opStereotype=="operator" ? "operator" : ""%
%opName%(%list="Parameter" @separator=", "%)

Default PI is \n, so any attributes would be on their
own line

Blank lines have no effect on the output

Set the PI, so keywords are separated by a space

Any keyword that does not apply - that is, the macro
produces an empty result - does not result in a space

Only one space is generated for this line

The final line in the template does not generate a
space

In the above example macros for the various keywords are to be arranged vertically for readability. In the
output, however, each relevant keyword is to be separated by a single space. This is achieved by the line:

%PI=" "%

Notice how you do not specify the space between each of the possible keywords. This space is already
implied by setting the PI to a single space. Essentially the PI acts as a convenience mechanism for formatting
the output from within the templates.

The structure for setting the processing instruction is:

%PI=<value>%

where <value> can be a literal string enclosed by double quotes.

Code Template Framework in SDK | Code Template Syntax 109

© 1998-2010 Sparx Systems Pty Ltd

The following points apply to the PI macro:

· The value of the PI is not accessed explicitly

· Only template lines that result in a non-empty substitution cause the PI to be generated

· The last non-empty template line does not cause the PI to be generated

· The PI is not appended to the last substitution, regardless of which template line caused that substitution.

Synchronization Macros

The synchronization macros are used to provide formatting hints to Enterprise Architect when inserting new
sections into the source code, during forward synchronization. The values for synchronization macros must be
set in the File templates.

The structure for setting synchronization macros is:

%<name>=<value>%

where <name> can be one of the macros listed below and <value> is a literal string enclosed by double
quotes.

Macro Name Description

synchNewClassNotesSpace Space to append to a new Class note. Default value: \n.

synchNewAttributeNotesSpace Space to append to a new attribute note. Default value: \n.

synchNewOperationNotesSpac
e

Space to append to a new operation note. Default value: \n.

synchNewOperationBodySpace Space to append to a new operation body. Default value: \n.

synchNamespaceBodyIndent Indent applied to Classes within non-global namespaces. Default value:
\t.

5.1.2.6 EASL Code Generation Macros

Enterprise Architect provides two Enterprise Architect Simulation Library (EASL) code generation macros to
generate code from behavioral models. These are:

· EASL_GET and

· EASLList.

EASL_GET

The EASL_GET macro is used to retrieve a property or a collection of an EASL object. The EASL objects and
the properties and collections for each object are identified in the EASL Collections and EASL Properties

 topics.

Syntax

$result = %EASL_GET(<<Property>>, <<Owner ID>>, <<Name>>)

where:

· <<Property>> is either "Property" or "Collection"

· <<OwnerID>> is the ID of the owner object for which the property/collection is to be retrieved

· <<Name>> is the name of the property or Collection being accessed

· $result is the returned value; this is “” if not a valid property.

Example

$sPropName = %EASL_GET("Property", $context, "Name")%

EASLList

The EASLList macro is used to render each object in an EASL collection using the appropriate template.

111

113

Code Template Framework in SDK | Code Template Syntax110

Enterprise Architect Software Developers' Kit

Syntax
$result = %EASLList=<<TemplateName>> @separator=<<Separator>>

 @indent=<<indent>> @owner=<<OwnedID>>
 @collection=<<CollectionName>> @option1=<<OPTION1>>
 @option2=<<OPTION2>>......... @optionN=<<OPTIONN>>%

where:

· <<TemplateName>> is the name of any behavioral model template or custom template

· <<Separator>> is a list separator (such as “\n”)

· <<indent>> is any indentation to be applied to the result

· <<owner>> is the ID of the object that contains the required collection

· <<CollectionName>>is the name of the required collection

· <<OPTION1>....<<OPTION99>> are miscellaneous options that might be passed on the template; each
option is given as an additional input parameter to the template

· $result is the resultant value; this is “” if not a valid collection.

Example

$sStates = %EASLList="State" @separator="\n" @indent="\t"
 @owner=$StateMachineGUID @collection="States" @option=$sOption%

Behavioral Model Templates

· Action

· Action Assignment

· Action Break

· Action Call

· Action Create

· Action Destroy

· Action If

· Action Loop

· Action Opaque

· Action Parallel

· Action RaiseEvent

· Action RaiseException

· Action Switch

· Behavior

· Behavior Body

· Behavior Declaration

· Behavior Parameter

· Call Argument

· Guard

· Property Object

· Property Declaration

· Property Notes

· State

· State CallBack

· State Enumerate

· State EnumeratedName

· StateMachine

· StateMachine HistoryVar

· Transition

· Transition Effect

· Trigger.

110 119

Code Template Framework in SDK | Code Template Syntax 111

© 1998-2010 Sparx Systems Pty Ltd

5.1.2.6.1 EASL Collections

This topic lists the EASL collections for each of the EASL objects, as retrieved by the EASL_GET code
generation macro.

Action

Collection Name Description

Arguments The Action's arguments.

SubActions The sub-actions of the Action.

Behavior

Collection Name Description

Actions The Behavior's Actions.

Nodes The Behavior's nodes.

Parameters The Behavior's parameters.

Variables The Behavior's variables.

Classifier

Collection Name Description

AllStateMachines All State Machines for the Classifier.

AsynchProperties The asynchronous properties of the Classifier.

AsynchTriggers The asynchronous triggers of the Classifier.

Behaviors The behaviors of the Classifier.

Properties The properties of the Classifier.

TimedProperties The timed properties of the Classifier.

TimedTriggers The timed triggers of the Classifier.

Construct

Collection Name Description

AllChildren The Construct's children.

ClientDependencies The client dependencies on the Construct.

StereoTypes The stereotypes of the Construct.

SupplierDependencies The supplier dependencies on the Construct.

Node

Collection Name Description

IncomingEdges The Node's incoming edges.

109

Code Template Framework in SDK | Code Template Syntax112

Enterprise Architect Software Developers' Kit

Collection Name Description

OutgoingEdges The Node's outgoing edges.

SubNodes The sub-nodes of the Node.

State

Collection Name Description

DoBehaviors The State's Do behaviors.

EntryBehaviors The State's Entry behaviors.

ExitBehaviors The State's Exit behaviors.

StateMachine

Collection Name Description

AllFinalStates The State Machine's final States.

AllStates All States within the State Machine, including those within Submachine
States.

DerivedTransitions The State Machine's derived transitions with the associated valid effect.

States The States within the State Machine.

Transitions The transitions within the State Machine.

Vertices The State Machine's vertices.

Transition

Collection Name Description

Effects The Transition's effects.

Guards The Transition's guards.

Triggers The Transition's triggers.

Trigger

Collection Name Description

TriggeredTransitions The triggered transitions associated with the Trigger.

Vertex

Collection Name Description

DerivedOutgoingTransitions The Vertex's derived outgoing transitions after traversing the pseudo-nodes.

IncomingTransitions The Vertex's incoming transitions.

OutgoingTransitions The Vertex's outgoing transitions.

Code Template Framework in SDK | Code Template Syntax 113

© 1998-2010 Sparx Systems Pty Ltd

5.1.2.6.2 EASL Properties

This topic lists the EASL properties for each of the EASL objects, as retrieved by the EASL_GET code
generation macro.

Action

Property Name Description

Behavior The Action's associated behavior (Call Behavior Action or Call Operation Action).

Body The Action's body.

Context The Action's context.

Guard The Action's guard.

IsFinal A check on whether the action is a final Action.

IsGuarded A check on whether the action is a guarded Action.

IsInitial A check on whether the action is an initial Action.

Kind The Action's kind.

Next The Action's next action.

Node The Action's associated node in the graph.

Argument

Property Name Description

Parameter The ID of the Argument's associated parameter.

Value The default value of the argument.

Behavior

Property Name Description

InitialAction The Behavior's initial action.

isReadOnly The isReadOnly of the Behavior.

isSingleExecution The isSingleExecution of the Behavior.

Kind The kind of Behavior.

ReturnType The return type of the Behavior.

CallEvent

Property Name Description

Operation The operation of the CallEvent.

109

Code Template Framework in SDK | Code Template Syntax114

Enterprise Architect Software Developers' Kit

ChangeEvent

Property Name Description

ChangeExpression The change expression of the ChangeEvent.

Classifier

Property Name Description

HasBehaviors A check on whether the Classifier has behavioral models (Activity and
Interaction).

Language The Classifier's language.

StateMachine The State Machine of the Classifier.

Condition

Property Name Description

Expression The Condition's expression.

Lower The Condition's lower value.

Upper The Condition's upper value.

Construct

Property Name Description

GetTaggedValue The Property's Tagged Value.

IsStereotypeApplied A check on whether a particular stereotype is applied to the Property.

Notes Notes on the Property.

UMLType The UML type of the Property.

Visibility The visibility of the Property.

Edge

Property Name Description

From The ID of the node from which the Edge arises.

To The ID of the node at which the Edge is targeted.

EventObject

Property Name Description

EventKind The event kind of the Event Object.

Code Template Framework in SDK | Code Template Syntax 115

© 1998-2010 Sparx Systems Pty Ltd

Instance

Property Name Description

Classifier The classifier of the Instance.

Value The value of the Instance.

Parameter

Property Name Description

Direction The direction of the Parameter.

Type The type of the Parameter.

Value The value of the parameter.

Primitive

Property Name Description

FQName The FQ name of the Primitive.

ID The ID of the Primitive.

Name The name of the Primitive.

ObjectType The object type of the Primitive.

Parent The IDParent of the Primitive.

PropertyObject

Property Name Description

BoundSize The bound size of the PropertyObject (if it is a collection).

ClassifierStereoType The stereotype of the PropertyObject's classifier.

IsAsynchProp A check on whether the PropertyObject is an asynchronous property.

IsCollection A check on whether the PropertyObject is a collection.

IsOrdered A check on whether the PropertyObject is ordered (if it is a collection).

IsTimedProp A check on whether the PropertyObject is a timed property.

Kind The PropertyObject's kind.

LowerValue The PropertyObject's lower value (if it is a collection).

Type The PropertyObject's type.

UpperValue The PropertyObject's upper value (if it is a collection).

Value The PropertyObject's value.

Code Template Framework in SDK | Code Template Syntax116

Enterprise Architect Software Developers' Kit

SignalEvent

Property Name Description

Signal The signal of the SignalEvent.

State

Property Name Description

HasSubMachine A check on whether the State is a Submachine state.

IsFinalState A check on whether the State is a final state.

SubMachine Get the ID of the Submachine contained by the State (if applicable).

StateMachine

Property Name Description

HasSubMachineState A check on whether the State Machine has a Submachine state.

InitialState The State Machine's initial state.

SubMachineState The State Machine's Submachine state.

TimeEvent

Property Name Description

When The 'when' property of the TimeEvent.

Transition

Property Name Description

HasEffect A check on whether the transition has a valid effect.

IsDerived A check on whether the transition is a derived transition.

IsTranscend A check on whether the transition transcends from one State Machine
(Submachine state) to another.

IsTriggered A check on whether the transition is triggered.

Source The Transition's source.

Target The Transition's target.

Trigger

Property Name Description

AsynchDestinationState The asynchronous destination state of the Trigger (if it is an asynchronous
trigger).

DependentProperty The ID of the property associated with the Trigger.

Event The Trigger's event.

Code Template Framework in SDK | Code Template Syntax 117

© 1998-2010 Sparx Systems Pty Ltd

Property Name Description

Name The Trigger's name.

Type The Trigger's type.

Vertex

Property Name Description

IsHistory A check on whether the vertex is a history state.

IsPseudoState A check on whether the vertex is a pseudo state.

PseudoStateKind The Vertex's pseudo-state kind.

5.1.3 Variables

Template variables provide a convenient way of storing and retrieving data within a template. This section
explains how variables are defined and referenced .

Variable Definitions

Variable definitions take the basic form:

$<name> = <value>

where <name> can be any alpha-numeric sequence and <value> is derived from a macro or another variable.

A simple example definition would be:

$foo = %className%

Variables can be defined, using values from:

· Substitution, function or list macros

· String literals, enclosed within double quotation marks

· Variable references.

Definition Rules

The following rules apply to variable definitions:

· Variables have global scope within the template in which they are defined and are not accessible to other
templates

· Each variable must be defined at the start of a line, without any intervening whitespace

· Variables are denoted by prefixing the name with $, as in $foo

· Variables do not have to be declared, prior to being defined

· Variables must be defined using either the assignment operator (=), or the addition-assignment operator
(+=)

· Multiple terms can be combined in a single definition using the addition operator (+).

Examples

Using a substitution macro:

$foo = %opTag:"bar"%

Using a literal string:

$foo = "bar"

Using another variable:

$foo = $bar

Using a list macro:

$ops = %list="Operation" @separator="\n\n" @indent="\t"%

Using the addition-assignment operator (+=):

$body += %list="Operation" @separator="\n\n" @indent="\t"%

117 118

Code Template Framework in SDK | Code Template Syntax118

Enterprise Architect Software Developers' Kit

The above definition is equivalent to the following:

$body = $body + %list="Operation" @separator="\n\n" @indent="\t"%

Using multiple terms:

$templateArgs = %list="ClassParameter" @separator=", "%
$template ="template<" + $templateArgs + ">"

Variable References

Variable values can be retrieved by using a reference of the form:

$<name>

where <name> can be a previously defined variable.

Variable references can be used in one of the following ways:

· As part of a macro, such as the argument to a function macro

· As a term in a variable definition

· As a direct substitution of the variable value into the output.

Note:

It is legal to reference a variable before it is defined. In this case, the variable is assumed to contain an empty
string value: ""

Example 1

Using variables as part of a macro. The following is an excerpt from the default C++ ClassNotes template.

$wrapLen = %genOptWrapComment%
$style = %genOptCPPCommentStyle%

%if $style == "XML.NET"%
%XML_COMMENT($wrapLen)%
%else%
%CSTYLE_COMMENT($wrapLen)%
%endIf%

Define variables to store the style and wrap length
options.

Reference to $style as part of a condition.

Reference to $wrapLen as an argument to function macro.

Example 2

Using variable references as part of a variable definitions:

$foo = "foo"
$bar = "bar"

$foobar = $foo + $bar

Define our variables.

$foobar now contains the value foobar.

Example 3

Substituting variable values into the output

$bases=%classInherits%

Class %className%$bases

Store the result of the ClassInherits template in $bases.

Now output the value of $bases after the Class name.

5.2 The Code Template Editor in SDK

The Code Template Editor window is introduced in Code Engineering Using UML Models. The following topics
describe how you use it to create custom templates:

· Custom Templates

· Override Default Templates

· Add New Stereotyped Templates

· Create Templates For Custom Languages

The Code Template Editor provides the facilities of the Common Code Editor, including intellisense for the
code generation template macros . For more information on intellisense and the Common Code Editor, see
the Code Editors topic in Using Enterprise Architect - UML Modeling Tool.

119

120

121

122

89

Code Template Framework in SDK | The Code Template Editor in SDK 119

© 1998-2010 Sparx Systems Pty Ltd

5.2.1 Custom Templates

Custom templates enable you to generate an element in many different ways. Enterprise Architect enables
you to define custom templates that are associated with given elements and call these templates from existing
templates. You can even add stereotype overrides to your custom templates. For example, you might list all of
your parameters and their notes in your method notes.

To create a new custom template, follow the steps below:

1. Select the Settings | Code Generation Templates menu option, or press [Ctrl]+[Shift]+[P]. The Code
Templates Editor tab opens.

2. In the Language field, click on the drop-down arrow and select the appropriate language.

3. Click on the Add New Custom Template button. The Create New Custom Template dialog displays.

4. In the Template Type field, click on the drop-down arrow and select the appropriate element. The
elements currently supported are:

· Attribute

· Class

· Class Base

· Class Interface

· Class Parameter

· Connector

· Import

· Linked Attribute

· Linked Class Base

· Linked Class Interface

· Namespace

· Operation

· Parameter.

Note:

<None> requires special treatment. It enables the definition of a function macro that doesn't actually
apply to any of the types, but must be called as a function to define variables $parameter1,
$parameter2 and so on for each value passed in.

5. In the Template Name field, type an appropriate name, then click on the OK button.

6. On the Code Templates Editor tab, the new template displays in the Templates list with the value Yes in
the Modified field. The template is called <Template Type>_<Template Name>.

7. Select the appropriate template from the Templates list and edit the contents in the Template field to
meet your requirements.

Code Template Framework in SDK | The Code Template Editor in SDK120

Enterprise Architect Software Developers' Kit

8. Click on the Save button. This stores the new stereotyped template in the .EAP file. The template is
now available from the list of templates and via direct substitution for use.

5.2.2 Override Default Templates

Enterprise Architect has a set of built-in or default code generation templates. The Code Templates Editor
enables you to modify these default templates, hence customizing the way in which Enterprise Architect
generates code. You can choose to modify any or all of the base templates to achieve your required coding
style.

Any templates that you have overridden are stored in the .EAP file. When generating code, Enterprise
Architect first checks whether a template has been modified and if so, uses that template. Otherwise the

Code Template Framework in SDK | The Code Template Editor in SDK 121

© 1998-2010 Sparx Systems Pty Ltd

appropriate default template is used.

Procedure

To override a default code generation template, follow the steps below.

1. Select the Configuration | Code Generation Templates menu option. The Code Templates Editor
displays.

2. Select the appropriate language from the Language list.

3. Select one of the base templates from the Templates list.

4. If the base template has stereotyped overrides, you can select one of these from the Stereotype
Overrides list.

5. In the Code Templates Editor, make the required modifications.

6. Click on the Save button. This stores the modified version of the template to the .EAP file. The template
is marked as modified.

When generating code, Enterprise Architect now uses the overridden template, instead of the default
template.

5.2.3 Add New Stereotyped Templates

Sometimes it is useful to define a specific code generation template for use with elements of a given
stereotype. This enables different code to be generated for elements, depending on their stereotype.
Enterprise Architect provides some default templates, which have been specialized for commonly used
stereotypes in supported languages. For example the Operation Body template for C# has been specialized
for the property stereotype, so that it automatically generates its constituent get and set methods. Users can
override the default stereotyped templates as described in the previous topic. Additionally users can define
templates for their own stereotypes, as described below.

Add a New Stereotyped Template

To override a default code generation template, follow the steps below.

1. Select the Configuration | Code Generation Templates menu option to open the Code Templates
Editor.

2. Select the appropriate language, from the Language list.

3. Select one of the base templates, from the Templates list.

4. Click on the Add New Stereotyped Override button. The New Template Override dialog displays.

5. Select the required Feature and/or Class stereotype and click on the OK button.

6. The new stereotyped template override displays in Stereotype Overrides list, marked as modified.

7. Make the required modifications in the Code Templates Editor.

8. Click on the Save button. This stores the new stereotyped template in the .EAP file.

Enterprise Architect can now use the stereotyped template, when generating code for elements of that
stereotype.

Note that Class and feature stereotypes can be combined to provide a further level of specialization for

Code Template Framework in SDK | The Code Template Editor in SDK122

Enterprise Architect Software Developers' Kit

features. For example, if properties should be generated differently when the Class has a stereotype
MyStereotype, then both property and MyStereotype should be specified in the New Template Override dialog.

5.2.4 Create Custom Language Template

Enterprise Architect can forward generate code for languages that it does not specifically support, if the
appropriate code generation templates are defined for that language. This topic outlines the steps required to
define templates for custom languages.

Define a Template for a Custom Language

1. Create the custom language as a new product. To do this:

· Select the Settings | Code Datatypes menu option. The Programming Languages Datatypes dialog
displays.

· In the Product Name field type the name of the new language, and in the Datatype field type a
datatype (one is enough to declare that the new language exists). See the Data Types topic in UML
Model Management for more details.

2. Select the Settings | Code Generation Templates menu option. The Code Templates Editor view
displays.

3. In the Language field, click on the drop-down arrow and select the custom language.

4. From the Templates list, select one of the base templates.

5. Define the template using the Code Templates Editor.

6. Click on the Save button. This stores the template in the .EAP file.

7. Repeat steps 1 to 6 for each of the relevant base templates for the custom language.

Note:

The File template must be defined for the custom language. The File template can then see the Import
Section, Namespace and Class templates.

Enterprise Architect Add-In Model | 123

© 1998-2010 Sparx Systems Pty Ltd

6 Enterprise Architect Add-In Model

Introduction

Add-Ins enable you to add functionality to Enterprise Architect. The Enterprise Architect Add-In model builds
on the features provided by the Automation Interface to enable you to extend the Enterprise Architect user
interface.

Add-Ins are ActiveX COM objects that expose public Dispatch methods. They have several advantages over
stand-alone automation clients:

· Add-Ins can define Enterprise Architect menus and sub-menus

· Add-Ins receive notifications about various Enterprise Architect user-interface events including menu clicks
and file changes

· Add-Ins can (and should) be written as in-process (DLL) components. This provides lower call overhead
and better integration into the Enterprise Architect environment

· Because a current version of Enterprise Architect is already running there is no requirement to start a
second copy of Enterprise Architect via the automation interface

· Because the Add-In receives object handles associated with the currently running copy of Enterprise
Architect, more information is available about the current user's activity; for example, which diagram
objects are selected

· You are not required to do anything other than to install the Add-In to make it usable; that is, you do not
have to configure Add-Ins to run on your systems.

Because Enterprise Architect is constantly evolving in response to customer requests, the Add-In interface is
flexible:

· The Add-In interface does not have its own version, rather it is identified by the version of Enterprise
Architect it first appeared in; for example, the current version of the Enterprise Architect Add-In interface is
version 2.1.

· When creating your Add-In, you do not have to subscribe to a type-library.

Note:

From Enterprise Architect release 7.0 Add-Ins created before 2004 are no longer supported. If an Add-In
subscribes to the Addn_Tmpl.tlb interface (2003 style), it will fail on load. In this event, contact the vendor
or author of the Add-In and request an upgrade.

· Add-Ins do not have to implement methods that they never use.

· Add-Ins prompt users via context menus in the tree view and the diagram.

· Menu check and disable states can be controlled by the Add-In.

Add-Ins enhance the existing functionality of Enterprise Architect through a variety of mechanisms such as
Scripts (see Using Enterprise Architect - UML Modeling Tool), UML Profiles and the Automation Interface

. Once an Add-In is registered (see Getting Started With Enterprise Architect), it can be managed using
the Add-In Manager .

Create and Use Add-Ins

This topic covers the following information on Add-Ins:

· Add-In Tasks

· Add-In Events

· Broadcast Events

· Custom Views

· MDG Add-Ins

181

3

181

128

124

129

135

169

170

Enterprise Architect Add-In Model | Add-In Tasks124

Enterprise Architect Software Developers' Kit

6.1 Add-In Tasks

This topic provides instructions on how to create, test, deploy and manage Add-Ins.

1. Create an Add-In

· Define Menu Items

· Respond to Menu Events

· Handle Add-In Events

2. Deploy your Add-In

· Potential Pitfalls

3. Manage Add-Ins

· Register an Add-In (developed in-house or brought-in) - see the Register Add-In topic in Getting
Started with Enterprise Architect

· The Add-In Manager

6.1.1 Create Add-Ins

Before you start you must have an application development tool that is capable of creating ActiveX COM
objects supporting the IDispatch interface, such as:

· Borland Delphi

· Microsoft Visual Basic

· Microsoft Visual Studio .Net.

You should consider how to define menu items . To help with this, you could review some examples of
Automation Interfaces (this web page provides examples of code used to create Add-Ins for Enterprise
Architect).

Create an Add-In

An Enterprise Architect Add-In can be created in four steps:

1. Use a development tool to create an ActiveX COM DLL project. Visual Basic users, for example,
choose File-Create New Project-ActiveX DLL.

2. Connect to the interface using the syntax appropriate to the language as detailed in the Connecting to
the Interface topic.

3. Create a COM Class and implement each of the general Add-In Events applicable to your Add-In.
You only have to define methods for events to respond to.

4. Add a registry key that identifies your Add-In to Enterprise Architect, as described in the Deploying Add-
Ins topic.

6.1.1.1 Define Menu Items

Menu items are defined by responding to the GetMenuItems event.

The first time this event is called, MenuName is an empty string, representing the top-level menu. For a simple
Add-In with just a single menu option you can return a string; for example:

Function EA_GetMenuItems(Repository as EA.Repository, MenuLocation As String, MenuName As String) As Variant
 EA_GetMenuItems = "&Joe's Add-In"
End Function

To define sub-menus, prefix a parent menu with a dash. Parent and sub-items are defined as follows:

Function EA_GetMenuItems(Repository as EA.Repository, MenuLocation As String, MenuName As String) As Variant
 Select Case MenuName
 Case ""

 'Parent Menu Item
 EA_GetMenuItems = "-&Joe's Add-In"
 Case "-&Joe's Add-In"

 'Define Sub-Menu Items using the Array notation.
 'In this example, "Diagram" and "Treeview" compose the "Joe's Add-In" sub-menu.

 EA_GetMenuItems = Array("&Diagram", "&Treeview")
 Case Else

124

124

132

129

125

126

128

124

181

129

125

http://www.sparxsystems.com.au/resources/developers/autint.html
http://www.sparxsystems.com.au/resources/developers/autint.html

Enterprise Architect Add-In Model | Add-In Tasks 125

© 1998-2010 Sparx Systems Pty Ltd

 MsgBox "Invalid Menu", vbCritical
 End Select
End Function

Similarly, you can define further sub-items:

Function EA_GetMenuItems(Repository as EA.Repository, MenuLocation As String, MenuName As String) As Variant
 Select Case MenuName
 Case ""
 EA_GetMenuItems = "-Joe's Add-In"
 Case "-Joe's Add-In"
 EA_GetMenuItems = Array("-&Diagram", "&TreeView")
 Case "-&Diagram"
 EA_GetMenuItems = "&Properties"
 Case Else
 MsgBox "Invalid Menu", vbCritical
 End Select
End Function

To enable or disable menu options by default, you can use this method to show particular items to the user:

Sub EA_GetMenuState(Repository As EA.Repository, Location As String, MenuName As String, ItemName As String,
IsEnabled As Boolean, IsChecked As Boolean)
 Select Case Location
 Case "TreeView"
 'Always enable
 Case "Diagram"
 'Always enable
 Case "MainMenu"
 Select Case ItemName
 Case "&Translate", "Save &Project"
 If GetIsProjectSelected() Then
 IsEnabled = False
 End If
 End Select
 End Select
 IsChecked = GetIsCurrentSelection()
End Sub

6.1.1.2 Deploy Add-Ins

To deploy Add-Ins to users' sites, follow the steps below:

1. Add the Add-In DLL file to an appropriate directory on the user's computer; that is, C:\Program Files\[new
dir].

2. Register the DLL as appropriate to your platform:

· If compiled as a native Win32 DDL, such as VB6 or C++, register the DDL using the regsvr32
command from the command prompt; for example:

regsvr32 "C:\Program Files\MyCompany\EAAddin\EAAddin.dll"

· If compiled as a .NET DLL, such as C# or VB.NET, register the DLL using the RegAsm command
from the command prompt; for example:

C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\RegAsm.exe "C:\Program
Files\MyCompany\EAAddin\EAAddin.dll" /codebase

3. Place a new entry into the registry using the registry editor (run regedit) so that Enterprise Architect
recognizes the presence of your Add-In.

4. Add a new key value EAAddIns under the location: HKEY_CURRENT_USER\Software\Sparx Systems

5. Add a new key under this key with the project name.

Enterprise Architect Add-In Model | Add-In Tasks126

Enterprise Architect Software Developers' Kit

Note:

[ProjectName] is not necessarily the name of your DLL, but the name of the Project. In Visual Basic,
this is the value for the property Name corresponding to the project file.

6. Specify the default value by modifying the default value of the key.

7. Enter the value of the key by typing in the [project name].[class name]; for example, EaRequirements.
Requirements, where EaRequirements is the project name, as shown in the example below.

6.1.1.3 Tricks and Traps

Visual Basic 5/6 Users Note

Visual Basic 5/6 users should note that the version number of the Enterprise Architect interface is stored in the
VBP project file in a form similar to the following:

Reference=*\G{64FB2BF4-9EFA-11D2-8307-C45586000000}#2.2#0#..\..\..\..\Program Files\Sparx Systems\EA\EA.
TLB#Enterprise Architect Object Model 2.02

If you experience problems moving from one version of Enterprise Architect to another, open the VBP file in a
text editor and remove this line. Then open the project in Visual Basic and use Project-References to create a
new reference to the Enterprise Architect Object model.

Enterprise Architect Add-In Model | Add-In Tasks 127

© 1998-2010 Sparx Systems Pty Ltd

Add-In Fails to Load

From Enterprise Architect release 7.0, Add-Ins created before 2004 are no longer supported. If an Add-In
subscribes to the Addn_Tmpl.tlb interface (2003 style), it will fail on load. In this event, contact the vendor or
author of the Add-In and request an upgrade.

Holding State Information

It is possible for an Add-In to hold state information, meaning that data can be stored in member variables in
response to one event and retrieved in another. There are some dangers in doing this:

· Enterprise Architect Automation Objects do not update themselves in response to user activity, to activity
on other workstations, or even to the actions of other objects in the same automation client. Retaining
handles to such objects between calls can result in the second event querying objects that have no
relationship with the current state of Enterprise Architect.

· When you close Enterprise Architect, all Add-Ins are asked to shut down. If there are any external
automation clients Enterprise Architect must stay active, in which case all the Add-Ins are reloaded, losing
all the data.

· Enterprise Architect acting as an automation client does not close if an Add-In still holds a reference to it
(releasing all references in the Disconnect() event avoids this problem).

It is recommended that unless there is a specific reason for doing so, the Add-In should use the repository
parameter and its method and properties to provide the necessary data.

Enterprise Architect Not Closing

.Net Specific Issues

Automation checks the use of objects and won't enable any of them to be destroyed until they are no longer
being used.

As noted in the Automation Interface topic, if your automation controller was written using the .NET
framework, Enterprise Architect does not close even after you release all your references to it. To force the
release of the COM pointers, call the memory management functions as shown below:

GC.Collect();
GC.WaitForPendingFinalizers();

Additionally, because automation clients hook into Enterprise Architect, which creates Add-Ins which in turn
hook back into Enterprise Architect, it is possible to get into a deadlock situation where Enterprise Architect
and the Add-Ins won't let go of one another and keep each other active. An Add-In might retain hooks into
Enterprise Architect because:

· It keeps a private reference to an Enterprise Architect object (see Holding State Information above), or

· It has been created by .NET and the GC mechanism hasn't got around to releasing it.

There are two actions required to avoid deadlock situations:

· Automation controllers must call Repository.CloseAddins() at some point (presumably at the end of
processing).

· Add-Ins must release all references to Enterprise Architect in the Disconnect() event. See the Add-In
Methods topic for details.

It is possible that your Automation client controls a running instance of Enterprise Architect where the Add-Ins
have not complied with the rule above. In this case you could call Repository.Exit() to terminate Enterprise
Architect.

Miscellaneous

In developing Add-Ins using the .Net framework you must select COM Interoperability in the project's
properties in order for it to be recognized as an Add-In.

Some development environments do not automatically register COM DLLs on creation. You might have to do
that manually before Enterprise Architect recognizes the Add-In.

You can use your private Add-In key (as required for Add-In deployment) to store configuration information
pertinent to your Add-In.

Concurrent Calls

In Enterprise Architect releases up to release 7.0, there is a possibility that Enterprise Architect could call two

184

127

129

Enterprise Architect Add-In Model | Add-In Tasks128

Enterprise Architect Software Developers' Kit

Add-In methods concurrently if the Add-In calls:

· A message box

· A modal dialog

· VB DoEvents, .NET Application DoEvents or the equivalent in other languages.

In such cases, Enterprise Architect could initiate a second Add-In method before the first returns (re-entrancy).
In release 7.0. and subsequent releases, Enterprise Architect cannot make such concurrent calls.

If developing Add-Ins, ensure that the Add-In users are running Enterprise Architect release 7.0 or a later
release to avoid any risk of concurrent method calls.

6.2 The Add-In Manager

You can use the Add-In Manager to view what Add-Ins are available and to disable those not to be used.

Access the Manage Add-Ins dialog by selecting the Add-Ins | Manage Add-Ins menu option.

To enable an Add-In for use, select the Load on Startup check box. To disable an Add-In, deselect the
checkbox.

Note:

Enterprise Architect must be restarted for changes to take effect.

6.3 Add-In Search

Enterprise Architect enables Add-Ins to integrate with the Model Search (see Using Enterprise Architect - UML
Modeling Tool). Searches can be defined that execute a method within your Add-In and display your results in
an integrated way.

The method that runs the search must be structured in the following way:

variant <method name> (Rep as Repository, SearchText as String, XMLResults as String)

Parameter Description

Rep The currently open repository.

SearchText An optional field that you can fill in through the Model Search.

XMLResults At completion of the method, this should contain the results for the search. The results
should be an XML String that conforms to the Search Data Format .

Return

The method must return a value for the results to be displayed.

129

Enterprise Architect Add-In Model | Add-In Search 129

© 1998-2010 Sparx Systems Pty Ltd

Advanced Usage

In addition to the displayed results, two additional hidden fields can be passed into the XML that provide
special functionality.

CLASSTYPE

Returning a field of CLASSTYPE, containing the Object_Type value from the t_object table, displays the
appropriate icon in the column you place the field.

CLASSGUID

Returning a field of CLASSGUID, containing an ea_guid value, enables the Model Search to track the object in
the Project Browser and open the Properties window for the element by double-clicking in the Model Search.

6.3.1 XML Format (Search Data)

The XML below provides the format for the SearchData parameter of the RunModel method. See the
Repository topic for more information.

<ReportViewData UID=\"MySearchID\" >
<!--
//The UID attribute enables XML type searches to persist column information. That is, if you run the search, group by

column or adjust column widths, then close the window and run the search again, the format/organization changes are
retained.To avoid persisting column arrangements, leave the attribute value blank or remove it altogether.

// Use this section to declare all possible fields - columns that appear in Enterprise Architect's search window - that
are used below in <Rows/>.

// The order of the columns of information to be appended here must match the order that the search run in
Enterprise Architect would normally display.

// Furthermore, if you append results onto a custom SQL Search, then the order used in your Custom SQL must
match the order used below.

-->

<Fields>
<Field name=""/>
<Field name=""/>
<Field name=""/>
<Field name=""/>

</Fields>

<Rows>
<Row>

<Field name="" value=""/>
<Field name="" value=""/>
<Field name="" value=""/>
<Field name="" value=""/>

</Row>
<Row>

<Field name="" value=""/>
<Field name="" value=""/>
<Field name="" value=""/>
<Field name="" value=""/>

</Row>
<Row>

<Field name="" value=""/>
<Field name="" value=""/>
<Field name="" value=""/>
<Field name="" value=""/>

</Row>
</Rows>

</ReportViewData>

6.4 Add-In Events

All Enterprise Architect Add-Ins can choose to respond to the following general Add-In events:

· EA_Connect

· EA_Disconnect

· EA_GetMenuItems

197

130

130

131

Enterprise Architect Add-In Model | Add-In Events130

Enterprise Architect Software Developers' Kit

· EA_MenuClick

· EA_GetMenuState

· EA_ShowHelp

· EA_OnOutputItemClicked

· EA_OnOutputItemDoubleClicked

6.4.1 EA_Connect

Details

EA_Connect events enable Add-Ins to identify their type and to respond to Enterprise Architect start up.

This event occurs when Enterprise Architect first loads your Add-In. Enterprise Architect itself is loading at this
time so that while a Repository object is supplied, there is limited information that you can extract from it.

The chief uses for EA_Connect are in initializing global Add-In data and for identifying the Add-In as an MDG
Add-In .

Also look at EA_Disconnect .

Syntax

Function EA_Connect(Repository As EA.Repository) As String

The EA_Connect function syntax has the following elements:

Parameter Type Direction Description

Repository EA.Repository IN An EA.Repository object representing the currently open
Enterprise Architect model. Poll its members to retrieve
model data and user interface status information.

Return Value

String identifying a specialized type of Add-In:

Type Details

"MDG" MDG Add-Ins receive MDG Events and extra menu options.

"" None-specialized Add-In.

6.4.2 EA_Disconnect

Details

The EA_Disconnect event enables the Add-In to respond to user requests to disconnect the model branch
from an external project.

This function is called when the Enterprise Architect closes. If you have stored references to Enterprise
Architect objects (not particularly recommended anyway), you must release them here.

In addition, .NET users must call memory management functions as shown below:

GC.Collect();
GC.WaitForPendingFinalizers();

Also look at EA_Connect .

Syntax

Sub EA_Disconnect()

132

131

134

133

133

170

130

197

170

130

Enterprise Architect Add-In Model | Add-In Events 131

© 1998-2010 Sparx Systems Pty Ltd

Return Value

None.

6.4.3 EA_GetMenuItems

Details

The EA_GetMenuItems event enables the Add-In to provide the Enterprise Architect user interface with
additional Add-In menu options in various context and main menus. When a user selects an Add-In menu
option, an event is raised and passed back to the Add-In that originally defined that menu option.

This event is raised just before Enterprise Architect has to show particular menu options to the user, and its
use is described in the Define Menu Items topic.

Also look at:

· EA_MenuClick

· EA_GetMenuState .

Syntax

Function EA_GetMenuItems(Repository As EA.Repository, MenuLocation As String, MenuName As
String) As Variant

The EA_GetMenuItems function syntax has the following elements:

Parameter Type Direction Description

MenuLocatio
n

String String representing the part of the user interface that brought up
the menu. Can be TreeView, MainMenu or Diagram.

MenuName String The name of the parent menu for which sub-items are to be
defined. In the case of the top-level menu it is an empty string.

Repository EA.
Repository

IN An EA.Repository object representing the currently open
Enterprise Architect model. Poll its members to retrieve model
data and user interface status information.

Return Value

One of the following types:

· A string indicating the label for a single menu option.

· An array of strings indicating a multiple menu options.

· Empty (Visual Basic/VB.NET) or null (C#) to indicate that no menu should be displayed.

In the case of the top-level menu it should be a single string or an array containing only one item, or Empty/
null.

6.4.4 EA_GetMenuState

Details

The EA_GetMenuState event enables the Add-In to set a particular menu option to either enabled or disabled.
This is useful when dealing with locked packages and other situations where it is convenient to show a menu
option, but not enable it for use.

This event is raised just before Enterprise Architect has to show particular menu options to the user. Its use is
described in the Define Menu Items topic.

Also look at EA_GetMenuItems .

124

132

131

197

124

131

Enterprise Architect Add-In Model | Add-In Events132

Enterprise Architect Software Developers' Kit

Syntax

Sub EA_GetMenuState(Repository as EA.Repository, MenuLocation As String, MenuName as String,
ItemName as String, IsEnabled as Boolean, IsChecked as Boolean)

The EA_GetMenuState function syntax has the following elements:

Parameter Type Directio
n

Description

IsChecked Boolean Boolean. Set to True to check this particular menu option.

IsEnabled Boolean Boolean. Set to False to disable this particular menu option.

ItemName String The name of the option actually clicked, for example, Create a
New Invoice.

MenuLocation String String representing the part of the user interface that brought
up the menu. Can be TreeView, MainMenu or Diagram.

MenuName String The name of the parent menu for which sub-items must be
defined. In the case of the top-level menu it is an empty string.

Repository EA.
Repository

IN An EA.Repository object representing the currently open
Enterprise Architect model. Poll its members to retrieve model
data and user interface status information.

Return Value

None.

6.4.5 EA_MenuClick

Details

EA_MenuClick events are received by an Add-In in response to user selection of a menu option.

The event is raised when the user clicks on a particular menu option. When a user clicks on one of your non-
parent menu options, your Add-In receives a MenuClick event, defined as follows:

Sub EA_MenuClick(Repository As EA.Repository, ByVal MenuName As String, ByVal ItemName As
String)

The code below illustrates an example of use:

 If MenuName = "-&Diagram" And ItemName = "&Properties" then
 MsgBox Repository.GetCurrentDiagram.Name, vbInformation
 Else
 MsgBox "Not Implemented", vbCritical
 End If

Notice that your code can directly access Enterprise Architect data and UI elements using Repository
methods.

Also look at EA_GetMenuItems .

Syntax

Sub EA_MenuClick(Repository As EA.Repository, MenuLocation As String, MenuName As String,
ItemName As String)

The EA_GetMenuClick function syntax has the following elements:

Parameter Type Direction Description

ItemName String The name of the option actually clicked, for example, Create a

197

196

131

Enterprise Architect Add-In Model | Add-In Events 133

© 1998-2010 Sparx Systems Pty Ltd

Parameter Type Direction Description

New Invoice.

MenuName String The name of the parent menu for which sub-items are to be
defined. In the case of the top-level menu it is an empty string.

Repository EA.Repository IN An EA.Repository object representing the currently open
Enterprise Architect model. Poll its members to retrieve model
data and user interface status information.

Return Value

None.

6.4.6 EA_OnOutputItemClicked

Details

EA_OnOutputItemClicked events inform Add-Ins that the user has clicked on a list entry in the system tab or
one of the user defined output tabs.

Usually an Add-In responds to this event in order to capture activity on an output tab they had previously
created through a call to Repository.AddTab().

Note that every loaded Add-In receives this event for every click on an output tab in Enterprise Architect -
irrespective of whether the Add-In created that tab. Add-Ins should therefore check the TabName parameter
supplied by this event to ensure that they are not responding to other Add-Ins' events.

Also look at EA_OnOutputItemDoubleClicked .

Syntax

EA_OnOutputItemClicked(Repository As EA.Repository, TabName As String, LineText As String, ID As
Long)

The EA_OnOutputItemClicked function syntax has the following elements:

Parameter Type Direction Description

ID Long IN The ID value specified in the original call to Repository.WriteOutput
().

LineText String IN The text that had been supplied as the String parameter in the
original call to Repository.WriteOutput().

Repository EA.
Repository

IN An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user
interface status information.

TabName String IN The name of the tab that the click occurred in. Usually this would
have been created through Repository.AddTab().

Return Value

None.

6.4.7 EA_OnOutputItemDoubleClicked

Details

EA_OnOutputItemDoubleClicked events informs Add-Ins that the user has used the mouse to double-click on

197

133

197

Enterprise Architect Add-In Model | Add-In Events134

Enterprise Architect Software Developers' Kit

a list entry in one of the user-defined output tabs.

Usually an Add-In responds to this event in order to capture activity on an output tab they had previously
created through a call to Repository.AddTab().

Note that every loaded Add-In receives this event for every double-click on an output tab in Enterprise
Architect - irrespective of whether the Add-In created that tab. Add-Ins should therefore check the TabName
parameter supplied by this event to ensure that they are not responding to other Add-Ins' events.

Also look at EA_OnOutputItemClicked .

Syntax

EA_OnOutputItemDoubleClicked(Repository As EA.Repository, TabName As String, LineText As
String, ID As Long)

The EA_OnOutputItemClicked function syntax contains the following elements:

Parameter Type Direction Description

ID Long IN The ID value specified in the original call to Repository.WriteOutput()
.

LineText String IN The text that had been supplied as the String parameter in the
original call to Repository.WriteOutput().

Repository EA.
Repository

IN An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user
interface status information.

TabName String IN The name of the tab that the click occurred in. Usually this would
have been created through Repository.AddTab().

Return Value

None.

6.4.8 EA_ShowHelp

Details

The EA_ShowHelp event enables the Add-In to show a help topic for a particular menu option. When the user
has an Add-In menu option selected, pressing [F1] can be delegated to the required Help topic by the Add-In
and a suitable help message shown.

This event is raised when the user presses [F1] on a menu option that is not a parent menu.

Also look at EA_GetMenuItems .

Syntax

Sub EA_ShowHelp(Repository as EA.Repository, MenuLocation As String, MenuName as String,
ItemName as String)

The EA_ShowHelp function syntax contains the following elements:

Parameter Type Direction Description

ItemName String The name of the option actually clicked, for example, Create a
New Invoice.

MenuLocatio
n

String String representing the part of the user interface that brought up
the menu. Can be Treeview, MainMenu or Diagram.

MenuName String The name of the parent menu for which sub-items are to be

133

197

131

Enterprise Architect Add-In Model | Add-In Events 135

© 1998-2010 Sparx Systems Pty Ltd

Parameter Type Direction Description

defined. In the case of the top-level menu it is an empty string.

Repository EA.
Repository

IN An EA.Repository object representing the currently open
Enterprise Architect model. Poll its members to retrieve model
data and user interface status information.

Return Value

None.

6.5 Broadcast Events

Overview

The following general Broadcast events are sent to all loaded Add-Ins. For an Add-In to receive the event, they
must first implement the required automation event interface. If Enterprise Architect detects that the Add-In
has the required interface, the event is dispatched to the Add-In.

· File Open Event

· File Close Event

· File New Event

· Post Diagram Open Event

· Post Diagram Close Event

· Pre-Deletion Events

· Pre-New Events

· Post-New Events

· Technology Events

· Context Item Events

· Transformation Events

· Compartment Events

· Model Validation Broadcasts

· Retrieve Model Template Event

· Initialize Technology Event

· Exit Instance (not currently used).

MDG Events add quite a number of additional events, but the Add-In must first have registered as an
MDG-style Add-In, rather than as a generic Add-In.

6.5.1 EA_FileOpen

Details

The EA_FileOpen event enables the Add-In to respond to a File Open event. When Enterprise Architect opens
a new model file, this event is raised and passed to all Add-Ins implementing this method.

The event occurs when the model being viewed by the Enterprise Architect user changes, for whatever reason
(through user interaction or Add-In activity).

Also look at EA_FileClose and EA_FileNew .

Syntax

Sub EA_FileOpen(Repository As EA.Repository)

The EA_FileOpen function syntax contains the following elements:

197

135

136

136

137

137

138

141

146

152

155

151

158

160

168

152

146

170

136 136

Enterprise Architect Add-In Model | Broadcast Events136

Enterprise Architect Software Developers' Kit

Parameter Type Direction Description

Repository EA.Repository IN An EA.Repository object representing the currently open
Enterprise Architect model. Poll its members to retrieve model
data and user interface status information.

Return Value

None.

6.5.2 EA_FileClose

Details

The EA_FileClose event enables the Add-In to respond to a File Close event. When Enterprise Architect
closes an opened Model file, this event is raised and passed to all Add-Ins implementing this method.

This event occurs when the model currently opened within Enterprise Architect is about to be closed (when
another model is about to be opened or when Enterprise Architect is about to shutdown).

Also look at EA_FileOpen and EA_FileNew .

Syntax

Sub EA_FileClose(Repository As EA.Repository)

The EA_FileClose function syntax contains the following elements:

Parameter Type Direction Description

Repository EA.
Repository

IN An EA.Repository object representing the Enterprise Architect
model about to be closed. Poll its members to retrieve model data
and user interface status information.

Return Value

None.

6.5.3 EA_FileNew

Details

The EA_FileNew event enables the Add-In to respond to a File New event. When Enterprise Architect creates
a new model file, this event is raised and passed to all Add-Ins implementing this method.

The event occurs when the model being viewed by the Enterprise Architect user changes, for whatever reason
(through user interaction or Add-In activity).

Also look at EA_FileClose and EA_FileOpen .

Syntax

Sub EA_FileNew(Repository As EA.Repository)

The EA_FileNew function syntax contains the following elements:

Parameter Type Direction Description

Repository EA.Repository IN An EA.Repository object representing the currently open
Enterprise Architect model. Poll its members to retrieve model
data and user interface status information.

197

135 136

197

136 135

197

Enterprise Architect Add-In Model | Broadcast Events 137

© 1998-2010 Sparx Systems Pty Ltd

Return Value

None.

6.5.4 EA_OnPostCloseDiagram

Details

EA_OnPostCloseDiagram notifies Add-Ins that a diagram has been closed.

Also look at EA_OnPostOpenDiagram .

Syntax

Function EA_OnPostCloseDiagram(Repository As EA.Repository, DiagramID As Integer)

The EA_OnPostCloseDiagram function syntax contains the following elements:

Parameter Type Direction Description

DiagramID Integer IN Contains the Diagram ID of the diagram that was closed.

Repository EA.
Repository

IN An EA.Repository object representing the Enterprise Architect
model about to be closed. Poll its members to retrieve model data
and user interface status information.

Return Value

None.

6.5.5 EA_OnPostOpenDiagram

Details

EA_OnPostOpenDiagram notifies Add-Ins that a diagram has been opened.

Also look at EA_OnPostCloseDiagram .

Syntax

Function EA_OnPostOpenDiagram(Repository As EA.Repository, DiagramID As Integer)

The EA_OnPostOpenDiagram function syntax contains the following elements:

Parameter Type Direction Description

DiagramID Integer IN Contains the Diagram ID of the diagram that was opened.

Repository EA.Repository IN An EA.Repository object representing the currently open
Enterprise Architect model. Poll its members to retrieve model
data and user interface status information.

Return Value

None.

137

197

137

197

Enterprise Architect Add-In Model | Broadcast Events138

Enterprise Architect Software Developers' Kit

6.5.6 Pre-Deletion Events

Enterprise Architect Add-Ins can respond to requests to delete elements, attributes, methods, connectors,
diagrams, packages and technologies using the following broadcast events:

· EA_OnPreDeleteElement

· EA_OnPreDeleteAttribute

· EA_OnPreDeleteMethod

· EA_OnPreDeleteConnector

· EA_OnPreDeleteDiagram

· EA_OnPreDeletePackage

· EA_OnPreDeleteTechnology (Deprecated).

6.5.6.1 EA_OnPreDeleteElement

Details

EA_OnPreDeleteElement notifies Add-Ins that an element is to be deleted from the model. It enables Add-Ins
to permit or deny deletion of the element.

This event occurs when a user deletes an element from the Project Browser or on a diagram. The notification
is provided immediately before the element is deleted, so that the Add-In can disable deletion of the element.

Syntax

Function EA_OnPreDeleteElement(Repository As EA.Repository, Info As EA.EventProperties) As
Boolean

The EA_OnPreDeleteElement function syntax contains the following elements:

Parameter Type Direction Description

Info EA.
EventProperties

IN Contains the following EventProperty Objects for the element
to be deleted:

· ElementID: A long value corresponding to Element.
ElementID.

Repository EA.Repository IN An EA.Repository object representing the currently open
Enterprise Architect model. Poll its members to retrieve model
data and user interface status information.

Return Value

Return True to enable deletion of the element from the model. Return False to disable deletion of the element.

6.5.6.2 EA_OnPreDeleteAttribute

Details

EA_OnPreDeleteAttribute notifies Add-Ins that an attribute is to be deleted from the model. It enables Add-Ins
to permit or deny deletion of the attribute.

This event occurs when a user attempts to permanently delete an attribute from the Project Browser. The
notification is provided immediately before the attribute is deleted, so that the Add-In can disable deletion of
the attribute.

Syntax

Function EA_OnPreDeleteAttribute(Repository As EA.Repository, Info As EA.EventProperties) As
Boolean

138

138

139

139

140

141

153

214

197

Enterprise Architect Add-In Model | Broadcast Events 139

© 1998-2010 Sparx Systems Pty Ltd

The EA_OnPreDeleteAttribute function syntax contains the following elements:

Parameter Type Directio
n

Description

Info EA.
EventProperties

IN Contains the following EventProperty Objects for the attribute to
be deleted:

· AttributeID: A long value corresponding to Attribute.
AttributeID.

Repositor
y

EA.Repository IN An EA.Repository object representing the currently open
Enterprise Architect model. Poll its members to retrieve model
data and user interface status information.

Return Value

Return True to enable deletion of the attribute from the model. Return False to disable deletion of the
attribute.

6.5.6.3 EA_OnPreDeleteMethod

Details

EA_OnPreDeleteMethod notifies Add-Ins that a method (operation) is to be deleted from the model. It enables
Add-Ins to permit or deny deletion of the method.

This event occurs when a user attempts to permanently delete a method from the Project Browser. The
notification is provided immediately before the method is deleted, so that the Add-In can disable deletion of the
method.

Syntax

Function EA_OnPreDeleteMethod(Repository As EA.Repository, Info As EA.EventProperties) As
Boolean

The EA_OnPreDeleteMethod function syntax contains the following elements:

Parameter Type Directio
n

Description

Info EA.
EventProperties

IN Contains the following EventProperty Objects for the method to
be deleted:

· MethodID: A long value corresponding to Method.
MethodID.

Repositor
y

EA.Repository IN An EA.Repository object representing the currently open
Enterprise Architect model. Poll its members to retrieve model
data and user interface status information.

Return Value

Return True to enable deletion of the method from the model. Return False to disable deletion of the method.

6.5.6.4 EA_OnPreDeleteConnector

Details

EA_OnPreDeleteConnector notifies Add-Ins that a connector is to be deleted from the model. It enables Add-
Ins to permit or deny deletion of the connector.

This event occurs when a user attempts to permanently delete a connector on a diagram. The notification is

214

197

214

197

Enterprise Architect Add-In Model | Broadcast Events140

Enterprise Architect Software Developers' Kit

provided immediately before the connector is deleted, so that the Add-In can disable deletion of the connector.

Syntax

Function EA_OnPreDeleteConnector(Repository As EA.Repository, Info As EA.EventProperties) As
Boolean

The EA_OnPreDeleteConnector function syntax contains the following elements:

Parameter Type Directio
n

Description

Info EA.
EventProperties

IN Contains the following EventProperty Objects for the connector
to be deleted:

· ConnectorID: A long value corresponding to Connector.
ConnectorID.

Repositor
y

EA.Repository IN An EA.Repository object representing the currently open
Enterprise Architect model. Poll its members to retrieve model
data and user interface status information.

Return Value

Return True to enable deletion of the connector from the model. Return False to disable deletion of the
connector.

6.5.6.5 EA_OnPreDeleteDiagram

Details

EA_OnPreDeleteDiagram notifies Add-Ins that a diagram is to be deleted from the model. It enables Add-Ins
to permit or deny deletion of the diagram.

This event occurs when a user attempts to permanently delete a diagram from the Project Browser. The
notification is provided immediately before the diagram is deleted, so that the Add-In can disable deletion of
the diagram.

Syntax

Function EA_OnPreDeleteDiagram(Repository As EA.Repository, Info As EA.EventProperties) As
Boolean

The EA_OnPreDeleteDiagram function syntax contains the following elements:

Parameter Type Direction Description

Info EA.
EventProperties

IN Contains the following EventProperty Objects for the connector
to be deleted:

· DiagramID: A long value corresponding to Diagram.
DiagramID

Repositor
y

EA.Repository IN An EA.Repository object representing the currently-open
Enterprise Architect model. Poll its members to retrieve model
data and user interface status information.

Return Value

Return True to enable deletion of the diagram from the model. Return False to disable deletion of the
diagram.

214

197

214

197

Enterprise Architect Add-In Model | Broadcast Events 141

© 1998-2010 Sparx Systems Pty Ltd

6.5.6.6 EA_OnPreDeletePackage

Details

EA_OnPreDeletePackage notifies Add-Ins that a package is to be deleted from the model. It enables Add-Ins
to permit or deny deletion of the package.

This event occurs when a user attempts to permanently delete a package from the Project Browser. The
notification is provided immediately before the package is deleted, so that the Add-In can disable deletion of
the package.

Syntax

Function EA_OnPreDeletePackage(Repository As EA.Repository, Info As EA.EventProperties) As
Boolean

The EA_OnPreDeletePackage function syntax contains the following elements:

Parameter Type Directio
n

Description

Info EA.
EventProperties

IN Contains the following EventProperty Objects for the connector to
be deleted:

· PackageID: A long value corresponding to Package.
PackageID.

Repositor
y

EA.Repository IN An EA.Repository object representing the currently open
Enterprise Architect model. Poll its members to retrieve model
data and user interface status information.

Return Value

Return True to enable deletion of the package from the model. Return False to disable deletion of the
package.

6.5.7 Pre-New Events

Enterprise Architect Add-Ins can respond to requests to create new elements, connectors, objects, attributes,
methods and packages using the following broadcast events:

· EA_OnPreNewElement

· EA_OnPreNewConnector

· EA_OnPreNewDiagram

· EA_OnPreNewDiagramObject

· EA_OnPreNewAttribute

· EA_OnPreNewMethod

· EA_OnPreNewPackage .

6.5.7.1 EA_OnPreNewElement

Details

EA_OnPreNewElement notifies Add-Ins that a new element is about to be created on a diagram. It enables
Add-Ins to permit or deny creation of the new element.

This event occurs when a user drags a new element from the Enterprise Architect UML Toolbox or Resources
window onto a diagram. The notification is provided immediately before the element is created, so that the
Add-In can disable addition of the element.

Also look at EA_OnPostNewElement .

214

197

141

142

143

143

144

145

145

147

Enterprise Architect Add-In Model | Broadcast Events142

Enterprise Architect Software Developers' Kit

Syntax

Function EA_OnPreNewElement(Repository As EA.Repository, Info As EA.EventProperties) As
Boolean

The EA_OnPreNewElement function syntax contains the following elements:

Parameter Type Direction Description

Info EA.
EventProperties

IN Contains the following EventProperty Objects for the element to
be created:

· Type: A string value corresponding to Element.Type

· Stereotype: A string value corresponding to Element.
Stereotype

· ParentID: A long value corresponding to Element.ParentID

· DiagramID: A long value corresponding to the ID of the
diagram to which the element is being added.

Repository EA.Repository IN An EA.Repository object representing the currently open
Enterprise Architect model. Poll its members to retrieve model
data and user interface status information.

Return Value

Return True to enable addition of the new element to the model. Return False to disable addition of the new
element.

6.5.7.2 EA_OnPreNewConnector

Details

EA_OnPreNewConnector notifies Add-Ins that a new connector is about to be created on a diagram. It
enables Add-Ins to permit or deny creation of a new connector.

This event occurs when a user drags a new connector from the Enterprise Architect UML Toolbox or
Resources window, onto a diagram. The notification is provided immediately before the connector is created,
so that the Add-In can disable addition of the connector.

Also look at EA_OnPostNewConnector .

Syntax

Function EA_OnPreNewConnector(Repository As EA.Repository, Info As EA.EventProperties) As
Boolean

The EA_OnPreNewConnector function syntax contains the following elements:

Parameter Type Direction Description

Info EA.
EventProperties

IN Contains the following EventProperty Objects for the connector
to be created:

· Type: A string value corresponding to Connector.Type

· Subtype: A string value corresponding to Connector.
Subtype

· Stereotype: A string value corresponding to Connector.
Stereotype

· ClientID: A long value corresponding to Connector.
ClientID

· SupplierID: A long value corresponding to Connector.
SupplierID

· DiagramID: A long value corresponding to Connector.

214

197

142

214

Enterprise Architect Add-In Model | Broadcast Events 143

© 1998-2010 Sparx Systems Pty Ltd

Parameter Type Direction Description

DiagramID.

Repository EA.Repository IN An EA.Repository object representing the currently open
Enterprise Architect model. Poll its members to retrieve model
data and user interface status information.

Return Value

Return True to enable addition of the new connector to the model. Return False to disable addition of the new
connector.

6.5.7.3 EA_OnPreNewDiagram

Details

EA_OnPreNewDiagram notifies Add-Ins that a new diagram is about to be created. It enables Add-Ins to
permit or deny creation of the new diagram.

The notification is provided immediately before the diagram is created, so that the Add-In can disable addition
of the diagram.

Also look at EA_OnPostNewDiagram .

Syntax

Function EA_OnPreNewDiagram(Repository As EA.Repository, Info As EA.EventProperties) As
Boolean

The EA_OnPreNewDiagram function syntax contains the following elements:

Parameter Type Direction Description

Info EA.
EventProperties

IN Contains the following EventProperty Objects for the diagram
to be created:

· Type: A string value corresponding to Diagram.Type

· ParentID: A long value corresponding to Diagram.ParentID

· PackageID: A long value corresponding to Diagram.
PackageID.

Repository EA.Repository IN An EA.Repository object representing the currently open
Enterprise Architect model. Poll its members to retrieve model
data and user interface status information.

Return Value

Return True to enable addition of the new diagram to the model. Return False to disable addition of the new
diagram.

6.5.7.4 EA_OnPreNewDiagramObject

Details

EA_OnPreNewDiagramObject notifies Add-Ins that a new diagram object is about to be dropped on a
diagram. It enables Add-Ins to permit or deny creation of the new object.

This event occurs when a user drags an object from the Enterprise Architect Project Browser or Resources
window onto a diagram. The notification is provided immediately before the object is created, so that the Add-
In can disable addition of the object.

Also look at EA_OnPostNewDiagramObject .

197

148

214

197

148

Enterprise Architect Add-In Model | Broadcast Events144

Enterprise Architect Software Developers' Kit

Syntax

Function EA_OnPreNewDiagramObject(Repository As EA.Repository, Info As EA.EventProperties) As
Boolean

The EA_OnPreNewDiagramObject function syntax contains the following elements:

Parameter Type Direction Description

Info EA.
EventProperties

IN Contains the following EventProperty Objects for the object to
be created:

· Type: A string value corresponding to Object.Type

· Stereotype: A string value corresponding to Object.
Stereotype

· ParentID: A long value corresponding to Object.ParentID

· DiagramID: A long value corresponding to the ID of the
diagram to which the object is being added.

Repository EA.Repository IN An EA.Repository object representing the currently open
Enterprise Architect model. Poll its members to retrieve model
data and user interface status information.

Return Value

Return True to enable addition of the object to the model. Return False to disable addition of the object.

6.5.7.5 EA_OnPreNewAttribute

Details

EA_OnPreNewAttribute notifies Add-Ins that a new attribute is about to be created on an element. It enables
Add-Ins to permit or deny creation of the new attribute.

This event occurs when a user creates a new attribute on an element by either drag-dropping from the Project
Browser, using the Attributes Properties dialog, or using the in-place editor on the diagram. The notification is
provided immediately before the attribute is created, so that the Add-In can disable addition of the attribute.

Also look at EA_OnPostNewAttribute .

Syntax

Function EA_OnPreNewAttribute(Repository As EA.Repository, Info As EA.EventProperties) As
Boolean

The EA_OnPreNewAttribute function syntax contains the following elements:

Parameter Type Direction Description

Info EA.
EventProperties

IN Contains the following EventProperty Objects for the attribute
to be created:

· Type: A string value corresponding to Attribute.Type

· Stereotype: A string value corresponding to Attribute.
Stereotype

· ParentID: A long value corresponding to Attribute.
ParentID

· ClassifierID: A long value corresponding to Attribute.
ClassifierID.

Repository EA.Repository IN An EA.Repository object representing the currently open
Enterprise Architect model. Poll its members to retrieve model
data and user interface status information.

214

197

149

214

197

Enterprise Architect Add-In Model | Broadcast Events 145

© 1998-2010 Sparx Systems Pty Ltd

Return Value

Return True to enable addition of the new attribute to the model. Return False to disable addition of the new
attribute.

6.5.7.6 EA_OnPreNewMethod

Details

EA_OnPreNewMethod notifies Add-Ins that a new method is about to be created on an element. It enables
Add-Ins to permit or deny creation of the new method.

This event occurs when a user creates a new method on an element by either drag-dropping from the Project
Browser, using the method Properties dialog, or using the in-place editor on the diagram. The notification is
provided immediately before the method is created, so that the Add-In can disable addition of the method.

Also look at EA_OnPostNewMethod .

Syntax

Function EA_OnPreNewMethod(Repository As EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPreNewMethod function syntax contains the following elements:

Parameter Type Direction Description

Info EA.
EventProperties

IN Contains the following EventProperty Objects for the method to
be created:

· ReturnType: A string value corresponding to Method.
ReturnType

· Stereotype: A string value corresponding to Method.
Stereotype

· ParentID: A long value corresponding to Method.ParentID

· ClassifierID: A long value corresponding to Method.
ClassifierID.

Repository EA.Repository IN An EA.Repository object representing the currently open
Enterprise Architect model. Poll its members to retrieve model
data and user interface status information.

Return Value

Return True to enable addition of the new method to the model. Return False to disable addition of the new
method.

6.5.7.7 EA_OnPreNewPackage

Details

EA_OnPreNewPackage notifies Add-Ins that a new package is about to be created in the model. It enables
Add-Ins to permit or deny creation of the new package.

This event occurs when a user drags a new package from the Enterprise Architect UML Toolbox or Resources
window onto a diagram, or by selecting the New Package icon from the Project Browser. The notification is
provided immediately before the package is created, so that the Add-In can disable addition of the package.

Also look at EA_OnPostNewPackage .

Syntax

Function EA_OnPreNewPackage(Repository As EA.Repository, Info As EA.EventProperties) As
Boolean

149

214

197

150

Enterprise Architect Add-In Model | Broadcast Events146

Enterprise Architect Software Developers' Kit

The EA_OnPreNewPackage function syntax contains the following elements:

Parameter Type Direction Description

Info EA.
EventProperties

IN Contains the following EventProperty Objects for the package
to be created:

· Stereotype: A string value corresponding to Package.
Stereotype

· ParentID: A long value corresponding to Package.
ParentID

· DiagramID: A long value corresponding to the ID of the
diagram to which the package is being added.

Repository EA.Repository IN An EA.Repository object representing the currently open
Enterprise Architect model. Poll its members to retrieve model
data and user interface status information.

Return Value

Return True to enable addition of the new package to the model. Return False to disable addition of the new
package.

6.5.8 EA_OnPreExitInstance

Details

EA_OnPreExitInstance is not currently used.

Syntax

Sub EA_OnPreExitInstance(Repository As EA.Repository)

The EA_OnPreExitInstance function syntax contains the following element:

Parameter Type Direction Description

Repository EA.Repository IN An EA.Repository object representing the currently open
Enterprise Architect model. Poll its members to retrieve model
data and user interface status information.

Return Value

None.

6.5.9 Post-New Events

Enterprise Architect Add-Ins can respond to the creation of new elements, connectors, objects, attributes,
methods and packages using the following broadcast events:

· EA_OnPostNewElement

· EA_OnPostNewConnector

· EA_OnPostNewDiagram

· EA_OnPostNewDiagramObject

· EA_OnPostNewAttribute

· EA_OnPostNewMethod

· EA_OnPostNewPackage .

214

197

197

147

147

148

148

149

149

150

Enterprise Architect Add-In Model | Broadcast Events 147

© 1998-2010 Sparx Systems Pty Ltd

6.5.9.1 EA_OnPostNewElement

Details

EA_OnPostNewElement notifies Add-Ins that a new element has been created on a diagram. It enables Add-
Ins to modify the element upon creation.

This event occurs after a user has dragged a new element from the Enterprise Architect UML Toolbox or
Resources window onto a diagram. The notification is provided immediately after the element is added to the
model. Set Repository.SuppressEADialogs to true to suppress Enterprise Architect from showing its default
dialogs.

Also look at EA_OnPreNewElement .

Syntax

Function EA_OnPostNewElement(Repository As EA.Repository, Info As EA.EventProperties) As
Boolean

The EA_OnPostNewElement function syntax contains the following elements:

Parameter Type Direction Description

Info EA.
EventProperties

IN Contains the following EventProperty objects for the new
element:

· ElementID: A long value corresponding to Element.
ElementID.

Repository EA.Repository IN An EA.Repository object representing the currently open
Enterprise Architect model. Poll its members to retrieve
model data and user interface status information.

Return Value

Return True if the element has been updated during this notification. Return False otherwise.

6.5.9.2 EA_OnPostNewConnector

Details

EA_OnPostNewConnector notifies Add-Ins that a new connector has been created on a diagram. It enables
Add-Ins to modify the connector upon creation.

This event occurs after a user has dragged a new connector from the Enterprise Architect UML Toolbox or
Resources window onto a diagram. The notification is provided immediately after the connector is added to the
model. Set Repository.SuppressEADialogs to true to suppress Enterprise Architect from showing its default
dialogs.

Also look at EA_OnPreNewConnector .

Syntax

Function EA_OnPostNewConnector(Repository As EA.Repository, Info As EA.EventProperties) As
Boolean

The EA_OnPostNewConnector function syntax contains the following elements:

Parameter Type Direction Description

Info EA.
EventProperties

IN Contains the following EventProperty objects for the new
connector:

· ConnectorID: A long value corresponding to Connector.
ConnectorID.

141

214

197

142

214

Enterprise Architect Add-In Model | Broadcast Events148

Enterprise Architect Software Developers' Kit

Parameter Type Direction Description

Repository EA.Repository IN An EA.Repository object representing the currently open
Enterprise Architect model. Poll its members to retrieve model
data and user interface status information.

Return Value

Return True if the connector has been updated during this notification. Return False otherwise.

6.5.9.3 EA_OnPostNewDiagram

Details

EA_OnPostNewDiagram notifies Add-Ins that a new diagram has been created. It enables Add-Ins to modify
the diagram upon creation.

Set Repository.SuppressEADialogs to true to suppress Enterprise Architect from showing its default dialogs.

Also look at EA_OnPreNewDiagram .

Syntax

Function EA_OnPostNewDiagram(Repository As EA.Repository, Info As EA.EventProperties) As
Boolean

The EA_OnPostNewDiagram function syntax contains the following elements:

Parameter Type Direction Description

Info EA.
EventProperties

IN Contains the following EventProperty objects for the new
diagram:

· DiagramID: A long value corresponding to Diagram.
PackageID.

Repository EA.Repository IN An EA.Repository object representing the currently open
Enterprise Architect model. Poll its members to retrieve model
data and user interface status information.

Return Value

Return True if the diagram has been updated during this notification. Return False otherwise.

6.5.9.4 EA_OnPostNewDiagramObject

Details

EA_OnPostNewDiagramObject notifies Add-Ins that a new object has been created on a diagram. It enables
Add-Ins to modify the object upon creation.

This event occurs after a user has dragged a new object from the Enterprise Architect Project Browser or
Resources window onto a diagram. The notification is provided immediately after the object is added to the
diagram. Set Repository.SuppressEADialogs to true to suppress Enterprise Architect from showing its default
dialogs.

Also look at EA_OnPreNewDiagramObject .

Syntax

Function EA_OnPostNewDiagramObject(Repository As EA.Repository, Info As EA.EventProperties) As
Boolean

197

143

214

197

143

Enterprise Architect Add-In Model | Broadcast Events 149

© 1998-2010 Sparx Systems Pty Ltd

The EA_OnPostNewDiagramObject function syntax contains the following elements:

Parameter Type Direction Description

Info EA.
EventProperties

IN Contains the following EventProperty objects for the new
element:

· ObjectID: A long value corresponding to Object.
ObjectID.

Repository EA.Repository IN An EA.Repository object representing the currently open
Enterprise Architect model. Poll its members to retrieve
model data and user interface status information.

Return Value

Return True if the element has been updated during this notification. Return False otherwise.

6.5.9.5 EA_OnPostNewAttribute

Details

EA_OnPostNewAttribute notifies Add-Ins that a new attribute has been created on a diagram. It enables Add-
Ins to modify the attribute upon creation.

This event occurs when a user creates a new attribute on an element by either drag-dropping from the Project
Browser, using the Attributes Properties dialog, or using the in-place editor on the diagram. The notification is
provided immediately after the attribute is created. Set Repository.SuppressEADialogs to true to suppress
Enterprise Architect from showing its default dialogs.

Also look at EA_OnPreNewAttribute .

Syntax

Function EA_OnPostNewAttribute(Repository As EA.Repository, Info As EA.EventProperties) As
Boolean

The EA_OnPostNewAttribute function syntax contains the following elements:

Parameter Type Direction Description

Info EA.
EventProperties

IN Contains the following EventProperty objects for the new
attribute:

· AttributeID: A long value corresponding to Attribute.
AttributeID.

Repository EA.Repository IN An EA.Repository object representing the currently open
Enterprise Architect model. Poll its members to retrieve model
data and user interface status information.

Return Value

Return True if the attribute has been updated during this notification. Return False otherwise.

6.5.9.6 EA_OnPostNewMethod

Details

EA_OnPostNewMethod notifies Add-Ins that a new method has been created on a diagram. It enables Add-
Ins to modify the method upon creation.

This event occurs when a user creates a new method on an element by either drag-dropping from the Project
Browser, using the method's Properties dialog, or using the in-place editor on the diagram. The notification is

214

197

144

214

197

Enterprise Architect Add-In Model | Broadcast Events150

Enterprise Architect Software Developers' Kit

provided immediately after the method is created. Set Repository.SuppressEADialogs to true to suppress
Enterprise Architect from showing its default dialogs.

Also look at EA_OnPreNewMethod .

Syntax

Function EA_OnPostNewMethod(Repository As EA.Repository, Info As EA.EventProperties) As
Boolean

The EA_OnPostNewMethod function syntax contains the following elements:

Parameter Type Direction Description

Info EA.
EventProperties

IN Contains the following EventProperty objects for the new
method:

· MethodID: A long value corresponding to Method.
MethodID.

Repository EA.Repository IN An EA.Repository object representing the currently open
Enterprise Architect model. Poll its members to retrieve
model data and user interface status information.

Return Value

Return True if the method has been updated during this notification. Return False otherwise.

6.5.9.7 EA_OnPostNewPackage

Details

EA_OnPostNewPackage notifies Add-Ins that a new package has been created on a diagram. It enables Add-
Ins to modify the package upon creation.

This event occurs when a user drags a new package from the Enterprise Architect UML Toolbox or Resources
window onto a diagram, or by selecting the New Package icon from the Project Browser. Set Repository.
SuppressEADialogs to true to suppress Enterprise Architect from showing its default dialogs.

Also look at EA_OnPreNewPackage .

Syntax

Function EA_OnPostNewPackage(Repository As EA.Repository, Info As EA.EventProperties) As
Boolean

The EA_OnPostNewPackage function syntax contains the following elements:

Parameter Type Direction Description

Info EA.
EventProperties

IN Contains the following EventProperty objects for the new
package:

· PackageID: A long value corresponding to Package.
PackageID.

Repository EA.Repository IN An EA.Repository object representing the currently open
Enterprise Architect model. Poll its members to retrieve model
data and user interface status information.

Return Value

Return True if the package has been updated during this notification. Return False otherwise.

145

214

197

145

214

197

Enterprise Architect Add-In Model | Broadcast Events 151

© 1998-2010 Sparx Systems Pty Ltd

6.5.10 EA_OnPostInitialized

Details

EA_OnPostInitialized notifies Add-Ins that the Repository object has finished loading and any necessary
initialization steps can now be performed on the object.

For example, the Add-In can create an Output tab using Repository.CreateOutputTab .

Syntax

Sub EA_OnPostInitialized(Repository As EA.Repository)

The EA_OnPostInitialized function syntax contains the following elements.

Parameter Type Direction Description

Repository EA.Repository IN An EA.Repository object representing the currently open
Enterprise Architect model. Poll its members to retrieve
model data and user interface status information.

Return Value

None.

6.5.11 EA_OnPostTransform

Details

EA_OnPostTransform notifies Add-Ins that an MDG transformation has taken place with the output in the
specified target package.

This event occurs when a user runs an MDG transform on one or more target packages. The notification is
provided for each transform/target package immediately after all transform processes have completed.

Syntax

Function EA_OnPostTransform(Repository As EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPostTransform function syntax contains the following elements:

Parameter Type Direction Description

Info EA.
EventProperties

IN Contains the following EventProperty Objects for the
transform performed:

· Transform: A string value corresponding to the name of
the transform used

· PackageID: A long value corresponding to Package.
PackageID of the destination package.

Repository EA.Repository IN An EA.Repository object representing the currently open
Enterprise Architect model. Poll its members to retrieve
model data and user interface status information.

Return Value

Reserved for future use.

201

197

214

197

Enterprise Architect Add-In Model | Broadcast Events152

Enterprise Architect Software Developers' Kit

6.5.12 Technology Events

Enterprise Architect Add-Ins can respond to the following events associated with the use of MDG
Technologies:

· EA_OnInitializeTechnologies

· EA_OnPreActivateTechnology

· EA_OnPostActivateTechnology

· EA_OnPreDeleteTechnology (Deprecated)

· EA_OnDeleteTechnology (Deprecated)

· EA_OnImportTechnology (Deprecated)

6.5.12.1 EA_OnInitializeTechnologies

Details

EA_OnInitializeTechnologies requests that an Add-In pass an MDG Technology to Enterprise Architect for
loading.

This event occurs on Enterprise Architect startup. Return your technology XML to this function and Enterprise
Architect loads and enables it.

Syntax

Function EA_OnInitializeTechnologies(Repository As EA.Repository) As Object

The EA_OnInitializeTechnologies function syntax contains the following element:

Parameter Type Direction Description

Repository EA.
Repository

IN An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user
interface status information.

Return Value

Return the MDG Technology as a single XML string.

Example

Public Function EA_OnInitializeTechnologies(ByVal Repository As EA.Repository) As Object
EA_OnInitializeTechnologies = My.Resources.MyTechnology

End Function

6.5.12.2 EA_OnPreActivateTechnology

Details

EA_OnPreActivateTechnology notifies Add-Ins that an MDG Technology resource is about to be activated in
the model. This event occurs when a user selects to activate an MDG Technology resource in the model (by
clicking on the Set Active button on the MDG Technologies dialog - see Extending UML With Enterprise
Architect - or by selecting the technology in the list box in the Default Tools toolbar - see Using Enterprise
Architect - UML Modeling Tool).

The notification is provided immediately after the user attempts to activate the MDG Technology, so that the
Add-In can permit or disable activation of the Technology.

Also look at EA_OnPostActivateTechnology .

Syntax

Function EA_OnPreActivateTechnology(Repository As EA.Repository, Info As EA.EventProperties) As

152

152

153

153

154

155

197

153

Enterprise Architect Add-In Model | Broadcast Events 153

© 1998-2010 Sparx Systems Pty Ltd

Boolean

The EA_OnPreActivateTechnology function syntax contains the following elements:

Parameter Type Direction Description

Info EA.EventProperties IN Contains the following EventProperty objects for the MDG
Technology to be activated:

· TechnologyID: A string value corresponding to the
MDG Technology ID.

Repository EA.Repository IN An EA.Repository object representing the currently open
Enterprise Architect model. Poll its members to retrieve
model data and user interface status information.

Return Value

Return True to enable activation of the MDG Technology resource in the model. Return False to disable
activation of the MDG Technology resource.

6.5.12.3 EA_OnPostActivateTechnology

Details

EA_OnPostActivateTechnology notifies Add-Ins that an MDG Technology resource has been activated in the
model. This event occurs when a user activates an MDG Technology resource in the model (by clicking on
the Set Active button on the MDG Technologies dialog - see Extending UML With Enterprise Architect - or by
selecting the technology in the list box in the Default Tools toolbar - see Using Enterprise Architect - UML
Modeling Tool). The notification is provided immediately after the user succeeds in activating the MDG
Technology, so that the Add-In can update the Technology if necessary.

Also look at EA_OnPreActivateTechnology .

Syntax

Function EA_OnPostActivateTechnology(Repository As EA.Repository, Info As EA.EventProperties)

The EA_OnPostActivateTechnology function syntax contains the following elements:

Parameter Type Direction Description

Info EA.EventProperties IN Contains the following EventProperty objects for the MDG
Technology to be activated:

· TechnologyID: A string value corresponding to the
MDG Technology ID.

Repository EA.Repository IN An EA.Repository object representing the currently open
Enterprise Architect model. Poll its members to retrieve
model data and user interface status information.

Return Value

Return True if the MDG Technology resource is updated during this notification. Return False otherwise.

6.5.12.4 EA_OnPreDeleteTechnology

Deprecated - refers to deleting a technology through the Resources window; this process is no longer
recommended. See:

· EA_OnPreActivateTechnology

· EA_OnPostActivateTechnology

· EA_OnInitializeTechnologies .

214

197

152

214

197

152

153

152

Enterprise Architect Add-In Model | Broadcast Events154

Enterprise Architect Software Developers' Kit

Details

EA_OnPreDeleteTechnology notifies Add-Ins that an MDG Technology resource is about to be deleted from
the model. This event occurs when a user deletes an MDG Technology resource from the model. The
notification is provided immediately after the user confirms their request to delete the MDG Technology, so
that the Add-In can disable deletion of the MDG Technology.

Also look at EA_OnDeleteTechnology .

Syntax

Function EA_OnPreDeleteTechnology(Repository As EA.Repository, Info As EA.EventProperties) As
Boolean

The EA_OnPreDeleteTechnology function syntax contains the following elements:

Parameter Type Direction Description

Info EA.EventProperties IN Contains the following EventProperty objects for the MDG
Technology to be deleted:

· TechnologyID: A string value corresponding to the
MDG Technology ID.

Repository EA.Repository IN An EA.Repository object representing the currently open
Enterprise Architect model. Poll its members to retrieve
model data and user interface status information.

Return Value

Return True to enable deletion of the MDG Technology resource from the model. Return False to disable
deletion of the MDG Technology resource.

6.5.12.5 EA_OnDeleteTechnology

Deprecated - refers to deleting a technology through the Resources window; this process is no longer
recommended. See:

· EA_OnPreActivateTechnology

· EA_OnPostActivateTechnology

· EA_OnInitializeTechnologies .

Details

EA_OnDeleteTechnology notifies Add-Ins that an MDG Technology resource has been deleted from the
model.

This event occurs after a user has deleted an MDG Technology resource from the model. Add-Ins that require
an MDG Technology resource to be loaded can catch this event to disable certain functionality.

Also look at EA_OnPreDeleteTechnology .

Syntax

Sub EA_OnDeleteTechnology(Repository As EA.Repository, Info As EA.EventProperties)

The EA_OnDeleteTechnology function syntax contains the following elements:

Parameter Type Direction Description

Info EA.
EventProperties

IN Contains the following EventProperty objects:

· TechnologyID: A string value corresponding to the MDG
Technology ID.

Repositor EA.Repository IN An EA.Repository object representing the currently open

154

214

197

152

153

152

153

214

Enterprise Architect Add-In Model | Broadcast Events 155

© 1998-2010 Sparx Systems Pty Ltd

Parameter Type Direction Description

y Enterprise Architect model. Poll its members to retrieve model
data and user interface status information.

Return Value

None.

6.5.12.6 EA_OnImportTechnology

Deprecated - refers to deleting a technology through the Resources window; this process is no longer
recommended. See:

· EA_OnPreActivateTechnology

· EA_OnPostActivateTechnology

· EA_OnInitializeTechnologies .

Details

EA_OnImportTechnology notifies Add-Ins that you have imported an MDG Technology resource into the
model.

This event occurs after you have imported an MDG Technology resource into the model. Add-Ins that require
an MDG Technology resource to be loaded can catch this Add-In to enable certain functionality.

Syntax

Sub EA_OnImportTechnology(Repository As EA.Repository, Info As EA.EventProperties)

The EA_OnImportTechnology function syntax contains the following elements:

Parameter Type Direction Description

Info EA.
EventProperties

IN Contains the following EventProperty objects:

· TechnologyID: A string value corresponding to the MDG
Technology ID.

Repository EA.Repository IN An EA.Repository object representing the currently open
Enterprise Architect model. Poll its members to retrieve model
data and user interface status information.

Return Value

None.

6.5.13 Context Item Events

Enterprise Architect Add-Ins can respond to the following events associated with changing context:

· EA_OnContextItemChanged

· EA_OnContextItemDoubleClicked

· EA_OnNotifyContextItemModified

6.5.13.1 EA_OnContextItemChanged

Details

EA_OnContextItemChanged notifies Add-Ins that a different item is now in context.

This event occurs after a user has selected an item anywhere in the Enterprise Architect GUI. Add-Ins that

197

152

153

152

214

197

155

156

157

Enterprise Architect Add-In Model | Broadcast Events156

Enterprise Architect Software Developers' Kit

require knowledge of the current item in context can subscribe to this broadcast function. If ot = otRepository,
then this function behaves the same as EA_FileOpen .

Also look at EA_OnContextItemDoubleClicked and EA_OnNotifyContextItemModified .

Syntax

Sub EA_OnContextItemChanged(Repository As EA.Repository, GUID As String, ot as EA.ObjectType)

The EA_OnContextItemChanged function syntax contains the following elements:

Parameter Type Direction Description

GUID String IN Contains the GUID of the new context item. This value corresponds
to the following properties, depending on the value of the ot
parameter:

ot (ObjectType)

otElement

otPackage

otDiagram

otAttribute

otMethod

otConnector

otRepository

- GUID value

- Element.ElementGUID

- Package.PackageGUID

- Diagram.DiagramGUID

- Attribute.AttributeGUID

- Method.MethodGUID

- Connector.ConnectorGUID

- NOT APPLICABLE, GUID is an empty string

ot EA.
ObjectType

IN Specifies the type of the new context item.

Repository EA.Repository IN An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user
interface status information.

Return Value

None.

6.5.13.2 EA_OnContextItemDoubleClicked

Details

EA_OnContextItemDoubleClicked notifies Add-Ins that the user has double-clicked the item currently in
context.

This event occurs when a user has double-clicked (or pressed [Enter]) on the item in context, either in a
diagram or in the Project Browser. Add-Ins to handle events can subscribe to this broadcast function.

Also look at EA_OnContextItemChanged and EA_OnNotifyContextItemModified .

Syntax

Function EA_OnContextItemDoubleClicked(Repository As EA.Repository, GUID As String, ot as EA.
ObjectType)

The EA_OnContextItemDoubleClicked function syntax contains the following elements:

Parameter Type Direction Description

GUID String IN Contains the GUID of the new context item. This value corresponds
to the following properties, depending on the value of the ot

135

156 157

197

155 157

Enterprise Architect Add-In Model | Broadcast Events 157

© 1998-2010 Sparx Systems Pty Ltd

Parameter Type Direction Description

parameter:

ot (ObjectType) - GUID value

otElement - Element.ElementGUID

otPackage - Package.PackageGUID

otDiagram - Diagram.DiagramGUID

otAttribute - Attribute.AttributeGUID

otMethod - Method.MethodGUID

otConnector - Connector.ConnectorGUID

ot EA.
ObjectType

IN Specifies the type of the new context item.

Repository EA.
Repository

IN An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user
interface status information.

Return Value

Return True to notify Enterprise Architect that the double-click event has been handled by an Add-In. Return
False to enable Enterprise Architect to continue processing the event.

6.5.13.3 EA_OnNotifyContextItemModified

Details

EA_OnNotifyContextItemModified notifies Add-Ins that the current context item has been modified.

This event occurs when a user has modified the context item. Add-Ins that require knowledge of when an item
has been modified can subscribe to this broadcast function.

Also look at EA_OnContextItemChanged and EA_OnContextItemDoubleClicked .

Syntax

Sub EA_OnNotifyContextItemModified(Repository As EA.Repository, GUID As String, ot as EA.
ObjectType)

The EA_OnNotifyContextItemModified function syntax contains the following elements:

Parameter Type Direction Description

GUID String IN Contains the GUID of the new context item. This value
corresponds to the following properties, depending on the
value of the ot parameter:

· ot (ObjectType) - GUID value

· otElement - Element.ElementGUID

· otPackage - Package.PackageGUID

· otDiagram - Diagram.DiagramGUID

· otAttribute - Attribute.AttributeGUID

· otMethod - Method.MethodGUID

· otConnector - Connector.ConnectorGUID

197

155 156

Enterprise Architect Add-In Model | Broadcast Events158

Enterprise Architect Software Developers' Kit

Parameter Type Direction Description

ot EA.ObjectType IN Specifies the type of the new context item.

Repository EA.Repository IN An EA.Repository object representing the currently open
Enterprise Architect model. Poll its members to retrieve model
data and user interface status information.

Return Value

None.

6.5.14 Compartment Events

Enterprise Architect Add-Ins can respond to the following events associated with user-generated element
compartments:

· EA_QueryAvailableCompartments

· EA_GetCompartmentData

6.5.14.1 EA_QueryAvailableCompartments

Details

This event occurs when Enterprise Architect's diagrams are refreshed. It is a request for the Add-In to provide
a list of user-defined compartments. The EA_GetCompartmentData event then queries each object for the
data to display in each user-defined compartment.

Syntax

Function EA_QueryAvailableCompartments(Repository As EA.Repository) As Variant

The EA_QueryAvailableCompartments function syntax contains the following elements:

Parameter Type Direction Description

Repository EA.Repository IN An EA.Repository object representing the currently open
Enterprise Architect model. Poll its members to retrieve model
data and user interface status information.

Return Value

A String containing a comma-separated list of user-defined compartments.

Example

Function EA_QueryAvailableCompartments(Repository As EA.Repository) As Variant
Dim sReturn As String
sReturn = ""
If m_FirstCompartmentVisible = True Then

sReturn = sReturn + "first,"
End If
If m_SecondCompartmentVisible = True Then

sReturn = sReturn + "second,"
End If
If m_ThirdCompartmentVisible = True Then

sReturn = sReturn + "third,"
End If

If Len(sReturn) > 0 Then
sReturn = Left(sReturn, Len(sReturn)-1)

End If

EA_QueryAvailableCompartments = sReturn

197

158

159

159

197

Enterprise Architect Add-In Model | Broadcast Events 159

© 1998-2010 Sparx Systems Pty Ltd

End Function

6.5.14.2 EA_GetCompartmentData

Details

This event occurs when Enterprise Architect is instructed to redraw an element. It requests that the Add-In
provide the data to populate the element's compartment.

Syntax

Function EA_GetCompartmentData(Repository As EA.Repository, sCompartment As String, sGUID As
String, oType As EA.ObjectType) As Variant

The EA_QueryAvailableCompartments function syntax contains the following elements:

Parameter Type Direction Description

oType ObjectType IN The type of the element for which data is being requested.

Repository EA.Repository IN An EA.Repository object representing the currently open
Enterprise Architect model. Poll its members to retrieve
model data and user interface status information.

sCompartment String IN The name of the compartment for which data is being
requested.

sGUID String IN The GUID of the element for which data is being requested.

Return Value

Variant containing a formatted string. See the example below to understand the format.

Example

Function EA_GetCompartmentData(Repository As EA.Repository, sCompartment As String, sGUID As String, oType As
EA.ObjectType) As Variant

 If Repository Is Nothing Then
 Exit Function
 End If

 Dim sCompartmentData As String
 Dim oXML As MSXML2.DOMDocument
 Dim Nodes As MSXML2.IXMLDOMNodeList
 Dim Node1 As MSXML2.IXMLDOMNode
 Dim Node As MSXML2.IXMLDOMNode
 Dim sData As String

 sCompartmentData = ""
 Set oXML = New MSXML2.DOMDocument
 sData = ""

 On Error GoTo ERR_GetCompartmentData

 oXML.loadXML (Repository.GetTreeXMLByGUID(sGUID))
 Set Node1 = oXML.selectSingleNode("//ModelItem")

 If Node1 Is Nothing Then
 Exit Function
 End If

 sCompartmentData = sCompartmentData + "Name=" + sCompartment + ";"
 sCompartmentData = sCompartmentData + "OwnerGUID=" + sGUID + ";"
 sCompartmentData = sCompartmentData + "Options=SkipIfOnDiagram&_eq_^1&_sc_^"

 Select Case sCompartment
 Case "parts"

197

Enterprise Architect Add-In Model | Broadcast Events160

Enterprise Architect Software Developers' Kit

 Set Nodes = Node1.selectNodes("ModelItem[@Metatype=""Part""]")
 For Each Node In Nodes
 sData = sData + "Data&_eq_^" + Node.Attributes.getNamedItem("Name").nodeValue + "&_sc_^"
 sData = sData + "GUID&_eq_^" + Node.Attributes.getNamedItem("GUID").nodeValue + "&_sc_^,"
 Next

 Case "ports"
 Set Nodes = Node1.selectNodes("ModelItem[@Metatype=""Port""]")
 For Each Node In Nodes
 sData = sData + "Data&_eq_^" + Node.Attributes.getNamedItem("Name").nodeValue + "&_sc_^"
 sData = sData + "GUID&_eq_^" + Node.Attributes.getNamedItem("GUID").nodeValue + "&_sc_^,"
 Next

 End Select

 ' If there's no data to display, then don't return any compartment data
 If sData <> "" Then
 sCompartmentData = sCompartmentData + "CompartmentData=" + sData + ";"
 Else
 sCompartmentData = ""
 End If

 EA_GetCompartmentData = sCompartmentData
 Exit Function

ERR_GetCompartmentData:
 EA_GetCompartmentData = ""

End Function

6.5.15 Model Validation Broadcasts

Perform Model Validation from an Add-In

Using Enterprise Architect broadcasts, it is possible to define a set of rules that are evaluated when the user
instructs Enterprise Architect to perform model validation. An Add-In that performs model validation would
involve the following broadcast events:

· EA_OnInitializeUserRules is intercepted in order to define rule categories and rules.

· EA_OnStartValidation can be intercepted to perform any required processing prior to validation.

· The following functions intercept each request to validate an individual element, package, diagram,
connector, attribute and method:

· EA_OnRunElementRule

· EA_OnRunPackageRule

· EA_OnRunDiagramRule

· EA_OnRunConnectorRule

· EA_OnRunAttributeRule

· EA_OnRunMethodRule

· EA_OnEndValidation can be intercepted to perform any required clean-up after validation has
completed.

Also consider the Model Validation Example .

6.5.15.1 EA_OnInitializeUserRules

Details

EA_OnInitializeUserRules is called on Enterprise Architect start-up and requests that the Add-In provide
Enterprise Architect with a rule category and list of rule IDs for model validation.

This function must be implemented by any Add-In that is to perform its own model validation. It must call
Project.DefineRuleCategory once and Project.DefineRule for each rule; these functions are described in the
Project Interface section.

160

161

162

162

162

163

163

164

161

165

271

Enterprise Architect Add-In Model | Broadcast Events 161

© 1998-2010 Sparx Systems Pty Ltd

Syntax

Sub EA_OnInitializeUserRules(Repository As EA.Repository)

The EA_OnInitializeUserRules function syntax contains the following elements:

Parameter Type Direction Description

Repository EA.Repository IN An EA.Repository object representing the currently open
Enterprise Architect model. Poll its members to retrieve model
data and user interface status information.

6.5.15.2 EA_OnStartValidation

Details

EA_OnStartValidation notifies Add-Ins that a user has invoked the model validation command from Enterprise
Architect.

Syntax

Sub EA_OnStartValidation(Repository As EA.Repository, ParamArray Args() as Variant)

The EA_OnStartValidation function syntax contains the following elements:

Parameter Type Direction Description

Args ParamArray of Variant IN Contains a list of Rule Categories that are active for the
current invocation of model validation.

Repository EA.Repository IN An EA.Repository object representing the currently
open Enterprise Architect model. Poll its members to
retrieve model data and user interface status
information.

6.5.15.3 EA_OnEndValidation

Details

EA_OnEndValidation notifies Add-Ins that model validation has completed. Use this event to arrange any
clean-up operations arising from the validation.

Syntax

Sub EA_OnEndValidation(Repository As EA.Repository, ParamArray Args() as Variant)

The EA_OnEndValidation function syntax contains the following elements:

Parameter Type Direction Description

Args ParamArray of
Variant

IN Contains a list of Rule Categories that were active for
the invocation of model validation that has just
completed.

Repository EA.Repository IN An EA.Repository object representing the currently open
Enterprise Architect model. Poll its members to retrieve
model data and user interface status information.

197

197

197

Enterprise Architect Add-In Model | Broadcast Events162

Enterprise Architect Software Developers' Kit

6.5.15.4 EA_OnRunElementRule

Details

This event is triggered once for each rule defined in EA_OnInitializeUserRules to be performed on each
element in the selection being validated. If you don't want to perform the rule defined by RuleID on the given
element, then simply return without performing any action. On performing any validation, if a validation error is
found, use the Repository.ProjectInterface.PublishResult method to notify Enterprise Architect.

Also look at EA_OnInitializeUserRules .

Syntax

Sub EA_OnRunElementRule(Repository As EA.Repository, RuleID As String, Element As EA.Element)

The EA_OnRunElementRule function syntax contains the following elements:

Parameter Type Direction Description

Element EA.Element IN The element to potentially perform validation on.

Repository EA.Repository IN An EA.Repository object representing the currently open
Enterprise Architect model. Poll its members to retrieve model
data and user interface status information.

RuleID String IN The ID that was passed into the Project.DefineRule command.

6.5.15.5 EA_OnRunPackageRule

Details

This event is triggered once for each rule defined in EA_OnInitializeUserRules to be performed on each
package in the selection being validated. If you don't want to perform the rule defined by RuleID on the given
package, then simply return without performing any action. On performing any validation, if a validation error is
found, use the Repository.ProjectInterface.PublishResult method to notify Enterprise Architect.

Syntax

Sub EA_OnRunPackageRule(Repository As EA.Repository, RuleID As String, PackageID As Long)

The EA_OnRunElementRule function syntax contains the following elements:

Parameter Type Direction Description

PackageID Long IN The ID of the package to potentially perform validation on. Use
the Repository.GetPackageByID method to retrieve the package
object.

Repository EA.Repository IN An EA.Repository object representing the currently open
Enterprise Architect model. Poll its members to retrieve model
data and user interface status information.

RuleID String IN The ID that was passed into the Project.DefineRule method.

6.5.15.6 EA_OnRunDiagramRule

Details

This event is triggered once for each rule defined in EA_OnInitializeUserRules to be performed on each
diagram in the selection being validated. If you don't want to perform the rule defined by RuleID on the given
diagram, then simply return without performing any action. On performing any validation, if a validation error is

160

197

160

197

160

Enterprise Architect Add-In Model | Broadcast Events 163

© 1998-2010 Sparx Systems Pty Ltd

found, use the Repository.ProjectInterface.PublishResult method to notify Enterprise Architect.

Syntax

Sub EA_OnRunDiagramRule(Repository As EA.Repository, RuleID As String, DiagramID As Long)

The EA_OnRunDiagramRule function syntax contains the following elements:

Parameter Type Direction Description

DiagramID Long IN The ID of the diagram to potentially perform validation on. Use
the Repository.GetDiagramByID method to retrieve the
diagram object.

Repository EA.Repository IN An EA.Repository object representing the currently open
Enterprise Architect model. Poll its members to retrieve model
data and user interface status information.

RuleID String IN The ID that was passed into the Project.DefineRule command.

6.5.15.7 EA_OnRunConnectorRule

Details

This event is triggered once for each rule defined in EA_OnInitializeUserRules to be performed on each
connector in the selection being validated. If you don't want to perform the rule defined by RuleID on the given
connector, then simply return without performing any action. On performing any validation, if a validation error
is found, use the Repository.ProjectInterface.PublishResult method to notify Enterprise Architect.

Syntax

Sub EA_OnRunConnectorRule(Repository As EA.Repository, RuleID As String, ConnectorID As Long)

The EA_OnRunConnectorRule function syntax contains the following elements:

Parameter Type Direction Description

ConnectorI
D

Long IN The ID of the connector to potentially perform validation on. Use
the Repository.GetConnectorByID method to retrieve the
connector object.

Repository EA.
Repository

IN An EA.Repository object representing the currently open
Enterprise Architect model. Poll its members to retrieve model
data and user interface status information.

RuleID String IN The ID that was passed into the Project.DefineRule command.

6.5.15.8 EA_OnRunAttributeRule

Details

This event is triggered once for each rule defined in EA_OnInitializeUserRules to be performed on each
attribute in the selection being validated. If you don't want to perform the rule defined by RuleID on the given
attribute, then simply return without performing any action. On performing any validation, if a validation error is
found, use the Repository.ProjectInterface.PublishResult method to notify Enterprise Architect.

Syntax

Sub EA_OnRunAttributeRule(Repository As EA.Repository, RuleID As String, AttributeGUID As String,
ObjectID As Long)

The EA_OnRunAttributeRule function syntax contains the following elements:

197

160

197

160

Enterprise Architect Add-In Model | Broadcast Events164

Enterprise Architect Software Developers' Kit

Parameter Type Direction Description

AttributeGUID String IN The GUID of the attribute to potentially perform validation on.
Use the Repository.GetAttributeByGuid method to retrieve
the attribute object.

ObjectID Long IN The ID of the object that owns the given attribute. Use the
Repository.GetObjectByID method to retrieve the object.

Repository EA.Repository IN An EA.Repository object representing the currently open
Enterprise Architect model. Poll its members to retrieve
model data and user interface status information.

RuleID String IN The ID that was passed into the Project.DefineRule
command.

6.5.15.9 EA_OnRunMethodRule

Details

This event is triggered once for each rule defined in EA_OnInitializeUserRules to be performed on each
method in the selection being validated. If you don't want to perform the rule defined by RuleID on the given
method, then simply return without performing any action. On performing any validation, if a validation error is
found, use the Repository.ProjectInterface.PublishResult method to notify Enterprise Architect.

Syntax

Sub EA_OnRunMethodRule(Repository As EA.Repository, RuleID As String, MethodGUID As String,
ObjectID As Long)

The EA_OnRunMethodRule function syntax contains the following elements:

Parameter Type Direction Description

MethodGUI
D

String IN The GUID of the method to potentially perform validation on.
Use the Repository.GetMethodByGuid method to retrieve the
method object.

ObjectID Long IN The ID of the object that owns the given method. Use the
Repository.GetObjectByID method to retrieve the object.

Repository EA.Repository IN An EA.Repository object representing the currently open
Enterprise Architect model. Poll its members to retrieve model
data and user interface status information.

RuleID String IN The ID that was passed into the Project.DefineRule command.

6.5.15.10 EA_OnRunParameterRule

Details

This event is triggered once for each rule defined in EA_OnInitializeUserRules to be performed on each
parameter in the selection being validated. If you don't want to perform the rule defined by RuleID on the given
parameter, then simply return without performing any action. On performing any validation, if a validation error
is found, use the Repository.ProjectInterface.PublishResult method to notify Enterprise Architect.

Syntax

Sub EA_OnRunParameterRule(Repository As EA.Repository, RuleID As String, ParameterGUID As
String, MethodGUID As String, ObjectID As Long)

The EA_OnRunMethodRule function syntax contains the following elements:

197

160

197

160

Enterprise Architect Add-In Model | Broadcast Events 165

© 1998-2010 Sparx Systems Pty Ltd

Parameter Type Direction Description

MethodGUID String IN The GUID of the method that owns the given parameter. Use
the Repository.GetMethodByGuid method to retrieve the
method object.

ObjectID Long IN The ID of the object that owns the given parameter. Use the
Repository.GetObjectByID method to retrieve the object.

ParameterGUI
D

String IN The GUID of the parameter to potentially perform validation
on. Use it to retrieve the parameter by iterating through the
Method.Parameters collection.

Repository EA.
Repository

IN An EA.Repository object representing the currently open
Enterprise Architect model. Poll its members to retrieve model
data and user interface status information.

RuleID String IN The ID that was passed into the Project.DefineRule
command.

6.5.15.11 Model Validation Example

The following example code is written in C# and provides a skeleton model validation implementation that you
might like to use as a starting point in writing your own model validation rules.

Main.cs

using System;

namespace myAddin
{

public class Main
{

public Rules theRules;

public Main()
{

theRules = new Rules();
}

public string EA_Connect(EA.Repository Repository)
{

return "";
}

public void EA_Disconnect()
{

GC.Collect();
GC.WaitForPendingFinalizers();

}

private bool IsProjectOpen(EA.Repository Repository)
{

try
{

EA.Collection c = Repository.Models;
return true;

}
catch
{

return false;
}

}

public object EA_GetMenuItems(EA.Repository Repository, string MenuLocation, string MenuName)
{

switch (MenuName)
{

case "":

197

Enterprise Architect Add-In Model | Broadcast Events166

Enterprise Architect Software Developers' Kit

return "-&myAddin";
case "-&myAddin":

string[] ar = { "&Test" };
return ar;

}
return "";

}

public void EA_GetMenuState(EA.Repository Repository, string MenuLocation, string MenuName, string
ItemName, ref bool IsEnabled, ref bool IsChecked)

{
// if no open project, disable all menu options
if (IsProjectOpen(Repository))

IsEnabled = true;
else

IsEnabled = false;
}

public void EA_MenuClick(EA.Repository Repository, string MenuLocation, string MenuName, string
ItemName)

{
switch (ItemName)
{

case "&Test";
DoTest(Repository);
break;

}
}

public void EA_OnInitializeUserRules(EA.Repository Repository)
{

if (Repository != null)
{

theRules.ConfigureCategories(Repository);
theRules.ConfigureRules(Repository);

}
}

public void EA_OnRunElementRule(EA.Repository Repository, string RuleID, EA.Element element)
{

theRules.RunElementRule(Repository, RuleID, element);
}

public void EA_OnRunDiagramRule(EA.Repository Repository, string RuleID, long lDiagramID)
{

theRules.RunDiagramRule(Repository, RuleID, lDiagramID);
}

public void EA_OnRunConnectorRule(EA.Repository Repository, string RuleID, long lConnectorID)
{

theRules.RunConnectorRule(Repository, RuleID, lConnectorID);
}

public void EA_OnRunAttributeRule(EA.Repository Repository, string RuleID, string AttGUID, long
lObjectID)

{
return;

}

public void EA_OnDeleteTechnology(EA.Repository Repository, EA.EventProperties Info)
{

return;
}

public void EA_OnImportTechnology(EA.Repository Repository, EA.EventProperties Info)
{

return;
}

private void DoTest(EA.Repository Rep)
{

// TODO: insert test code here
}

}

Enterprise Architect Add-In Model | Broadcast Events 167

© 1998-2010 Sparx Systems Pty Ltd

}

Rules.cs

using System;
using System.Collections;

namespace myAddin
{

public class Rules
{

private string m_sCategoryID;
private System.Collections.ArrayList m_RuleIDs;
private System.Collections.ArrayList m_RuleIDEx;

private const string cRule01 = "Rule01";
private const string cRule02 = "Rule02";
private const string cRule03 = "Rule03";
// TODO: expand this list as much as necessary

public Rules()
{

m_RuleIDs = new System.Collections.ArrayList();
m_RuleIDEx = new System.Collections.ArrayList();

}

private string LookupMap(string sKey)
{

return DoLookupMap(sKey, m_RuleIDs, m_RuleIDEx);
}

private string LookupMapEx(string sRule)
{

return DoLookupMap(sRule, m_RuleIDEx, m_RuleIDs);
}

private string DoLookupMap(string sKey, ArrayList arrValues, ArrayList arrKeys)
{

if (arrKeys.Contains(sKey))
return arrValues[arrKeys.IndexOf(sKey)].ToString();

else
return "";

}

private void AddToMap(string sRuleID, string sKey)
{

m_RuleIDs.Add(sRuleID);
m_RuleIDEx.Add(sKey);

}

private string GetRuleStr(string sRuleID)
{

switch (sRuleID)
{

case cRule01:
return "Error Message 01";

case cRule02:
return "Error Message 02";

case cRule03:
return "Error Message 03";

// TODO: add extra cases as much as necessary
}
return "";

}

public void ConfigureCategories(EA.Repository Repository)
{

EA.Project Project = Repository.GetProjectInterface();
m_sCategoryID = Project.DefineRuleCategory("Enterprise Collaboration Architecture (ECA)

Rules");
}

public void ConfigureRules(EA.Repository Repository)
{

EA.Project Project = Repository.GetProjectInterface();

Enterprise Architect Add-In Model | Broadcast Events168

Enterprise Architect Software Developers' Kit

AddToMap(Project.DefineRule(m_sCategoryID, EA.EnumMVErrorType.mvError,
GetRuleStr(cRule01)), cRule01);

AddToMap(Project.DefineRule(m_sCategoryID, EA.EnumMVErrorType.mvError,
GetRuleStr(cRule02)), cRule02);

AddToMap(Project.DefineRule(m_sCategoryID, EA.EnumMVErrorType.mvError,
GetRuleStr(cRule03)), cRule03);

// TODO: expand this list
}

public void RunConnectorRule(EA.Repository Repository, string sRuleID, long lConnectorID)
{

EA.Connector Connector = Repository.GetConnectorByID((int)lConnectorID);
if (Connector != null)
{

switch (LookupMapEx(sRuleID))
{

case cRule02:
// TODO: perform rule 2 check
break;

// TODO: add more cases
}

}
}

public void RunDiagramRule(EA.Repository Repository, string sRuleID, long lDiagramID)
{

EA.Diagram Diagram = Repository.GetDiagramByID((int)lDiagramID);
if (Diagram != null)
{

switch (LookupMapEx(sRuleID))
{

case cRule03:
// TODO: perform rule 3 check
break;

// TODO: add more cases
}

}
}

public void RunElementRule(EA.Repository Repository, string sRuleID, EA.Element Element)
{

if (Element != null)
{

switch (LookupMapEx(sRuleID))
{

case cRule01:
DoRule01(Repository, Element);
break;

// TODO: add more cases
}

}
}

private void DoRule01(EA.Repository Repository, EA.Element Element)
{

if (Element.Stereotype != "myStereotype")
return;

// TODO: validation logic here

// report validation errors
EA.Project Project = Repository.GetProjectInterface();
Project.PublishResult(LookupMap(cRule01), EA.EnumMVErrorType.mvError,

GetRuleStr(cRule01));
}

}
}

6.5.16 EA_OnRetrieveModelTemplate

Details

EA_OnRetrieveModelTemplate requests that an Add-In pass a model template to Enterprise Architect.

Enterprise Architect Add-In Model | Broadcast Events 169

© 1998-2010 Sparx Systems Pty Ltd

This event occurs when a user executes the Add a New Model Using Wizard command to add a model that
has been defined by an MDG Technology. See the Incorporate Model Templates in a Technology topic for
details of how to define such model templates.

Syntax

Function EA_OnRetrieveModelTemplate(Repository As EA.Repository,sLocation As String) As String

The EA_OnRetrieveModelTemplate function syntax contains the following elements:

Parameter Type Direction Description

Repository EA.
Repository

IN An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user
interface status information.

sLocation String IN The name of the template requested. This should match the
location attribute in the <ModelTemplates> section of an MDG
Technology File. For more information, see the Incorporate Model
Templates in a Technology topic.

Return Value

Return a string containing the XMI export of the model that is being used as a template.

Example

Public Function EA_OnRetrieveModelTemplate(ByRef Rep As EA.Repository, ByRef sLocation As String) As String
Dim sTemplate As String
Select Case sLocation

Case "Templates\Template1.xml"
sTemplate = My.Resources.Template1

Case "Templates\Template2.xml"
sTemplate = My.Resources.Template2

Case "Templates\Template3.xml"
sTemplate = My.Resources.Template3

Case Else
MsgBox("Path for " & sLocation & " not found")
sTemplate = ""

End Select
EA_OnRetrieveModelTemplate = sTemplate

End Function

6.6 Custom Views

Enterprise Architect enables custom windows to be inserted as tabs in the Diagram View that appears at the
center of the Enterprise Architect frame.

Creating a custom view enables you to easily and quickly tab between a custom interface and diagrams
and other views normally provided by Enterprise Architect.

Uses for this facility include:

· Reports and graphs showing summary data of the model

· Alternative views of a diagram

· Alternative views of the model

· Views of external data related to model data

· Documentation tools.

6.6.1 Create a Custom View

A custom view must be designed as an ActiveX custom control and inserted through the automation interface.

ActiveX custom controls can be created using most well-known programming tools including Microsoft Visual
Studio.NET. See the documentation provided by the relevant vendor on how to create a custom control to

59

197

169

Enterprise Architect Add-In Model | Custom Views170

Enterprise Architect Software Developers' Kit

produce an OCX file.

Once the custom control has been created and registered on the target system, it can be added through the
AddTab() method of the Repository object.

While it is possible to call AddTab() from any automation client, it is likely that you would call it from an Add-In,
and that Add-In is defined in the same OCX that provides the custom view.

Example C# code is shown below:

public class Addin
{

UserControl1 m_MyControl;

public void EA_Connect(EA.Repository Rep)
{
}

public object EA_GetMenuItems(EA.Repository Repository, string Location, string MenuName)
{

if(MenuName == "")
return "-&C# Control Demo";

else
{

String[] ret = {"&Create", "&Show Button"};
return ret;

}
}

public void EA_MenuClick(EA.Repository Rep, string Location, string MenuName, string ItemName)
{

if(ItemName == "&Create")
m_MyControl = (UserControl1) Rep.AddTab("C# Demo","ContDemo.UserControl1");

else
m_MyControl.ShowButton();

}

}

6.7 MDG Add-Ins

MDG Add-Ins are specialized types of Add-Ins that have additional features and extra requirements for Add-In
authors who want to contribute to Enterprise Architect's goal of Model Driven Generation. Unlike general Add-
In events, MDG Add-In events are only sent to the Add-In that has taken ownership of an Enterprise Architect
model branch on a particular PC.

One of the additional responsibilities of an MDG Add-In is to take ownership of a branch of an Enterprise
Architect model, which is done through the MDG_Connect event.

MDG Add-Ins identify themselves as such during EA_Connect by returning the string MDG.

Unlike ordinary Add-Ins, responding to MDG Add-In events is not optional, and methods must be published for
each of the MDG Events .

Two examples of MDG Add-Ins are the commercially available MDG Link for Eclipse and MDG Link for Visual
Studio, published by Sparx Systems.

6.7.1 MDG Events

An MDG Add-In must respond to all MDG Events. These events usually identify processes such as Build, Run,
Synchronize, PreMerge and PostMerge, amongst others.

An MDG Link Add-In is expected to implement some form of forward and reverse engineering capability within
Enterprise Architect, and as such requires access to a specific set of events, all to do with generation,
synchronization and general processes concerned with converting models to code and code to models.

· MDG_BuildProject

· MDG_Connect

· MDG_Disconnect

197

171

130

170

171

171

172

http://www.sparxsystems.com/

Enterprise Architect Add-In Model | MDG Add-Ins 171

© 1998-2010 Sparx Systems Pty Ltd

· MDG_GetConnectedPackages

· MDG_GetProperty

· MDG_Merge

· MDG_NewClass

· MDG_PostGenerate

· MDG_PostMerge

· MDG_PreGenerate

· MDG_PreMerge

· MDG_PreReverse

· MDG_RunExe

· MDG_View

6.7.1.1 MDGBuild Project

Details

MDG_BuildProject enables the Add-In to handle file changes caused by generation. This function is called in
response to a user selecting the Add-Ins | Build Project menu option.

Respond to this event by compiling the project source files into a running application.

Also look at MDG_RunExe .

Syntax

Sub MDG_BuildProject(Repository As EA.Repository, PackageGuid As String)

The MDG_BuildProject function syntax contains the following elements:

Parameter Type Direction Description

PackageGuid String IN The GUID identifying the Enterprise Architect package sub-
tree that is controlled by the Add-In.

Repository EA.Repository IN An EA.Repository object representing the currently open
Enterprise Architect model. Poll its members to retrieve
model data and user interface status information.

Return Value

None.

6.7.1.2 MDGConnect

Details

MDG_Connect enables the Add-In to handle user driven request to connect a model branch to an external
application. This function is called when the user attempts to connect a particular Enterprise Architect package
to an as yet unspecified external project. This event enables the Add-In to interact with the user to specify
such a project.

The Add-In is responsible for retaining the connection details, which should be stored on a per-user or per-
workstation basis. That is, users who share a common Enterprise Architect model over a network should be
able to connect and disconnect to external projects independently of one another.

The Add-In should therefore not store connection details in an Enterprise Architect repository. A suitable place
to store such details would be:

SHGetFolderPath(..CSIDL_APPDATA..)\AddinName.

The PackageGuid parameter is the same identifier as required for most events relating to the MDG Add-In.
Therefore it is recommended that the connection details be indexed using the PackageGuid value.

173

173

174

175

176

176

177

177

178

179

179

179

197

Enterprise Architect Add-In Model | MDG Add-Ins172

Enterprise Architect Software Developers' Kit

The PackageID parameter is provided to aid fast retrieval of package details from Enterprise Architect, should
this be required.

Also look at MDG_Disconnect .

Syntax

Function MDG_Connect(Repository As EA.Repository, PackageID as Long, PackageGuid As String) As
Long

The MDG_Connect function syntax contains the following elements:

Parameter Type Direction Description

PackageGui
d

String IN The unique ID identifying the project provided by the Add-In
when a connection to a project branch of an Enterprise
Architect model was first established.

PackageID Long IN The PackageID of the Enterprise Architect package the user
has requested to have connected to an external project.

Repository EA.
Repository

IN An EA.Repository object representing the currently open
Enterprise Architect model. Poll its members to retrieve model
data and user interface status information.

Return Value

Returns a non-zero to indicate that a connection has been made; a zero indicates that the user has not
nominated a project and connection should not proceed.

6.7.1.3 MDGDisconnect

Details

MDG_Disconnect enables the Add-In to respond to user requests to disconnect the model branch from an
external project. This function is called when the user attempts to disconnect an associated external project.
The Add-In is required to delete the details of the connection.

Also look at MDG_Connect .

Syntax

Function MDG_Disconnect(Repository As EA.Repository, PackageGuid As String) As Long

The MDG_Disconnect function syntax contains the following elements:

Parameter Type Direction Description

PackageGui
d

String IN The GUID identifying the Enterprise Architect package sub-tree
that is controlled by the Add-In.

Repository EA.
Repository

IN An EA.Repository object representing the currently open
Enterprise Architect model. Poll its members to retrieve model
data and user interface status information.

Return Value

Returns a non-zero to indicate that a disconnection has occurred enabling Enterprise Architect to update the
user interface. A zero indicates that the user has not disconnected from an external project.

172

197

171

197

Enterprise Architect Add-In Model | MDG Add-Ins 173

© 1998-2010 Sparx Systems Pty Ltd

6.7.1.4 MDGGetConnectedPackages

Details

MDG_GetConnectedPackages enables the Add-In to return a list of current connection between Enterprise
Architect and an external application. This function is called when the Add-In is first loaded, and is expected to
return a list of the available connections to external projects for this Add-In.

Also look at MDG_Connect .

Syntax

Function MDG_GetConnectedPackages(Repository As EA.Repository) As Variant

The MDG_GetConnectedPackages function syntax contains the following elements:

Parameter Type Direction Description

Repository EA.
Repository

IN An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user
interface status information.

Return Value

Returns an array of GUID strings representing individual Enterprise Architect packages.

6.7.1.5 MDGGetProperty

Details

MDG_GetProperty provides miscellaneous Add-In details to Enterprise Architect. This function is called by
Enterprise Architect to poll the Add-In for information relating to the PropertyName. This event should occur in
as short a duration as possible as Enterprise Architect does not cache the information provided by the
function.

Values corresponding to the following PropertyNames must be provided:

· IconID - Return the name of a DLL and a resource identifier in the format #ResID, where the resource ID
indicates an Icon; for example, c:\program files\myapp\myapp.dlll#101

· Language - Return the default language that Classes should be assigned when they are created in
Enterprise Architect

· HiddenMenus - Return one or more values from the MDGMenus enumeration to hide menus that do not
apply to your Add-In. For example:

if(PropertyName == "HiddenMenus")
 return mgBuildProject + mgRun;

Syntax

Function MDG_GetProperty(Repository As EA.Repository, PackageGuid As String, PropertyName As
String) As Variant

The MDG_GetProperty function syntax contains the following elements:

Parameter Type Direction Description

PackageGuid String IN The GUID identifying the Enterprise Architect package sub-tree
that is controlled by the Add-In.

PropertyNam
e

String IN The name of the property that is used by Enterprise Architect.
See Details for the possible values.

Repository EA.
Repository

IN An EA.Repository object representing the currently-open
Enterprise Architect model. Poll its members to retrieve model

171

197

Enterprise Architect Add-In Model | MDG Add-Ins174

Enterprise Architect Software Developers' Kit

Parameter Type Direction Description

data and user interface status information.

Return Value

See Details, above.

6.7.1.6 MDGMerge

Details

MDG_Merge enables the Add-In to jointly handle changes to both the model branch and the code project that
the model branch is connected to. This event should be called whenever the user has asked to merge their
model branch with its connected code project, or whenever the user has established a new connection to a
code project. The purpose of this event is to enable the Add-In to interact with the user to perform a merge
between the model branch and the connected project.

Also look at MDG_Connect , MDG_PreMerge and MDG_PostMerge .

Syntax

Function MDG_Merge(Repository As EA.Repository, PackageGuid As String, SynchObjects As Variant,
SynchType As String, ExportObjects As Variant, ExportFiles As Variant, ImportFiles As Variant,
IgnoreLocked As String, Language As String) As Long

The MDG_Merge function syntax contains the following elements:

Parameter Type Direction Description

ExportFiles Variant OUT A string array containing the list of files for each model object
chosen for export by the Add-In. Each entry in this array must
have a corresponding entry in the ExportObjects parameter at
the same array index, so ExportFiles(2) must contain the
filename of the object by ExportObjects(2).

ExportObject
s

Variant OUT The string array containing the list of new model objects (in
Object ID format) to be exported by Enterprise Architect to the
code project.

IgnoreLocked String OUT A value indicating whether to ignore any files locked by the code
project (that is, "TRUE" or "FALSE".

ImportFiles Variant OUT A string array containing the list of code files made available to
the code project to be newly imported to the model. Enterprise
Architect imports each file listed in this array for import into the
connected model branch.

Language String OUT The string value containing the name of the code language
supported by the code project connected to the model branch.

PackageGuid String IN The GUID identifying the Enterprise Architect package sub-tree
that is controlled by the Add-In.

Repository EA.
Repository

IN An EA.Repository object representing the currently open
Enterprise Architect model. Poll its members to retrieve model
data and user interface status information.

SynchObjects Variant OUT A string array containing a list of objects (Object ID format) to be
jointly synchronized between the model branch and the project.
See below for the format of the Object IDs.

SynchType String OUT The value determining the user-selected type of synchronization
to take place. See below for a list of valid values.

197

171 177 176

197

175

175

Enterprise Architect Add-In Model | MDG Add-Ins 175

© 1998-2010 Sparx Systems Pty Ltd

Return Value

Return a non-zero if the merge operation completed successfully and a zero value when the operation has
been unsuccessful.

Merge

A merge consists of three major operations:

· Export: Where newly created model objects are exported into code and made available to the code
project.

· Import: Where newly created code objects, Classes and such things are imported into the model.

· Synchronize: Where objects available both to the model and in code are jointly updated to reflect changes
made in either the model, code project or both.

Synchronize Type

The Synchronize operation can take place in one of four different ways. Each of these ways corresponds to a
value returned by SynchType:

· None: (SynchType = 0) No synchronization is to be performed

· Forward: (SynchType = 1) Forward synchronization, between the model branch and the code project is to
occur

· Reverse: (SynchType = 2) Reverse synchronization, between the code project and the model branch is to
occur

· Both: (SynchType = 3) Reverse, then Forward synchronization's are to occur.

Object ID Format

Each of the Object IDs listed in the string arrays described above should be composed in the following format:

(@namespace)*(#class)*($attribute|%operation|:property)*

6.7.1.7 MDGNewClass

Details

MDG_NewClass enables the Add-In to alter details of a Class before it is created.

This method is called when Enterprise Architect generates a new Class, and requires information relating to
assigning the language and file path. The file path should be passed back as a return value and the language
should be passed back via the language parameter.

Also look at MDG_PreGenerate .

Syntax

Function MDG_NewClass(Repository As EA.Repository, PackageGuid As String, CodeID As String,
Language As String) As String

The MDG_NewClass function syntax contains the following elements:

Parameter Type Direction Description

CodeID String IN A string used to identify the code element before it is created, for
more information see MDG_View .

Language String OUT A string used to identify the programming language for the new
Class. The language must be supported by Enterprise Architect.

PackageGui
d

String IN The GUID identifying the Enterprise Architect package sub-tree
that is controlled by the Add-In.

Repository EA.
Repository

IN An EA.Repository object representing the currently open
Enterprise Architect model. Poll its members to retrieve model

177

179

Enterprise Architect Add-In Model | MDG Add-Ins176

Enterprise Architect Software Developers' Kit

Parameter Type Direction Description

data and user interface status information.

Return Value

Returns a string containing the file path that should be assigned to the Class.

6.7.1.8 MDGPostGenerate

Details

MDG_PostGenerate enables the Add-In to handle file changes caused by generation.

This event is called after Enterprise Architect has prepared text to replace the existing contents of a file.
Responding to this event enables the Add-In to write to the linked application's user interface rather than
modify the file directly.

When the contents of a file are changed, Enterprise Architect passes FileContents as a non-empty string. New
files created as a result of code generation are also sent through this mechanism, enabling Add-Ins to add
new files to the linked project's file list.

When new files are created Enterprise Architect passes FileContents as an empty string. When a non-zero is
returned by this function, the Add-In has successfully written the contents of the file. A zero value for the return
indicates to Enterprise Architect that the file must be saved.

Also look at MDG_PreGenerate .

Syntax

Function MDG_PostGenerate(Repository As EA.Repository, PackageGuid As String, FilePath As
String, FileContents As String) As Long

The MDG_PostGenerate function syntax contains the following elements:

Parameter Type Directio
n

Description

FileContents String IN A string containing the proposed contents of the file.

FilePath String IN The path of the file Enterprise Architect intends to overwrite.

PackageGui
d

String IN The GUID identifying the Enterprise Architect package sub-tree
that is controlled by the Add-In.

Repository EA.Repository IN An EA.Repository object representing the currently open
Enterprise Architect model. Poll its members to retrieve model
data and user interface status information.

Return Value

Return value depends on the type of event that this function is responding to (see Details, above). This
function is required to handle two separate and distinct cases.

6.7.1.9 MDGPostMerge

Details

MDG_PostMerge is called after a merge process has been completed.

This function is called by Enterprise Architect after the merge process has been completed.

197

177

197

Enterprise Architect Add-In Model | MDG Add-Ins 177

© 1998-2010 Sparx Systems Pty Ltd

Note:

File save checking should not be performed with this function, but should be handled by MDG_PreGenerate
, MDG_PostGenerate and MDG_PreReverse .

Also look at MDG_PreMerge and MDG_Merge .

Syntax

Function MDG_PostMerge(Repository As EA.Repository, PackageGuid As String) As Long

The MDG_PostMerge function syntax contains the following elements:

Parameter Type Direction Description

Repository EA.
Repository

IN An EA.Repository object representing the currently open
Enterprise Architect model. Poll its members to retrieve model
data and user interface status information.

PackageGui
d

String IN The GUID identifying the Enterprise Architect package sub-tree
that is controlled by the Add-In.

Return Value

Return a zero value if the post-merge process has failed, a non-zero return indicates that the post-merge has
been successful. Enterprise Architect assumes a non-zero return if this method is not implemented

6.7.1.10 MDGPreGenerate

Details

MDG_PreGenerate enables the Add-In to deal with unsaved changes. This function is called immediately
before Enterprise Architect attempts to generate files from the model. A possible use of this function would be
to prompt the user to save unsaved source files.

Also look at MDG_PostGenerate .

Syntax

Function MDG_PreGenerate(Repository As EA.Repository, PackageGuid As String) As Long

The MDG_PreGenerate function syntax contains the following elements:

Parameter Type Direction Description

Repository EA.
Repository

IN An EA.Repository object representing the currently open
Enterprise Architect model. Poll its members to retrieve model
data and user interface status information.

PackageGuid String IN The GUID identifying the Enterprise Architect package sub-tree
that is controlled by the Add-In.

Return Value

Return a zero value to abort generation. Any other value enables the generation to continue.

6.7.1.11 MDGPreMerge

Details

MDG_PreMerge is called after a merge process has been initiated by the user and before Enterprise Architect
performs the merge process.

177 176 178

177 174

197

176

197

Enterprise Architect Add-In Model | MDG Add-Ins178

Enterprise Architect Software Developers' Kit

This event is called after a user has performed their interactions with the merge screen and has confirmed the
merge with the OK button, but before Enterprise Architect performs the merge process using the data
provided by the MDG_Merge call, before any changes have been made to the model or the connected project.

This event is made available to provide the Add-In with the opportunity to generally set internal Add-In flags to
augment the MDG_PreGenerate, MDG_PostGenerate and MDG_PreReverse events.

Note:

File save checking should not be performed with this function, but should be handled by MDG_PreGenerate
, MDG_PostGenerate and MDG_PreReverse .

Also look at MDG_Merge and MDG_PostMerge .

Syntax

Function MDG_PreMerge(Repository As EA.Repository, PackageGuid As String) As Long

The MDG_PreMerge function syntax contains the following elements:

Parameter Type Direction Description

Repository EA.
Repository

IN An EA.Repository object representing the currently open
Enterprise Architect model. Poll its members to retrieve model
data and user interface status information.

PackageGui
d

String IN The GUID identifying the Enterprise Architect package sub-tree
that is controlled by the Add-In.

Return Value

A return value of zero indicates that the merge process will not occur. If the value is not zero the merge
process will proceed. If this method is not implemented then it is assumed that a merge process is used.

6.7.1.12 MDGPreReverse

Details

MDG_PreReverse enables the Add-In to save file changes before being imported into Enterprise Architect.

This function operates on a list of files that are about to be reverse-engineered into Enterprise Architect. If the
user is working on unsaved versions of these files in an editor, you could either prompt the user or save
automatically.

Also look at MDG_PostGenerate and MDG_PreGenerate .

Syntax

Sub MDG_PreReverse(Repository As EA.Repository, PackageGuid As String, FilePaths As Variant)

The MDG_PreReverse function syntax contains the following elements:

Parameter Type Direction Description

Repository EA.
Repository

IN An EA.Repository object representing the currently open
Enterprise Architect model. Poll its members to retrieve model
data and user interface status information.

PackageGui
d

String IN The GUID identifying the Enterprise Architect package sub-tree
that is controlled by the Add-In.

FilePaths String array IN An array of filepaths pointed to the files that are to be reverse
engineered.

177 176 178

174 176

197

176 177

197

Enterprise Architect Add-In Model | MDG Add-Ins 179

© 1998-2010 Sparx Systems Pty Ltd

Return Value

None.

6.7.1.13 MDGRunExe

Details

MDG_RunExe enables the Add-In to run the target application. This function is called when the user selects
the Add-Ins | Run Exe menu option. Respond to this event by launching the compiled application.

Also look at MDG_BuildProject .

Syntax

Sub MDG_RunExe(Repository As EA.Repository, PackageGuid As String)

The MDG_RunExe function syntax contains the following elements:

Parameter Type Direction Description

Repository EA.
Repository

IN An EA.Repository object representing the currently open
Enterprise Architect model. Poll its members to retrieve model
data and user interface status information.

PackageGui
d

String IN The GUID identifying the Enterprise Architect package sub-tree
that is controlled by the Add-In.

Return Value

None.

6.7.1.14 MDGView

Details

MDG_View enables the Add-In to display user specified code elements. This function is called by Enterprise
Architect when the user asks to view a particular code element. This enables the Add-In to present that
element in its own way, usually in a code editor.

Syntax

Function MDG_View(Repository As EA.Repository, PackageGuid As String, CodeID as String) As Long

The MDG_View function syntax contains the following elements:

Parameter Type Direction Description

Repository EA.
Repository

IN An EA.Repository object representing the currently open
Enterprise Architect model. Poll its members to retrieve model
data and user interface status information.

PackageGuid String IN The GUID identifying the Enterprise Architect package sub-tree
that is controlled by the Add-In.

CodeID String IN Identifies the code element in the following format:

<type>ElementPart<type>ElementPart...

where each element is proceeded with a token identifying its type:

@ -namespace

171

197

Enterprise Architect Add-In Model | MDG Add-Ins180

Enterprise Architect Software Developers' Kit

Parameter Type Direction Description

- Class

$ - attribute

% - operation

For example if a user has selected the m_Name attribute of
Class1 located in namespace Name1, the class ID would be
passed through in the following format:

@Name1#Class1%m_Name

Return Value

Return a non-zero value to indicate that the Add-In has processed the request. Returning a zero value results
in Enterprise Architect employing the standard viewing process which is to launch the associated source file.

Enterprise Architect Object Model | 181

© 1998-2010 Sparx Systems Pty Ltd

7 Enterprise Architect Object Model

Introduction

Automation provides a way for other applications to access the information in an Enterprise Architect model
using Windows OLE Automation (ActiveX). Typically this involves scripting clients such as MS Word or Visual
Basic, or using scripts created within Enterprise Architect using the Scripter window (see Using Enterprise
Architect - UML Modeling Tool).

The Automation Interface provides a way of accessing the internals of Enterprise Architect models. Examples
of things you can do using the Automation Interface include:

· Perform repetitive tasks, such as update the version number for all elements in a model

· Generate code from a State Machine diagram

· Produce custom reports

· Perform ad hoc queries.

Connecting to the Automation Interface

All development environments capable of generating ActiveX Com clients should be able to connect to the
Enterprise Architect Automation Interface. This guide provides detailed instructions on connecting to the
interface using Microsoft Visual Basic 6.0, Borland Delphi 7.0, Microsoft C# and Java. There are also more
detailed steps on how to set-up Visual Basic ; the principles are applicable to other languages.

Examples and Tips

Instruction on how to use the Automation Interface is provided by means of sample code. See pointers to the
samples and other available resources . Also, consult the extensive Reference Section .

Calling Executables from Enterprise Architect

Enterprise Architect can be set up to call an external application. You can pass parameters on the current
position selected in the Project Browser to the application being called. For instructions, go to the Call from
Enterprise Architect topic. A more sophisticated method is to create Add-Ins , which are discussed in a
separate topic.

7.1 Using the Automation Interface

This section provides instructions on how to connect to and use the Automation Interface, including:

· Connecting to the Interface

· Set References In Visual Basic

· Examples and Tips

7.1.1 Connect to the Interface

All development environments capable of generating ActiveX Com clients should be able to connect to the
Enterprise Architect Automation Interface.

By way of example, the following sections describe how to connect using several such tools. The procedure
might vary slightly with different versions of these products.

181

183

184 186 186

185 123

181

183

184

Enterprise Architect Object Model | Using the Automation Interface182

Enterprise Architect Software Developers' Kit

Microsoft Visual Basic 6.0

1. Create a new project.

2. Select the Project | References menu option.

3. Select Enterprise Architect Object Model 2.0 from the list. (If this does not appear, go to the command
line and re-register Enterprise Architect using

EA.exe /unregister

then

EA.exe /register).

4. See the general library documentation on the use of Classes. The following example creates and opens
a repository object:

Public Sub ShowRepository()
Dim MyRep As New EA.Repository
MyRep.OpenFile "c:\eatest.eap"

End Sub

Borland Delphi 7.0

1. Create a new project.

2. Select the Project | Import Type Library menu option.

3. Select Enterprise Architect Object Model 2.0 from the list. (If this does not appear, go to the
command line and re-register Enterprise Architect using

EA.exe /unregister

then

EA.exe /register).

4. Click on the Create Unit button.

5. Include EA_TLB in Project1's Uses clause.

6. See the general library documentation on the use of Classes. The following example creates and opens
a repository object:

procedure TForm1.Button1Click(Sender: TObject);
var

r: TRepository;
b: boolean;

begin
r:= TRepository.Create(nil);
b:= r.OpenFile('c:\eatest.eap');

end;

Microsoft C#

1. Select the Visual Studio Project | Add Reference menu option.

2. Click on the Browse tab.

3. Navigate to the folder in which you installed Enterprise Architect (usually Program Files/Sparx Systems/EA)
and select Interop.EA.dll.

4. See the general library documentation on the use of Classes. The following example creates and opens
a repository object:

private void button1_Click(object sender, System.EventArgs e)
{

EA.Repository r = new EA.RepositoryClass();
r.OpenFile("c:\\eatest.eap");

}

Java

1. Copy the file SSJavaCOM.dll from the Java API subdirectory of your installed directory (usually Program
Files/Sparx Systems/EA) into any location within the Windows PATH. For example, the windows\system32

Enterprise Architect Object Model | Using the Automation Interface 183

© 1998-2010 Sparx Systems Pty Ltd

directory.

2. Copy the eaapi.jar file from the Java API subdirectory of your installed directory (usually Program Files/

Sparx Systems/EA) to a location in the Java CLASSPATH or where the Java class loader can find it at run
time.

3. All of the Classes described in the documentation are in the package org.sparx. See the general library
documentation for their use. The following example creates and opens a repository object.

public void OpenRepository()
{
 org.sparx.Repository r = new org.sparx.Repository();
 r.OpenFile("c:\\eatest.eap");
}

7.1.1.1 Set References In Visual Basic

This topic describes how to use the Enterprise Architect ActiveX interface with Visual Basic (VB). Use is
ensured for Visual Basic version 6. This might vary slightly with versions other than version 6.

It is assumed that you have accessed VB through a Microsoft Application such as VB 6.0, MS Word or MS
Access. If the code is not called from within Word, the Word VB reference must also be set.

On creating a new VB project, set a reference to an Enterprise Architect Type Library and a Word Type
Library. Follow the steps below:

1. Select the Tools | References menu option. The following dialog displays:

2. Select the Enterprise Architect Object Model 2.10 checkbox from the list.

3. Do the same for VB or VB Word: select the checkbox for the Microsoft Word 10.0 Object Library.

4. Click on the OK button.

Note:

If Enterprise Architect Object Model 2.10 does not appear in the list, go to the command line and manually re-
enter Enterprise Architect using the following:

· To unregister Enterprise Architect: ea.exe /unregister

· To register Enterprise Architect: ea.exe /register.

Visual Basic 5/6 users should also note that the version number of the Enterprise Architect interface is stored
in the VBP project file in a form similar to the following:

186

Enterprise Architect Object Model | Using the Automation Interface184

Enterprise Architect Software Developers' Kit

Reference=*\G{64FB2BF4-9EFA-11D2-8307-C45586000000}#2.2#0#..\..\..\..\Program Files\Sparx Systems\EA\EA.
TLB#Enterprise Architect Object Model 2.02

If you experience problems moving from one version of Enterprise Architect to another, open the VBP file in a
text editor and remove this line. Then open the project in Visual Basic and use Project-References to create
a new reference to the Enterprise Architect Object model.

Reference to objects in Enterprise Architect and Word should now be available in the Object Browser. This
can be accessed from the main menu by selecting View | Object Browser, or by pressing [F2].

The drop-down list on the top-left of the window should now include Enterprise Architect and Word. If MS-
Project is installed this must also be set up.

7.1.2 Examples and Tips

Instructions for using the interface are provided through sample code. There are several sets of examples:

· VB 6 and C# examples are available in the Code Samples folder under your Enterprise Architect
installation (default: C:\Program Files\Sparx Systems\EA\Code Samples)

· Enterprise Architect can be set up to call an external application

· Several VB.NET code snippets are provided in the reference section

· A comprehensive example of using Visual Basic to create MS Word documentation is available from the
internet at www.sparxsystems.com/resources/developers/autint_vb.html

· Additional samples are available from the Sparx Systems website; see the Available Resources topic.

Additionally, you should note the following tips and tricks:

· An instance of the Enterprise Architect (EA.exe) process is executed when you initialize a new repository
object. This process must remain running in order to perform automation tasks. If the main window is
visible, you can safely minimize it, but it must remain running.

· The Enterprise Architect ActiveX Interface is a functional interface rather than a data interface. When you
load data through the interface there is a noticeable delay as Enterprise Architect user interface elements
(such as Windows, menus) are loaded and the specified database connection is established.

· Collections use a zero-based index; for example, Repository.Models(0) represents the first model in the

185

284

186

http://www.sparxsystems.com/resources/developers/autint_vb.html

Enterprise Architect Object Model | Using the Automation Interface 185

© 1998-2010 Sparx Systems Pty Ltd

repository.

· During the development of your client software your program might terminate unexpectedly and leave EA.
exe running in such a state that it is unable to support further interface calls. If your program terminates
abnormally, ensure that Enterprise Architect is not left running in the background (see the Windows Task
Manager / Process tab).

· A handle to a currently running instance of Enterprise Architect can be obtained through the use of a
GetObject() call. For more information, refer to the reference page for the App object. Accessing your
Enterprise Architect model via the App object enables querying the current User Interface status, such as
using GetContextItem() on the Repository object to detect the current selection by the user, allowing for
rapid prototyping and testing.

Enterprise Architect Not Closing

If your automation controller was written using the .NET framework, Enterprise Architect does not close even
after you release all your references to it. To force the release of the COM pointers, call the memory
management functions as shown below:

 GC.Collect();
 GC.WaitForPendingFinalizers();

There are additional concerns when controlling a running instance of Enterprise Architect that loads Add-Ins -
see the Tricks and Traps topic for details.

7.1.2.1 Call from Enterprise Architect

Enterprise Architect can be set up to call an external application. You can pass parameters on the current
position selected in the Project Browser to the application being called.

To define an application that you can run from Enterprise Architect, select the Tools | Customize menu
option. The Customize dialog displays. Select the Tools tab.

With this you can:

· Add a command line for an application

· Define parameters to pass to this application

The parameters required for running the AutInt executable are:

· The Enterprise Architect file parameter $f and

· The current PackageID $p

190

197

126

Enterprise Architect Object Model | Using the Automation Interface186

Enterprise Architect Software Developers' Kit

Hence the arguments should simply contain: $f, $p

The available parameters for passing information to external applications are:

Parameter Description Notes

$d Diagram ID ID for accessing associated diagram.

$D Diagram GUID GUID for accessing the associated diagram.

$e Comma separated list of element IDs All elements selected in the current diagram.

$E Comma separated list of element
GUIDs

All elements selected in the current diagram.

$f Project Name For example: C:\projects\EAexample.eap.

$F Calling Application (Enterprise
Architect)

'Enterprise Architect'.

$p Current Package ID For example: 144.

$P Package GUID GUID for accessing this package.

Once this has been set up, the application can be called from the main menu in Enterprise Architect using the
Tools | YourApplication menu option.

7.1.2.2 Available Resources

Other available resources include:

Resource Download Link

VB 6 Add-In for generating MS Word
documentation.

www.sparxsystems.com/resources/developers/autint_vb.html

VB 6 Add-In to display a custom ActiveX
graph control within the Enterprise
Architect window as a new view.

www.sparxsystems.com/resources/developers/autint_vb_custo
m_view.html

A basic Add-In framework written in C#.
Useful as a starting point for authoring your
own custom Enterprise Architect Add-In.

www.sparxsystems.com/bin/CS_AddinFramework.zip

An extension on the CS_AddinFramework
example showing how to export Tagged
Values to a .csv file.

www.sparxsystems.com/bin/CS_AddinTaggedCSV.zip

A basic Add-In skeleton written in Delphi. www.sparxsystems.com/bin/DelphiDemo.zip

A simple example Add-In written in C#. www.sparxsystems.com/bin/CS_Sample.zip

For further information, see www.sparxsystems.com/resources/developers/autint.html.

7.2 Reference

This section provides detailed information on all the objects available in the object model provided by the
Automation Interface, covering:

· Interface Overview

· App

· Enumerations

· Repository

187

190

191

196

http://www.sparxsystems.com/resources/developers/autint_vb.html
http://www.sparxsystems.com/resources/developers/autint_vb_custom_view.html
http://www.sparxsystems.com/resources/developers/autint_vb_custom_view.html
http://www.sparxsystems.com/bin/CS_AddinFramework.zip
http://www.sparxsystems.com/bin/CS_AddinTaggedCSV.zip
http://www.sparxsystems.com/bin/DelphiDemo.zip
http://www.sparxsystems.com/bin/CS_Sample.zip
http://www.sparxsystems.com/resources/developers/autint.html

Enterprise Architect Object Model | Reference 187

© 1998-2010 Sparx Systems Pty Ltd

· Element

· Element Features

· Connector

· Diagram Package

· Project Interface

· Code Samples

7.2.1 Interface Overview

public Package

This package provides an overview of the main elements within the Automation Interface. These are:

· The Repository , which represents the model as a whole and provides entry to model packages and
collections

· Elements , which are the basic structural unit (such as Class, Use Case and Object)

· Element Features , which are attributes and operations defined on an element

· Diagram Package , the visible drawings contained in the model

· Connectors , relationships between elements.

The following diagram illustrates the main interface elements and their associated contents. Each element in
this document is creatable by Automation and can be accessed through the various collections that exist or, in
some cases, directly.

225

243

255

263

271

284

196

225

243

263

255

Enterprise Architect Object Model | Reference188

Enterprise Architect Software Developers' Kit

The following diagram provides a high level overview of the Automation Interface for accessing, manipulating,
modifying and creating Enterprise Architect UML elements. The top level object is the Repository, which
contains collections for a variety of system level objects, as well as the main Models collection that provides
access to the UML elements, diagrams and packages within the project. In general, the Role names applied at
the Target end of associations indicate the name of the Collection that is used to access instances of that
object.

Enterprise Architect Object Model | Reference 189

© 1998-2010 Sparx Systems Pty Ltd

Internal Links
· Logical diagram:: Automation Interface

Package:: Automation Interface

· Logical diagram:: Automation Interface
Package:: Automation Interface

· Logical diagram:: Automation Interface
Package:: Automation Interface

Enterprise Architect Object Model | Reference190

Enterprise Architect Software Developers' Kit

· Logical diagram:: Automation Interface
Package:: Automation Interface

· Logical diagram:: Automation Interface
Package:: Automation Interface

· Logical diagram:: Automation Interface
Package:: Automation Interface

· Logical diagram:: Automation Interface
Package:: Automation Interface

Connectors

Connector Source Target

Nesting
source > target

Connector
Contained Element

Overview
Containing Element

Nesting
source > target

Repository
Contained Element

Overview
Containing Element

Nesting
source > target

Diagram
Contained Element

Overview
Containing Element

Nesting
source > target

Element
Contained Element

Overview
Containing Element

Nesting
source > target

Project Interface
Contained Element

Overview
Containing Element

Nesting
source > target

ElementFeatures
Contained Element

Overview
Containing Element

7.2.2 App

The App object represents a running instance of Enterprise Architect. Its object provides access to the
Automation Interface.

Attribute Type Notes

Project Project Read only. Provides a handle to the Project Interface.

Repository Repository Read only. Provides a handle to the Repository object.

Visible Boolean Read/Write. Whether or not the application is visible.

GetObject() Support

The App object is creatable and a handle can be obtained by creating one. In addition, clients can use the
equivalent of Visual Basic's GetObject() to obtain a reference to a currently running instance of Enterprise
Architect.

Use this method to more quickly test changes to Add-Ins and external clients, as the Enterprise Architect
application and data files do not have to be constantly re-loaded.

For example:

Dim App as EA.App
Set App = GetObject(,"EA.App")
MsgBox App.Repository.Models.Count

Another example, which uses the App object without saving it to a variable:

Dim Rep as EA.Repository
Set Rep = GetObject(, "EA.App").Repository
MsgBox Rep.ConnectionString

Enterprise Architect Object Model | Reference 191

© 1998-2010 Sparx Systems Pty Ltd

7.2.3 Enumerations

These enumerations are defined by the Automation Interface:

· ConstLayoutStyles

· CreateBaselineFlag

· CreateModelType

· EAEditionTypes

· EnumRelationSetType

· ExportPackageXMIFlag

· MDGMenus

· ObjectType

· PropType

· ReloadType

· ScenarioDiagramType

· ScenarioStepType

· ScenarioTestType

· XMIType

7.2.3.1 ConstLayoutStyles Enum

The enum values defined here are used exclusively for the Lay Out a Diagram method. They enable you to
define the layout options as depicted in the Layout a Diagram menu option. For further information, see the
Lay Out a Diagram topic in UML Modeling With Enterprise Architect - UML Modeling Tool).

Method Use to

lsCrossReduceAggressive Perform aggressive Cross-reduction in the layout process (time
consuming).

lsCycleRemoveDFS Use the Depth First Cycle Removal algorithm.

lsCycleRemoveGreedy Use the Greedy Cycle Removal algorithm.

lsDiagramDefault Use existing layout options specified for this diagram.

lsInitializeDFSIn Initialize the layout using the Depth First Search Inward algorithm.

lsInitializeNaive Initialize the layout using the Naïve Initialize Indices algorithm.

lsInitializeDFSOut Initialize the layout using the Depth First Search Outward algorithm.

lsLayeringLongestPathSink Layer the diagram using the Longest Path Sink algorithm.

lsLayeringLongestPathSource Layer the diagram using the Longest Path Source algorithm.

lsLayeringOptimalLinkLength Layer the diagram using the Optimal Link Length algorithm.

lsLayoutDirectionDown Direct connectors to point downwards.

lsLayoutDirectionLeft Direct connectors to point leftwards.

lsLayoutDirectionRight Direct connectors to point rightwards.

lsLayoutDirectionUp Direct connectors to point upwards.

lsProgramDefault Use factory default layout options as specified by Enterprise Architect.

191

192

192

192

192

193

193

193

194

194

194

195

195

195

Enterprise Architect Object Model | Reference192

Enterprise Architect Software Developers' Kit

7.2.3.2 CreateBaselineFlag Enum

The CreateBaselineFlag enumeration is used in Baseline Management, when creating a Baseline.

Method Use to

cbSaveToStub Baseline this package with only immediate children. (Child
packages are included as stubs only.)

7.2.3.3 CreateModelType Enum

The CreateModelType enumeration is used in the CreateModel method on the Repository class.

Method Use to

cmEAPFromBase Create a copy of the EABase model file to the specified file path.

cmEAPFromSQLRepository Create a .eap file shortcut to an SQL-based repository. Requires
user interaction to provide sql connection details.

7.2.3.4 EAEditionTypes Enum

The EAEditionTypes enumeration identifies the level of licensed functionality available to the current
repository. For example:

EAEditionTypes theEdition = theRepository.GetEAEdition();
if (theEdition == EAEditionTypes.piDesktop)

 ...
else if (theEdition == EAEditionTypes.piProfessional)

...

The enumeration defines the following formal values:

· piLite

· piDesktop

· piProfessional

· piCorporate

· piBusiness

· piSystemEng

· piUltimate.

There is no separate value for the trial edition; the Repository.EAEdition attribute contains the appropriate
EAEditionTypes value for whichever edition the user has selected to trial.

7.2.3.5 EnumRelationSetType Enum

This enumeration represents values returned from the GetRelationSet method of the Element object.

Method Notes

rsDependEnd List of elements that depend on the current element.

rsDependStart List of elements that the current element depends on.

rsGeneralizeEnd List of elements that are generalized by the current element.

rsGeneralizeStart List of elements that the current element generalizes.

rsParents List of all parent elements of the current element.

201

228

Enterprise Architect Object Model | Reference 193

© 1998-2010 Sparx Systems Pty Ltd

Method Notes

rsRealizeEnd List of elements that are realized by the current element.

rsRealizeStart List of elements that the current element realizes.

7.2.3.6 ExportPackageXMIFlag Enum

The ExportPackageXMIFlag enumeration is used in package control, when exporting to XMI.

Method Use to

epSaveToStub Export this package with only immediate children. (Child packages
are included as stubs only.)

7.2.3.7 MDGMenus Enum

Use this enumeration when providing the HiddenMenus property to MDG_GetProperty.

These options are exclusive of one another and can be read or added to hide more than one menu.

See the MDG_GetProperty topic for an example of use.

Method Use to

mgBuildProject Hide Build Project menu option.

mgMerge Hide Merge menu option.

mgRun Hide Run menu option.

7.2.3.8 ObjectType Enum

The ObjectType enumeration identifies Enterprise Architect object types even when referenced through a
Dispatch interface.

For example:

Object ob = Repository.GetElementByID(13);
if (ob.ObjectType == otElement)
 ;
else if(ob.ObjectType == otAuthor)
...

All of the following are valid enumeration values:

otNone
otProject
otRepository
otCollection
otElement
otPackage
otModel
otConnector
otDiagram
otRequirement
otScenario
otConstraint
otTaggedValue
otFile

otClient
otAuthor
otDatatype
otStereotype
otTaskotTerm
otProjectIssues
otAttributeConstraint
otAttributeTag
otMethodConstraint
otMethodTag
otConnectorConstraint
otConnectorTag
otProjectResource
otReference

173

Enterprise Architect Object Model | Reference194

Enterprise Architect Software Developers' Kit

otEffort
otMetric
otIssue
otRisk
otTest
otDiagramObject
otDiagramLink
otResource
otConnectorEnd
otAttribute
otMethod
otParameter

otRoleTag
otCustomProperty
otPartition
otTransition
otEventProperty
otEventProperties
otPropertyType
otProperties
otProperty
otSwimlaneDef
otSwimlanes
otSwimlane

7.2.3.9 PropType Enum

The PropType enumeration gives the automation programmer an indication of what sort of data is going to be
stored by this property.

Method Notes

ptArray An array containing values of any type.

ptBoolean True or False.

ptEnum A string being an entry in the semi-colon separated list specified in the
validation field of the Property.

ptFloatingPoint 4 or 8 byte floating point value.

ptInteger 16-bit or 32-bit signed integer.

ptString Unicode string.

7.2.3.10 ReloadType Enum

This enumeration represents values returned from the GetReloadItem and PeekReloadItem methods of the
ModelWatcher Class. It has four possible values, which define the type of change that was made to a model.

Method Notes

rtElement The Item parameter represents a particular element that must be reloaded.

rtEntireModel Entire model must be reloaded to ensure that all changes are reloaded.

rtNone No change in the model.

rtPackage The Item parameter represents a particular package that must be reloaded.

7.2.3.11 ScenarioDiagramType Enum

The ScenarioDiagramType enumeration provides the following enumeration values to the
Project.GenerateDiagramFromScenario() method. They specify the type of diagram to generate. See the
Scenarios section in UML Modeling With Enterprise Architect - UML Modeling Tool.

Method Use to

sdActivity Generate an Activity diagram.

271

Enterprise Architect Object Model | Reference 195

© 1998-2010 Sparx Systems Pty Ltd

Method Use to

sdActivityWithAction Generate an Activity diagram with an Action.

sdActivityWithActionPin Generate an Activity diagram with an ActionPin.

sdActivityWithActivityParameter Generate an Activity diagram with an ActivityParameter.

sdRobustness Generate a Robustness diagram.

sdRuleFlow Generate a RuleFlow diagram.

sdSequence Generate a Sequence diagram.

sdState Generate a State Machine diagram.

7.2.3.12 ScenarioStepType Enum

The ScenarioStepType enumeration is used to identify the steps of a scenario, and the entity performing
the step.

Method Use to

stSystem Identify that the step is an action performed by the system.

stActor Identify that the step is an action performed by an actor.

7.2.3.13 ScenarioTestType Enum

The ScenarioTestType enumeration provides the following enumeration values to the
Project.GenerateTestFromScenario() method. They specify the type of test to generate. See the
Scenarios section in UML Modeling With Enterprise Architect - UML Modeling Tool.

Method Use to

stExternal Generate an external Test Case element.

stInternal Generate an internal test.

7.2.3.14 XMIType Enum

The following enumeration values are used in the Project.ExportPackageXMI() method. They enable
specification of the XMI export type.

xmiEADefault
xmiRoseDefault
xmiEA10
xmiEA11
xmiEA12
xmiRose10
xmiRose11
xmiRose12
xmiMOF13
xmiMOF14
xmiEA20
xmiEA21

241

271

Enterprise Architect Object Model | Reference196

Enterprise Architect Software Developers' Kit

7.2.4 Repository

public Package

The Repository package contains the high level system objects and entry point into the model itself using the
Models collection and the other system level collections.

This diagram illustrates the Repository and its first level functions and collections.197

Enterprise Architect Object Model | Reference 197

© 1998-2010 Sparx Systems Pty Ltd

7.2.4.1 Repository

public Class

The Repository is the main container of all structures such as models, packages and elements. You can
iteratively begin accessing the model using the Models collection. It also has some convenient methods to
directly access the structures without having to locate them in the hierarchy first.

Associated table in .EAP file: <none>

Repository Attributes

Attribute Type Notes

Authors Collection Read only. The system Authors collection. Contains 0 or
more Author objects, each of which can be associated
with, for example, elements or diagrams as the item author
or owner. Use AddNew, Delete and GetAt to manage
Authors.

BatchAppend Boolean Read/Write. Set this property to true when your
automation client has to rapidly insert many elements,
operations, attributes and/or operation parameters. Set to
false when work is complete.

This can result in 10- to 20-fold improvement in adding
new elements in bulk.

Clients Collection Read only. A list of Clients associated with the project. You
can modify, delete and add new Client objects using this
collection.

ConnectionString String Read only. The filename/connection string of the current
Repository.

Datatypes Collection Read only. The Datatypes collection. Contains a list of
Datatype objects, each representing a data type definition
for either data modeling or code generation purposes.

EAEdition EAEditionTyp
es

Read only. Returns the level of core licensed functionality
available to the current repository.

Note:

This property returns Corporate when the edition is
Business and Software Engineering, Systems
Engineering or Ultimate. Use EAEditionEx to identify
which of these extended editions is available.

EAEditionEx EAEditionTyp
es

Read only. Returns the level of extended licensed
functionality available to the current repository.

EnableCache Boolean Read/Write. An optimization for pre-loading package
objects when dealing with large sets of automation objects.

EnableUIUpdates Boolean Read/Write. Set this property to false to improve the
performance of changes to the model; for example, bulk
addition of elements to a package. To reveal the changes
to the user, call Repository.RefreshModelView().

FlagUpdate Boolean Read/Write. Instructs Enterprise Architect to update the
Repository with the LastUpdate value.

InstanceGUID String Read only. The identifier string identifying the Enterprise
Architect runtime session.

211

211

211

192

192

Enterprise Architect Object Model | Reference198

Enterprise Architect Software Developers' Kit

Attribute Type Notes

IsSecurityEnabled Boolean Read only. Checks whether User Security is enabled for
the current repository.

Issues Collection Read only. The System Issues list. Contains ProjectIssues
objects, each detailing a particular issue as it relates to the
project as a whole.

LastUpdate String Read only. The identifier string identifying the Enterprise
Architect runtime session and the timestamp for when it
was set.

LibraryVersion Long Read only. The build number of the Enterprise Architect
runtime.

Models Collection
of type
Package

Read only. Models are of type package and belong to a
collection of packages. This is the top level entry point to
an Enterprise Architect project file. Each model is a root
node in the Project Browser and can contain items such as
Views and packages.

A model is a special form of a package; it has a ParentID
of 0. By iterating through all models, you can access all
the elements within the project hierarchy.

You can also use the AddNew function to create a new
model. A model can be deleted, but remember that
everything contained in the model is deleted as well.

ObjectType ObjectType Read only. Distinguishes objects referenced through the
Dispatch interface.

ProjectGUID String Read only. Returns a unique ID for the project.

PropertyTypes Collection Read only. Collection of Property Types available to
the Repository.

Resources Collection Read only. Contains available ProjectResource objects to
assign to work items within the project. Use the add new,
modify and delete functions to manage resources.

Stereotypes Collection Read only. The Stereotypes collection. A list of
Stereotype objects that contain information on a
stereotype and which elements it can be applied to.

SuppressEADialogs Boolean Read/Write. Set this property in the
EA_OnPostNewElement or EA_OnPostNewConnector

 broadcast events to control whether Enterprise
Architect should suppress showing the default Properties
dialogs to the user when an element or connector is
created.

Tasks Collection Read only. A list of system tasks (to do list). Each entry is
a Task Item; you can modify, delete and add new
tasks.

Terms Collection Read only. The project Glossary. Each Term object is
an entry in the Glossary. Add, modify and delete Terms to
maintain the Glossary.

211

211

215

193

211 221

211

211 223

147

147

211

223

211 224

Enterprise Architect Object Model | Reference 199

© 1998-2010 Sparx Systems Pty Ltd

Repository Methods

Method Type Notes

ActivateDiagram (long
DiagramID)

Activates an already open diagram (that is, makes it the
active tab) in the main Enterprise Architect user interface.

Parameters:

· DiagramID: Long - the ID of the diagram to make
active.

ActivatePerspective (string,
long)

Boolean Deprecated - no longer in use.

ActivateTab (string Name) Activates an open Enterprise Architect tabbed view.

Parameters:

· Name: String - the name of the view to activate.

ActivateTechnology (string
Name)

Activates an enabled MDG Technology.

Parameters:

· Name: String - the name of the Technology to activate.

ActivateToolbox (string
Toolbox, long Options)

Boolean Activates a Toolbox page in the GUI.

Returns true if the specified Toolbox page is successfully
activated, otherwise returns false.

Parameters:

· Toolbox: String - the name of the Toolbox page to
activate.

· Options: Long - reserved for future use.

AddDefinedSearches (string
sXML)

Enables you to enter a set of defined searches that last in
Enterprise Architect for the life of the application. When
Enterprise Architect loads again they must be inserted again
by your Add-In.

Parameters:

· sXML: String - the XML of the defined searches; you
can get this XML by performing an export of the
searches from the Manage Searches dialog in
Enterprise Architect. (See Using Enterprise Architect -
UML Modeling Tool.)

AddPerspective (string
Perspective, long Options)

Boolean Deprecated - no longer in use.

AddTab (string TabName,
string ControlID)

activeX
custom
control

Adds an ActiveX custom control as a tabbed window.
Enterprise Architect creates a control and, if successful,
returns its Unknown pointer, which can be used by the caller
to manipulate the control.

Parameters:

· TabName: String - used as the tab caption.

· ControlID: String - the ProgID of the control; for
example, Project1,UserControl1.

AddWindow (string
WindowName, string
ControlID)

activeX
custom
control

Adds an ActiveX custom control as a window to the Add-Ins
docked window. Enterprise Architect creates a control and,
if successful, returns its Unknown pointer, which can be
used by the caller to manipulate the control.

The window can be shown by selecting it from the list in the
Workspace Layouts toolbar (see Using Enterprise Architect

Enterprise Architect Object Model | Reference200

Enterprise Architect Software Developers' Kit

Method Type Notes

- UML Modeling Tool) - click on the third icon from the right
and look at the end of the list.

Parameters:

· WindowName: String - used as the window title.

· ControlID: String - the ProgID of the control; for
example, Project1,UserControl1.

AdviseConnectorChange (long
ConnectorID)

Provides an Add-In or automation client with the ability to
advise the Enterprise Architect user interface that a
particular connector has changed and, if it is visible in any
open diagram, to reload and refresh that connector for the
user.

Parameters:

· ConnectorID: Long - the ID of the connector.

AdviseElementChange (long
ObjectID)

Provides an Add-In or automation client with the ability to
advise the Enterprise Architect user interface that a
particular element has changed and, if it is visible in any
open diagram, to reload and refresh that element for the
user.

Parameters:

· ObjectID: Long - the ID of the element.

ChangeLoginUser (string
Name, string Password)

Boolean Sets the currently logged on user to be that specified by a
name and password. This logs the user into the repository
when security is enabled. If security is not enabled an
exception (Security not enabled) is thrown.

Parameters:

· Name: String - the name of the user.

· Password: String - the password of the user.

ClearAuditLogs (Object
StartDateTime, Object
EndDateTime)

Boolean Clears all Audit Logs from the model.

If StartDateTime and EndDateTime are not null then only log
items that fall into this period are cleared.

Returns true for success, false for failure.

Notes:

· This method cannot be undone. It is strongly advised
that you call SaveAuditLogs first to backup the logs.

· This method might fail if the user logged into the model
does not have the correct access permission.

Parameters:

· StartDateTime: Variant [DateTime] - the earliest date
and time of log entries to clear.

· EndDateTime; Variant [DateTime] - the latest date and
time of log entries to clear.

ClearOutput (string Name) Removes all the text from a tab in the Output window. See
also CreateOutputTab , EnsureOutput Visible ,
WriteOutput .

Parameters:

· Name: String - the name of the tab to remove text from.

CloseAddins () Called by automation controllers to ensure that Add-Ins

201 201

209

Enterprise Architect Object Model | Reference 201

© 1998-2010 Sparx Systems Pty Ltd

Method Type Notes

created in
.NET do not linger after all controller references to
Enterprise Architect have been cleared.

CloseDiagram (long
DiagramID)

Closes a diagram in the current list of diagrams that
Enterprise Architect has open.

Parameters:

· DiagramID: Long - the ID of the diagram to close.

CloseFile () Closes any open file.

CreateModel
(CreateModelType CreateType,
string FilePath, long
ParentWnd)

Boolean Creates a new .eap model file based on the standard
Enterprise Architect Base model, or a shortcut .eap based
on a provided SQL connection.

Returns true when the new file is created, otherwise returns
false.

Parameters:

· CreateType: CreateModelType - Specify whether to
make a new copy of the EABase.eap model, or create
a .eap file shortcut to a DBMS repository. The latter
option requires a dialog to be opened for the user to
provide SQL connection details.

· FilePath: String - Destination for new .eap file.

· ParentWnd: Long - Window handle to act as the parent
for the SQL connection dialog. Only required when
using cmEAPFromSQLRepository.

CreateOutputTab (string
Name)

Creates a tab in the Output window. See also ClearOutput
, EnsureOutput Visible , WriteOutput .

Parameters:

· Name: String - the name of the tab to create.

DeletePerspective (string
Perspective, long Options)

Boolean Deprecated - no longer in use.

DeleteTechnology (string ID) Boolean Removes a specified MDG Technology resource from the
repository.

Returns true, if the technology is successfully removed from
the model. Returns false otherwise.

Note:

This applies to technologies imported into pre-7.0 versions
of Enterprise Architect (imported technologies), not to
technologies referenced in version 7.0 and later
(referenced technologies). See Deploying MDG
Technologies (from Add-Ins).

Parameters:

· ID: String - the ID of the technology.

EnsureOutputVisible (string
Name)

Ensures that a specified tab in the Output window is visible
to the user. The Output window is made visible if it is
hidden. See also ClearOutput , CreateOutputTab ,
WriteOutput .

Parameters:

· Name: String - the name of the tab to make visible.

192

200 201 209

60

200 201

209

Enterprise Architect Object Model | Reference202

Enterprise Architect Software Developers' Kit

Method Type Notes

ExecutePackageBuildScript
(long ScriptOptions, string
PackageGuid)

Enables you to run the active package build script based on
your current selection in the Project Browser. You can also
run a script by passing in the package GUID.

Parameters:

· ScriptOptions: Long - the script type; can be any one of
these numerical values:

1 = Build

2 = Test

3 = Run

4 = Create Workbench Instance

5 = Debug.

· PackageGuid: String - the ID of the package for which
to run the script.

Exit Shuts down Enterprise Architect immediately. Used by .NET
programmers where the garbage collector does not
immediately release all referenced COM objects.

GetActivePerspective () String Deprecated - no longer in use.

GetAttributeByGuid (string
Guid)

Attribute Returns a pointer to an attribute in the repository, located by
its GUID.This is usually found using the AttributeGUID
property of an attribute.

Parameters:

· Guid: String - the GUID of the attribute to locate.

GetAttributeByID (string Id) Attribute Returns a pointer to an attribute in the repository, located by
its ID. This is usually found using the AttributeID property of
an attribute.

Parameters:

· Id: String - the ID of the attribute to locate.

GetConnectorByGuid (string
Guid)

Connector Returns a pointer to a connector in the repository, located
by its GUID. This is usually found using the ConnectorGUID
property of a connector.

Parameters:

· Guid: String - the GUID of the connector to locate.

GetConnectorByID (long
ConnectorID)

Connector Searches the repository for a connector with a specific ID.

Parameters:

· ConnectorID: Long - the ID of the connector to locate.

GetContextItem (object Item) ObjectTyp
e

Sets a pointer to an item in context within Enterprise
Architect.

Also returns the corresponding ObjectType.

For additional information about ContextItems and the
supported ObjectTypes see the GetContextItemType
method (below).

Parameters:

· Item: Object - the item to point to.

GetContextItemType () ObjectTyp
e

Returns the ObjectType of an item in context within
Enterprise Architect. A ContextItem is defined as an item
selected anywhere within the Enterprise Architect GUI
including:

244

244

257

257

193

193

Enterprise Architect Object Model | Reference 203

© 1998-2010 Sparx Systems Pty Ltd

Method Type Notes

· An item selected in the Project Browser

· An item selected in an open diagram

· An item selected in certain dialogs, such as the
attribute Properties dialog.

The supported ObjectTypes can be any one of the following
values:

· otElement

· otPackage

· otDiagram

· otAttribute

· otMethod

· otConnector

GetContextObject () Object Returns the current context Object.

GetCounts () String Returns a set of counts from a number of tables within the
base Enterprise Architect repository. These can be used to
determine whether records have been added or deleted
from the tables for which information is retrieved.

GetCurrentDiagram () Diagram Returns a selected diagram.

GetCurrentLoginUser (boolean
GetGuid = false)

String If security is not enabled in the repository, an error is
generated.

If GetGuid is True, a GUID generated by Enterprise
Architect representing the user is returned; otherwise the
text as entered in System Users/User Details/Login is
returned.

GetDiagramByGuid (string
Guid)

Diagram Returns a pointer to a diagram using the global reference ID
(global ID). This is usually found using the diagram GUID
property of an element, and stored for later use to open an
diagram without using the collection GetAt() function.

Parameters:

· Guid: String - the GUID of the diagram to locate.

GetDiagramByID (long
DiagramID)

Diagram Gets a pointer to a diagram using an absolute reference
number (local ID). This is usually found using the DiagramID
property of an element, and stored for later use to open a
diagram without using the collection GetAt() function.

Parameters:

· DiagramID: Long - the ID of the diagram to locate.

GetElementByGuid (string
Guid)

Element Returns a pointer to an element in the repository, using the
element's GUID reference number (global ID). This is
usually found using the ElementGUID property of an
element, and stored for later use to open an element without
using the collection GetAt() function.

Parameters:

· Guid: String - the GUID of the element to locate.

GetElementByID (long
ElementID)

Element Gets a pointer to an element using an absolute reference
number (local ID). This is usually found using the ElementID
property of an element, and stored for later use to open an
element without using the collection GetAt() function.

Parameters:

264

264

264

228

228

Enterprise Architect Object Model | Reference204

Enterprise Architect Software Developers' Kit

Method Type Notes

· ElementID: Long - the ID of the element to locate.

GetElementsByQuery (string
QueryName, string
SearchTerm)

Enables the user to run a search in Enterprise Architect,
returning the result as a collection.

For example GetElementsByQuery('Simple','Class1'), where
results contain elements with Class1 in the Name and
Notes fields.

Parameters:

· QueryName: String - the name of the search to run, for
example 'Simple'.

· SearchTerm: String - the term to search for.

GetElementSet (string IDList,
long Options)

Collection Returns a set of elements as a collection based on a
comma-separated list of ElementID values. By default, if no
values are provided in the IDList parameter, all objects for
the entire project are returned.

Parameters

· IDList: String - a comma-separated list of ElementID
values

· Options: Long - modifies default behaviour of this
method

· 1 - Returns empty collection when empty IDList
parameter is given.

· 2 - Use IDList string as an SQL query to populate
this collection.

GetFieldFromFormat (string
Format, string Text)

String Converts a field from your preferred format to Enterprise
Architect's internal format. Returns the field in Enterprise
Architect's internal format.

Parameters:

· Format: String - The format to convert the field from.
Valid formats are:

· HTML - Full HTML

· RTF - Rich Text Format

· TXT - Plain text

· Text: String - The field to be converted.

GetFormatFromField (string
Format, string Text)

String After accessing a field that contains formatting, use this
method to convert it to your preferred format. Returns the
field in the format specified.

Parameters:

· Format: String - The format to convert the field to. Valid
formats are:

· HTML - Full HTML

· RTF - Rich Text Format

· TXT - Plain text

· Text: String - The field to be converted.

GetLastError () String Returns a string value describing the most recent error that
occurred in relation to this object.

This function is rarely used as an exception is thrown when
an error occurs.

GetMethodByGuid (string
Guid)

Method Returns a pointer to a method in the repository. This is
usually found using the MethodGUID property of a method.

211

249

Enterprise Architect Object Model | Reference 205

© 1998-2010 Sparx Systems Pty Ltd

Method Type Notes

Parameters:

· Guid: String - the GUID of the method to look for.

GetMethodById (string Id) Method Returns a pointer to a method in the repository. This is
usually found using the MethodID property of a method.

Parameters:

· Id: String - the ID of the method to look for.

GetPackageByGuid (string
Guid)

Package Returns a pointer to a package in the repository using the
package's GUID reference number (global ID). This is
usually found using the PackageGUID property of the
package.

Each package in the model also has an associated element
with the same GUID, so if you have an element with
Type="Package" then you can load the package by calling:

GetPackageByGuid(Element.ElementGUID).

Parameters:

· Guid: String - the GUID of the package to look for.

GetPackageByID (long
PackageID)

Package Get a pointer to a package using an absolute reference
number (local ID). This is usually found using the
PackageID property of an package, and stored for later use
to open a package without using the collection GetAt()
function.

Parameters:

· PackageID: Long - the ID of the package to locate.

GetProjectInterface () Project Return a pointer to the EA.Project interface (the XML-
based automation server for Enterprise Architect). Use this
interface to work with Enterprise Architect using XML, and
also to access utility functions for loading diagrams, running
reports and so on.

GetReferenceList (string Type) Reference Uses the list type to get a pointer to a Reference List object.

Parameters:

· Type: String - specifies the list type to get; valid list
types are:

Diagram
Element
Constraint
Requirement
Connector
Status
Cardinality
Effort
Metric
Scenario
Status and
Test.

GetTechnologyVersion (string
ID)

String Returns the version of a specified MDG Technology
resource.

Parameters:

· ID: String - the specified technology ID.

GetTreeSelectedElements() Collection Returns the set of elements currently selected in the Project
Browser as a collection.

249

215

215

271 271

222

211

Enterprise Architect Object Model | Reference206

Enterprise Architect Software Developers' Kit

Method Type Notes

GetTreeSelectedItem (object
SelectedItem)

ObjectTyp
e

Gets an object variable and type corresponding to the
currently selected item in the tree view.

To use this function, create a generic object variable and
pass this as the parameter. Depending on the return type,
cast it to a more specific type.

The object passed back through the parameter can be a
package, element, diagram, attribute or operation object.

Parameters:

· SelectedItem: Object - the object to get the variable
and type for.

GetTreeSelectedItemType () ObjectTyp
e

Returns the type of the object currently selected in the tree.
One of:

· otDiagram

· otElement

· otPackage

· otAttribute

· otMethod.

GetTreeSelectedObject () Object The related method GetTreeSelectedItem () has an
output parameter that is inaccessible by some scripting
languages. As an alternative, this method provides the
selected item through the return value.

GetTreeSelectedPackage () Package Returns the package in which the currently selected tree
view object is contained.

HasPerspective (string
Perspective)

String Deprecated - no longer in use.

ImportPackageBuildScripts
(string PackageGuid, string
BuildScriptXML)

Imports build scripts into a package in Enterprise Architect.

Parameters:

· PackageGuid: String - the GUID of the package into
which to import the build scripts.

· BuildScriptXML: String - the build script XML data,
which you can export from within Enterprise Architect.

ImportTechnology (string
Technology)

Boolean Installs a given MDG Technology resource into the
repository.

Returns True, if the technology is successfully loaded into
the model. Otherwise returns False.

Note:

This applies to technologies imported into pre-7.0 versions
of Enterprise Architect (imported technologies), not to
technologies referenced in version 7.0 and later
(referenced technologies). See Deploying MDG
Technologies (from Add-Ins).

Parameters:

· Technology: String - the contents of the technology
resource file.

IsTabOpen (string TabName) String Checks whether a named Enterprise Architect tabbed view
is open and active. This includes open diagram windows or
custom controls added using Repository.AddTab() .

193

193

206

215

60

199

Enterprise Architect Object Model | Reference 207

© 1998-2010 Sparx Systems Pty Ltd

Method Type Notes

Returns:

· 2 to indicate that a tab is open and active (top-most)

· 1 to indicate that it is open but not top-most, or

· 0 to indicate that it is not visible at all.

Note:

TabName is case-sensitive.

Parameters:

· TabName: String - the name of the tab to check for.

IsTechnologyEnabled (string
ID)

Boolean Checks whether a specified technology is enabled in
Enterprise Architect.

Returns True if the MDG Technology resource is enabled.
Otherwise returns False.

Parameters:

· ID: String - the technology ID to check for.

IsTechnologyLoaded (string
ID)

Boolean Checks whether a specified technology is loaded into the
repository.

Returns True if the MDG Technology resource is loaded into
the repository. Otherwise returns False.

Parameters:

· ID: String - the technology ID to check for.

OpenDiagram (long
DiagramID)

Provides a method for an automation client or Add-In to
open a diagram. The diagram is added to the tabbed list of
open diagrams in the main Enterprise Architect view.

Parameters:

· DiagramID: Long - the ID of the diagram to open.

OpenFile (string Filename) Boolean This is the main point for opening an Enterprise Architect
project file from an automation client, and working with the
contained objects.

If the required project is a DBMS repository, and you have
created a shortcut .EAP file containing the database
connection string, you can call this shortcut file to access
the DBMS repository.

You can also connect to a SQL database by passing in the
connection string itself instead of a filename. A valid
connection string can be obtained from the Open Project
dialog (see Using Enterprise Architect - UML Modeling Tool)
by selecting a recently opened SQL repository.

Parameters:

· Filename: String - the filename of the Enterprise
Architect project to open.

OpenFile2 (string FilePath,
string Username, string
Password)

Boolean As for OpenFile() except this enables the specification of a
password.

Parameters:

· Filepath: String - the file path of the Enterprise Architect
project to open.

· Username: String - the user login ID

· Password: String - the user password.

Enterprise Architect Object Model | Reference208

Enterprise Architect Software Developers' Kit

Method Type Notes

RefreshModelView (long
PackageID)

Reloads a package or the entire model, updating the user
interface.

Parameters:

· PackageID: Long - the ID of the package to reload: if 0,
the entire model is reloaded; if a valid package ID, only
that package is reloaded.

RefreshOpenDiagrams
(boolean FullReload)

Refreshes the diagram contents for all diagrams open in
Enterprise Architect.

Parameters:

· FullReload: Boolean - if false the displayed contents of
elements and connectors are refreshed in each
diagram; if true each of the diagrams is completely
reloaded from the repository.

ReloadDiagram (long
DiagramID)

Reloads a specified diagram. This would commonly be used
to refresh a visible diagram after code import/export or other
batch process where the diagram requires complete
refreshing.

Parameters:

· DiagramID: Long - the ID of the diagram to be
reloaded.

RemoveOutputTab (string
Name)

Removes a specified tab from the Output window.

Parameters:

· Name: String - the name of the tab to be removed.

RunModelSearch (string
sQueryName, string
sSearchTerm, string
sSearchOptions, string
sSearchData)

Runs a search, displaying the results in Enterprise
Architect's Model Search window.

Parameters:

· sQueryName: String - the name of the search to run,
for example Simple.

· sSearchTerm: String - the term to search for.

· sSearchOptions: String - currently not being used.

· sSearchData: String - enables you to supply a list of
results in the form of XML, which is appended onto the
result list in Enterprise Architect. See XML Format ;
this parameter is not mandatory so pass in an empty
string to run the search as per normal.

SaveAllDiagrams () Saves all open diagrams.

SaveAuditLogs (string
FilePath, object
StartDateTime, object
EndDateTime)

Boolean Saves the Audit Logs contained within a model to a
specified file.

If StartDateTime and EndDateTime are not null then only log
items that fall into this period are saved.

Returns true for success, false for failure.

Note:

This might fail if the user logged into the model does not
have the correct access permission.

Parameters:

· FilePath: String - the file to save the Audit Logs to.

· StartDateTime: Variant [DateTime] - the earliest date
and time of log entries to save.

129

Enterprise Architect Object Model | Reference 209

© 1998-2010 Sparx Systems Pty Ltd

Method Type Notes

· EndDateTime; Variant [DateTime] - the latest date and
time of log entries to save.

SaveDiagram (long DiagramID) Saves an open diagram. Assumes the diagram is open in
the main user interface Tab list.

Parameters:

· DiagramID: Long - the ID of the diagram to save.

ShowDynamicHelp (string
Topic)

Shows a help topic as a view.

Parameters:

· Topic: String - specifies the help topic.

ShowInProjectView (object
Item)

Selects a specified object in the Project Browser.

Accepted object types are Package, Element, Diagram,
Attribute, and Method. An exception is thrown if the object is
of an invalid type.

Parameters:

· Item: Object - the object to highlight.

ShowProfileToolbox (string
Technology, string Profile,
boolean Show)

Shows/hides the contents of a specified technology or
profile in the Enterprise Architect UML Toolbox.

To show/hide a profile in the Toolbox, specify the profile's ID
value in the Profile parameter and set the Technology
parameter to a null string.

To show/hide a technology in the Toolbox, specify the
technology's ID in the Technology parameter and set the
Profile parameter to a null string.

Parameters:

· Technology: String - the ID of the technology.

· Profile: String - the ID of the profile.

· Show: Boolean - if true, show the technology or profile;
if false, hide the technology or profile.

ShowWindow (long Show) Shows or hides Enterprise Architect.

Parameters:

· Show: Long.

SQLQuery (string SQL) String Enables execution of a SQL select statement against the
current repository. Returns an XML formatted string value of
the resulting recordset.

Parameters:

· SQL: String - contains the SQL Select statement.

VersionControlResynchPkgSt
atuses (boolean ClearSettings)

Synchronizes the version control status of each version
controlled package within the current model with the status
reported by your version control provider. (See Version
Control Within UML Models Using Enterprise Architect.)

Parameters:

· ClearSettings: Boolean - if true, clear the version
control settings from packages that are reported by the
version control provider as uncontrolled; if false, leave
the version control settings unchanged for packages
reported as uncontrolled.

WriteOutput (string Name, Writes text to a specified tab in the Output window, and

Enterprise Architect Object Model | Reference210

Enterprise Architect Software Developers' Kit

Method Type Notes

string String, long ID) associates the text with an ID. See also ClearOutput ,
CreateOutputTab , EnsureOutput Visible .

Parameters:

· Name: String - specifies the tab on which to display the
text.

· String: String - specifies the text to display.

· ID: Long - specifies the ID the text is associated with.

7.2.4.2 Author

public Class

An Author object represents a named model author. Accessed using the Repository Authors collection.

Associated table in .EAP file: t_authors

Author Attributes

Attribute Type Notes

Name String Read/Write. Author name.

Notes String Read/Write. Notes about the author.

ObjectType ObjectType Read only. Distinguishes objects referenced through a Dispatch interface.

Roles String Read/Write. Roles the author might play in this project.

Author Methods

Method Type Notes

GetLastError () String Returns a string value describing the most recent error that occurred in
relation to this object.

This function is rarely used as an exception is thrown when an error
occurs.

Update () Boolean Updates the current Author object after modification or appending a new
item. If false is returned, check the GetLastError function for more
information.

7.2.4.3 Client

public Class

A Client represents one or more people or organizations related to the project. Accessed using the Repository
Clients collection.

Associated table in .EAP file: t_clients

200

201 201

193

Enterprise Architect Object Model | Reference 211

© 1998-2010 Sparx Systems Pty Ltd

Client Attributes

Attribute Type Notes

EMail String Read/Write. EMail address.

Fax String Read/Write. Fax number.

Mobile String Read/Write. Mobile phone if available.

Name String Read/Write. Client name.

Notes String Read/Write. Notes about client.

ObjectType ObjectType Read only. Distinguishes objects referenced through the Dispatch
interface.

Organization String Read/Write. Associated organization.

Phone1 String Read/Write. Main phone number.

Phone2 String Read/Write. Second phone number.

Roles String Read/Write. Roles this client might play in the project.

Client Methods

Method Type Notes

GetLastError () String Returns a string value describing the most recent error that occurred in
relation to this object.

This function is rarely used as an exception is thrown when an error occurs.

Update () Boolean Updates the current Client object after modification or appending a new
item. If false is returned, check the GetLastError function for more
information.

7.2.4.4 Collection

public Class

This is the main collection Class used by all elements within the Automation Interface. It contains methods to
iterate through the collection, refresh the collection and delete an item from the collection. It is important to
realize that when AddNew is called, the item is not automatically added to the current collection. The typical
steps are:

1. Call AddNew to add a new item.

2. Modify the item as required.

3. Call Update on the item to save it to the database.

4. Call Refresh on the collection to include it in the current set.

Delete is much the same; until Refresh is called, the collection still contains a reference to the deleted item,
which should not be called.

Each can be used to iterate through the collection for languages that support this type of construct.

193

Enterprise Architect Object Model | Reference212

Enterprise Architect Software Developers' Kit

Collection Attributes

Attribute Type Notes

Count Short Read only. The number of objects referenced by this list.

ObjectType ObjectType Read only. Distinguishes objects referenced through a Dispatch
interface.

Collection Methods

Method Type Notes

AddNew (string
Name, string Type)

Object Adds a new item to the current collection.

Note that the interface is the same for all collections; you must
provide a Name and Type argument. What these are used for
depends on the actual collection member. Also note that you must
call Update() on the returned object to complete the AddNew. If
Update() is not called the object is left in an indeterminate state.

Parameters:

· Name: String

· Type: String (up to 30 characters long)

Delete (short index) Void Deletes the item at the selected reference.

Parameters:

· index: Short

DeleteAt (short index,
boolean Refresh)

Void Deletes the item at the selected index. The second parameter is
currently unused.

Parameters:

· index: Short

· Refresh: Boolean

GetAt (short index) Object Retrieves the array object using a numerical index. If the index is
out of bounds, an error occurs.

Parameters:

· index: Short

GetByName (string
Name)

Object Gets an item in the current collection by Name.

If the collection does not contain any items, the method returns a
null value. If the collection contains items, but it was unable to find
an object with the specified name, the method raises an exception.

Only supported for the following collections: Models, Packages ,
Elements , Diagrams , and element TaggedValues .

Parameters:

· Name: String

GetLastError () String Returns a string value describing the most recent error that
occurred in relation to this object.

This function is rarely used as an exception is thrown when an error
occurs.

Refresh () Void Refreshes the collection by re-querying the model and reloading the
collection. Should be called after adding a new item or after deleting
an item.

193

215

228 264 242

Enterprise Architect Object Model | Reference 213

© 1998-2010 Sparx Systems Pty Ltd

7.2.4.5 Datatype

public Class

A Datatype is a named type that can be associated with attribute or method types. It typically is related to
either code engineering or database modeling. Datatypes also indicate which language or database system
they relate to. Accessed using the Repository Datatypes collection.

Associated table in .EAP file: t_datatypes

Datatype Attributes

Attribute Type Notes

DatatypeID Long Read/Write. Instance ID for this datatype within the current model.
System maintained.

DefaultLen Long Read/Write. Default length (DDL only).

DefaultPrec Long Read/Write. Default precision (DDL only).

DefaultScale Long Read/Write. Default scale (DDL only).

GenericType String Read/Write. The associated generic type for this data type.

HasLength String Read/Write. Indicates datatype has a length component.

MaxLen Long Read/Write. Maximum length (DDL only).

MaxPrec Long Read/Write. Maximum precision (DDL only).

MaxScale Long Read/Write. Maximum scale (DDL only).

Name String Read/Write. The datatype name (such as integer). This appears in the
related drop-down datatype lists where appropriate.

ObjectType ObjectType Read only. Distinguishes objects referenced through a Dispatch
interface.

Product String Read/Write. The datatype product, such as Java, C++, Oracle.

Size Long Read/Write. The datatype size.

Type String Read/Write. The type can be DDL for database datatype or Code for
language datatypes.

UserDefined Long Read/Write. Indicates if datatype is a user defined type or system
generated.

Datatypes distributed with Enterprise Architect are all system generated.
Datatypes created in the Datatype dialog are marked 1 (true).

Datatype Methods

Method Type Notes

GetLastError () String Returns a string value describing the most recent error that occurred in
relation to this object.

This function is rarely used as an exception is thrown when an error
occurs.

Update () Boolean Updates the current Datatype object after modification or appending a
new item.

193

Enterprise Architect Object Model | Reference214

Enterprise Architect Software Developers' Kit

Method Type Notes

If false is returned, check the GetLastError function for more information.

7.2.4.6 EventProperties

An EventProperties object is passed to BroadcastFunctions to facilitate parameter passing.

EventProperties Attributes

Attribute Type Notes

Count Long Read only. Number of parameters being passed to this broadcast event.

ObjectType ObjectType Read only. Distinguishes objects referenced through a Dispatch
interface.

EventProperties Methods

Method Type Notes

Get (object
Index)

EventProperty Read only. Returns an EventProperty in the list, raising an error if Index
is out of range.

Parameters:

· Index: Variant - can either be a number representing a zero-based
index into the array, or a string representing the name of the
EventProperty. For example, Props.Get(3) or Props.Get("ObjectID").

7.2.4.7 EventProperty

EventProperty objects are always part of an EventProperties collection, and are passed to Add-In methods
responding to broadcast events .

EventProperty Attributes

Attribute Type Notes

Description String Explanation of what this property represents.

Name String A string distinguishing this property from others in the list.

ObjectType ObjectType Distinguishes objects referenced through a Dispatch interface.

Value Variant A string, number or object reference representing the property value.

7.2.4.8 ModelWatcher

public Class

The ModelWatcher object enables an automation client to track changes in a particular model.

Note:

After your model has been loaded, you only create the ModelWatcher once. If you reload the model, or load
another model, the created ModelWatcher is still valid.

193

214

214

135

193

Enterprise Architect Object Model | Reference 215

© 1998-2010 Sparx Systems Pty Ltd

ModelWatcher Attributes

Attribute Type Notes

ObjectType ObjectType Read only. Distinguishes objects referenced through a Dispatch
interface.

ModelWatcher Methods

Methods Type Notes

GetReloadItem
(object Item)

ReloadType The object that must be reloaded in order to see all changes is returned
through the Item parameter. If there are no changes or the entire model
must be reloaded, this value is returned as null (C#) or Nothing (VB).

Calling this method clears the records so that the next time it is called the
return values refer only to new changes.Returns a value from the
ReloadType enumeration that specifies which type of change, if any, has
occurred.

Parameters:

· Item: Object

PeekReloadItem ReloadType This method behaves identically to GetReloadItem() but does not clear
the change record.

7.2.4.9 Package

public Class

A Package object corresponds to a Package element in the Enterprise Architect Project Browser. It is
accessed either through the Repository Models collection (a Model is a special form of Package) or through
the Package Packages collection. Note that a Package has an Element object as an attribute; this
corresponds to an Enterprise Architect Package element in the t_object table and is used to associate
additional information (such as scenarios and constraints) with the logical package. To set additional
information for a package, reference the Element object directly. Also note that if you add a Package to a
diagram, you should add an instance of the element (not the Package itself) to the DiagramObjects collection
for a diagram.

Associated table in .EAP file: t_package

Package Attributes

Attribute Type Notes

Alias String Read only. Alias.

BatchLoad Long Read/Write. Flag to indicate that the package is batch loaded
during batch import from controlled packages. Not currently
used.

BatchSave Long Read/Write. Boolean value to indicate whether the package is
included in the batch XMI export list or not.

CodePath String Read/Write. The path to where associated source code is
found. Not currently used.

Connectors Collection Read only. Collection of connectors.

Created Date Read/Write. Date the package was created.

193

194

194

211

Enterprise Architect Object Model | Reference216

Enterprise Architect Software Developers' Kit

Attribute Type Notes

Diagrams Collection Read only. A collection of diagrams contained in this package.

Element Element Read only. The associated element object. Use to get/set
common information such as Stereotype, Complexity, Alias,
Author, Constraints, Tagged Values and Scenarios.

Elements Collection Read only. A collection of elements that belong to this
package.

Flags String Read/Write. Extended information about the package.

IsControlled Boolean Read/Write. Indicates if the package has been marked as
Controlled.

IsModel Boolean Read only. Indicates if the package is a model or a package.

IsNamespace Boolean Read/Write. True is 'package is a Namespace root'. Use 0 and
1 to set False and True.

IsProtected Boolean Read/Write. Indicates if the package has been marked as
Protected.

IsVersionControlled Boolean Read. Indicates whether or not this package is under version
control.

LastLoadDate Date Read/Write. The date XML was last loaded for the package.

LastSaveDate Date Read/Write. The date XML was last saved from the package.

LogXML Boolean Read/Write. Indicates if XMI export information is to be logged.

Modified Date Read/Write. Date the package was last modified.

Name String Read/Write. The name of the package.

Notes String Read/Write. Notes about this package.

ObjectType ObjectType Read only. Distinguishes objects referenced through a
Dispatch interface.

Owner String Read/Write. The package owner when using controlled
packages.

PackageGUID Variant Read only. The global Package ID. Valid across models.

PackageID Long Read only. The local Package ID number. Valid only in this
model file.

Packages Collection Read only. A collection of contained packages that can be
walked through.

ParentID Long Read/Write. The ID of the package that is the parent of this
one. 0 indicates this package is a model (that is, it has no
parent).

TreePos Long Read/Write. The relative position in the tree compared to other
packages (use to sort packages).

UMLVersion String Read/Write. The UML version for XMI export purposes.

UseDTD Boolean Read/Write. Indicates if a DTD is to be used when exporting
XMI.

211

228

211

193

211

Enterprise Architect Object Model | Reference 217

© 1998-2010 Sparx Systems Pty Ltd

Attribute Type Notes

Version String Read/Write. The version of the package.

XMLPath String Read/Write. The path to where the XML is saved when using
controlled packages.

Package Methods

Method Type Notes

ApplyGroupLock (string
aGroupName)

Boolean Applies a group lock to the package object, for the specified
group, on behalf of the current user.

Throws an exception if the operation fails. Use GetLastError()
to retrieve error information.

Parameter:

· aGroupName: String - The name of the security group for
which to apply the lock.

ApplyUserLock () Boolean Applies a user lock to the package object for the current user.

Throws an exception if the operation fails. Use GetLastError()
to retrieve error information.

Clone LDISPATCH Inserts a copy of the package into the same parent as the
original package.

Returns the newly-created package.

FindObject (string
DottedID)

LPDISPATC
H

Returns a package, element, attribute or operation matching
the parameter DottedID. If the DottedID is not found, an error
is returned: Can't find matching object.

Parameter:

· DottedID: String - Is in the form object.object.object where
object is replaced by the name of a package, element
attribute or operation. Examples include MyNamespace.
Class1, CStudent.m_Name, MathClass.DoubleIt(int).

GetLastError () String Returns a string value describing the most recent error that
occurred in relation to this object.

This function is rarely used as an exception is thrown when an
error occurs.

ReleaseUserLock () Boolean Removes an existing User or Group lock from the package
object.

Throws an exception if the operation fails. Use GetLastError()
to retrieve error information.

Update () Boolean Update the current package object after modification or
appending a new item.

If false is returned, check the GetLastError function for more
information.

Note that a package object also has an element component
that must be taken into account. The package object contains
information about the package attributes such as hierarchy or
contents. The element attribute contains information about, for
example, Stereotype, Constraints or Files - all the attributes of
a typical element.

VersionControlAdd (string Void Places the package under version control, using the specified
Version Control Configuration and the specified XMI filename.

Enterprise Architect Object Model | Reference218

Enterprise Architect Software Developers' Kit

Method Type Notes

ConfigGuid, string
XMLFile, string Comment,
boolean
KeepCheckedOut)

Throws an exception if the operation fails. Use GetLastError()
to retrieve error information.

It is recommended that the package be saved using Update()
before calling VersionControlAdd(), so that any outstanding
changes are not lost.

Parameters:

· ConfigGuid: String - Name corresponding to the Unique
ID of the version control configuration to use.

· XMLFile: String - Name of the XML file to use for this
package. This filename is relative to the Working Copy
folder specified for the Config.

· Comment: String - Log message that is added to the
version controlled file's history (where applicable).

· KeepCheckedOut: Boolean - Specify True to add to
version control and keep package checked-out.

VersionControlCheckin
(string Comment)

Void Perform checkin of the version controlled package.

Throws an exception if the operation fails. Use GetLastError()
to retrieve error information.

Parameters:

· Comment: String - Log message that is added to the
version controlled file's history (where applicable).

VersionControlCheckout
(string Comment)

Void Perform checkout of the version controlled package.

Throws an exception if the operation fails. Use GetLastError()
to retrieve error information.

Parameters:

· Comment: String - Log message that is added to the
version controlled file's history (where applicable).

VersionControlGetLatest
(boolean ForceImport)

Updates the local working copy of the package file associated
with the object package, before re-importing the package data
from the package file.

Parameters:

· ForceImport: Boolean - Used if the package data in the
model is found to be up-to-date with respect to the version
controlled package file. If:

· False, the package data that exists in the model is
accepted as being up-to-date and no attempt is made to
re-import data from the package file

· True, Enterprise Architect re-imports the package from
the package file regardless.

See also the version control menu option Get Latest in
Version Control Within UML Models Using Enterprise Architect.

VersionControlGetStatus
()

Long Returns the version control status of the package. Throws an
exception if the operation fails. Use GetLastError() to retrieve
error information.

Return value maps to the following enumerated type:

enum EnumCheckOutStatus
 {
 csUncontrolled = 0,
 csCheckedIn,
 csCheckedOutToThisUser,
 csReadOnlyVersion,

Enterprise Architect Object Model | Reference 219

© 1998-2010 Sparx Systems Pty Ltd

Method Type Notes

 csCheckedOutToAnotherUser,
 csOfflineCheckedIn,
 csCheckedOutOfflineByUser,
 csCheckedOutOfflineByOther,
 csDeleted,
 };

csUncontrolled - Either unable to communicate with the
version control provider associated with the package or the
package file is unknown to the provider.

csReadOnlyVersion - Package is marked as read-only. An
earlier revision of the package has been retrieved from version
control.

csOfflineCheckedOutToThisUser - Indicates that the package
was 'checked out' by this user whilst disconnected from version
control.

csOfflineNotCheckedOutToThisUser - Indicates that Enterprise
Architect can not currently connect to the version control config
and the package was not previously checked out to this user.

csDeleted - The package file has been deleted from version
control.

VersionControlPutLatest
(string CheckInComment)

Void Perform a checkin of the version controlled package, whilst
keeping the package checked-out.

Throws an exception if the operation fails. Use GetLastError()
to retrieve error information.

When a package that was previously marked as Checked Out
Offline, is successfully 'Put' (checkedin) to version control, that
package's flags are updated to clear the Checked Out Offline
indicator.

Parameters:

· Comment: String - Log message added to the version
controlled file's history (where applicable).

VersionControlRemove () Void Removes version control from the package.

Throws an exception if the operation fails. Use GetLastError()
to retrieve error information.

VersionControlResynchPk
gStatus (boolean
ClearSettings)

Synchronizes the version control status of the single object
package recorded in your current model with the package
status reported by your version control provider. (See Version
Control Within UML Models Using Enterprise Architect.)

Parameters:

· ClearSettings: Boolean - used if the package file associated
with the specified package is reported by the version control
provider as uncontrolled. If ClearSettings is:

· True, the version control settings are cleared from the
package

· False, the version control settings remain unchanged.

7.2.4.10 ProjectIssues

public Class

A system-level Issue. Indicates a problem or risk associated with the system as a whole. Accessed using the

Enterprise Architect Object Model | Reference220

Enterprise Architect Software Developers' Kit

Repository Issues collection.

Associated table in .EAP file: t_issues

ProjectIssues Attributes

Attribute Type Notes

Category String Read/Write. The category this issue belongs to.

Date Date Read/Write. Date created.

DateResolved Date Read/Write. Date issue resolved.

Name String Read/Write. Issue name (that is, the issue itself).

IssueID Long Read only. The ID of this issue.

Notes String Read/Write. Associated description of issue.

ObjectType ObjectType Read only. Distinguishes objects referenced through a Dispatch interface.

Owner String Read/Write. Owner of issue.

Priority String Read/Write. Issue priority. Generally should use Low, Medium or High.

Resolution String Read/Write. Description of resolution.

Resolver String Read/Write. Person resolving issue.

Severity String Read/Write. Issue severity. Should be marked as Low, Medium or High.

Status String Read/Write. Current issue status.

ProjectIssues Methods

Method Type Notes

GetLastError () String Returns a string value describing the most recent error that occurred in
relation to this object.

This function is rarely used as an exception is thrown when an error
occurs.

Update () Boolean Update the current Issue object after modification or appending a new
item. If false is returned, check the GetLastError function for more
information.

7.2.4.11 ProjectResource

public Class

A Project Resource is a named person who is available to work on the current project in any capacity.
Accessed using the Repository Resources collection.

Associated table in .EAP file: t_resources

193

Enterprise Architect Object Model | Reference 221

© 1998-2010 Sparx Systems Pty Ltd

ProjectResource Attributes

Attribute Type Notes

Email String Email address.

Fax String Fax number.

Mobile Variant Mobile number if available.

Name String Name of resource.

Notes String A description if appropriate.

ObjectType ObjectType Read only. Distinguishes objects referenced through a Dispatch
interface.

Organization Package :
String

Organization resource associated with.

Phone1 Variant Main phone.

Phone2 Variant Alternative phone.

Roles String The roles this resource can play in the current project.

ProjectResource Methods

Method Type Notes

GetLastError () String Returns a string value describing the most recent error that occurred in
relation to this object.

This function is rarely used as an exception is thrown when an error
occurs.

Update () Boolean Update the current Resource object after modification or appending a
new item. If false is returned, check the GetLastError function for more
information.

7.2.4.12 PropertyType

public Class

A PropertyType object represents a defined property that can be applied to UML elements as a Tagged Value.
Accessed using the Repository PropertyTypes collection. Each PropertyType corresponds to one of the
predefined Tagged Values for the model.

Associated table in .EAP file: t_propertytypes

Author Attributes

Attribute Type Notes

Description String Read/Write. Short description for the property.

Detail String Read/Write. Configuration information for the property.

ObjectType ObjectType Read only. Distinguishes objects referenced through a Dispatch
interface.

Tag String Read/Write. Name of the property (Tag Name).

193

215

193

Enterprise Architect Object Model | Reference222

Enterprise Architect Software Developers' Kit

Author Methods

Method Type Notes

GetLastError () String Returns a string value describing the most recent error that occurred in
relation to this object.

This function is rarely used as an exception is thrown when an error
occurs.

Update () Boolean Update the current PropertyType object after modification or appending
a new item. If false is returned, check the GetLastError function for
more information.

7.2.4.13 Reference

public Class

This Interface provides access to the various lookup tables within Enterprise Architect. Use the Repository
GetReferenceList() method to get a handle to a list. Valid lists are:

· Diagram

· Element

· Constraint

· Requirement

· Connector

· Status

· Cardinality

· Effort

· Metric

· Scenario

· Status

· Test

Reference Attributes

Attribute Type Notes

Count Short Count of items in the list.

ObjectType ObjectType Read only. Distinguishes objects referenced through a Dispatch
interface.

Type String The list type (for example, Diagram Types).

Reference Methods

Method Type Notes

GetAt (short
Index)

String Get the item at the specified index.

Parameters:

· Index: Short - The index of the item to retrieve from the list.

GetLastError () String Returns a string value describing the most recent error that occurred in
relation to this object.

This function is rarely used as an exception is thrown when an error
occurs.

193

Enterprise Architect Object Model | Reference 223

© 1998-2010 Sparx Systems Pty Ltd

Method Type Notes

Refresh () Short Refresh the current list and return the count of items.

7.2.4.14 Stereotype

public Class

The Stereotype element corresponds to a UML stereotype, which is an extension mechanism for varying the
behavior and type of a model element. Use the Repository Stereotypes collection to add new elements and
delete existing ones.

Associated table in .EAP file: t_stereotypes

Stereotype Attributes

Attribute Type Notes

AppliesTo String Read/Write. A reference to the stereotype Base Class, that is, which
element it applies to.

MetafileLoadPat
h

String Read/Write. Path to an associated metafile. The automation interface
does not yet support loading metafiles. To do this you must use the
Stereotype tab of the UML Types dialog in Enterprise Architect.

Notes String Read/Write. Notes about the stereotype.

Name String Read/Write. The stereotype name. Appears in the Stereotype drop list
for elements that match the AppliesTo attribute.

ObjectType ObjectType Read only. Distinguishes objects referenced through a Dispatch
interface.

StereotypeGUID String Read/Write. Unique identifier for stereotype, generally set and
maintained by Enterprise Architect.

Style String Read/Write. Additional style specifier for stereotype.

VisualType String Read/Write. Indicates an inbuilt visual style associated with a
stereotype. Not currently implemented.

Stereotype Methods

Method Type Notes

GetLastError () String Returns a string value describing the most recent error that occurred in
relation to this object.

This function is rarely used as an exception is thrown when an error
occurs.

Update () Boolean Update the current stereotype object after modification or appending a
new item. If false is returned, check the GetLastError function for more
information.

7.2.4.15 Task

public Class

A Task is an entry in the System ToDo list. Accessed using the Repository Tasks collection.

193

Enterprise Architect Object Model | Reference224

Enterprise Architect Software Developers' Kit

Associated table in .EAP file: t_tasks

Task Attributes

Attribute Type Notes

ActualTime Long Read/Write. Time already expended on task, in hours, days or other units.

AssignedTo String Read/Write. Person this task is assigned to; that is, the responsible
resource.

EndDate Date Read/Write. Date task scheduled to finish.

History String Read/Write. Memo field to hold, for example, task history or notes.

Name Variant Read/Write. Task name.

Notes Variant Read/Write. Description of the task.

ObjectType ObjectType Read only. Distinguishes objects referenced through a Dispatch interface.

Owner String Read/Write. The task owner.

Percent Long Read/Write. Percent the task is complete.

Phase String Read/Write. The phase of the project the task relates to.

Priority String Read/Write. Priority associated with this task.

StartDate Date Read/Write. Date task is to start.

Status Variant Read/Write. Current task status.

TaskID Long Read only. Local ID of task.

TotalTime Long Read/Write. The total expected time the task might run - in hours, days or
some other unit.

Type String Read/Write. Sets or returns string representing the type.

Task Methods

Method Type Notes

GetLastError
()

String Returns a string value describing the most recent error that occurred in
relation to this object.

This function is rarely used as an exception is thrown when an error occurs.

Update () Boolean Update the current Task object after modification or appending a new item.
If false is returned, check the GetLastError function for more information.

7.2.4.16 Term

public Class

A Term object represents one entry in the system glossary. Accessed using the Repository Terms collection.

Associated table in .EAP file: t_glossary

193

Enterprise Architect Object Model | Reference 225

© 1998-2010 Sparx Systems Pty Ltd

Term Attributes

Attribute Type Notes

Meaning String Read/Write. The description of the term; its meaning.

ObjectType ObjectType Read only. Distinguishes objects referenced through a Dispatch interface.

Term String Read/Write. The glossary item name.

TermID Long Read only. A local ID number to identify the term in the model.

Type String Read/Write. The type this term applies to (for example, business or
technical).

Term Methods

Method Type Notes

GetLastError () String Returns a string value describing the most recent error that occurred in
relation to this object.

This function is rarely used as an exception is thrown when an error
occurs.

Update () Boolean Update the current Term object after modification or appending a new
item. If false is returned, check the GetLastError function for more
information.

7.2.5 Element

public Package

The Element package contains information about an element and its associated extended properties such as
testing and project management information. An element is the basic item in an Enterprise Architect model.
Classes, Use Cases and Components are all different types of UML element.

The diagram below illustrates the relationships between an element and its associated extended information.
The related information is accessed through the collections owned by the element (for example, Scenarios
and Tests). It also includes a full description of the element object (the basic model structural unit).

193

Enterprise Architect Object Model | Reference226

Enterprise Architect Software Developers' Kit

Enterprise Architect Object Model | Reference 227

© 1998-2010 Sparx Systems Pty Ltd

7.2.5.1 Constraint

public Class

A Constraint is a condition imposed on an element. Constraints are accessed through the Element Constraints
collection.

Associated table in .EAP file: t_objectconstraints

Constraint Attributes

Attribute Type Notes

Name String Read/Write. The name of the constraint (that is, the constraint).

Notes String Read/Write. Notes about the constraint.

ObjectType ObjectType Read only. Distinguishes objects referenced through a Dispatch interface.

ParentID Long Read only. The ElementID of the element to which this constraint applies.

Status String Read/Write. Current status.

Type String Read/Write. Constraint type.

Weight Long Read/Write. A weighting factor.

Constraint Methods

Method Type Notes

GetLastError () String Returns a string value describing the most recent error that occurred in
relation to this object.

This function is rarely used as an exception is thrown when an error
occurs.

Update () Boolean Update the current Constraint object after modification or appending a
new item. If false is returned, check the GetLastError function for more
information.

7.2.5.2 Effort

public Class

An Effort is a named item with a weighting that can be associated with an element for purposes of building
metrics about the model. Accessed through the Element Efforts collection.

Associated table in .EAP file: t_objecteffort

Effort Attributes

Attribute Type Notes

Name String Read/Write. The name of the effort.

Notes String Read/Write. Notes about the effort.

ObjectType ObjectType Read only. Distinguishes objects referenced through a Dispatch interface.

193

193

Enterprise Architect Object Model | Reference228

Enterprise Architect Software Developers' Kit

Attribute Type Notes

Type String Read/Write. The effort type.

Weight Long Read/Write. A weighting factor.

Weight2 Float Read/Write. A weighting factor.

Effort Methods

Method Type Notes

GetLastError () String Returns a string value describing the most recent error that occurred in
relation to this object.

This function is rarely used as an exception is thrown when an error
occurs.

Update () Boolean Saves the effort to the model.

7.2.5.3 Element

public Class

An Element is the main modeling unit. It corresponds to (for example) Class, Use Case, Node or Component.
You create new elements by adding to the Package Elements collection. Once you have created an element,
you can add it to the DiagramObjects collection of a diagram to include it in the diagram.

Elements also have a collection of connectors. Each entry in this collection indicates a relationship to another
element.

There are also some extended collections for managing addition information about the element, including
things such as Tagged Values, Issues, Constraints and Requirements.

Associated table in .EAP file: t_object

Element Attributes

Attribute Type Notes

Abstract String Read/Write. Indicates if the element is Abstract (1) or Concrete
(0).

ActionFlags String Read/Write. A structure to hold flags concerned with Action
semantics.

Alias String Read/Write. An optional alias for this element.

Attributes Collection Read only. Collection of Attribute objects for current element.
Use the AddNew and Delete functions to manage attributes.

AttributesEx Collection Read only. Collection of Attribute objects belonging to the
current element and its parent elements.

Author String Read/Write. The element author (see the Repository: Authors
 list for more details).

BaseClasses Collection Read only. List of Base Classes for this element presented as a
collection for convenience.

ClassfierID Long Deprecated. See ClassifierID.

ClassifierID Long Read/Write. ElementID of a Classifier associated with this

211

211

197

211

Enterprise Architect Object Model | Reference 229

© 1998-2010 Sparx Systems Pty Ltd

Attribute Type Notes

element; that is, the base type. Only valid for instance type
elements (such as Object, Sequence).

ClassifierName String Read/Write. Name of associated Classifier (if any).

ClassifierType String Read only. Type of associated classifier.

Complexity String Read/Write. A complexity value indicating how difficult the
element is. Can be used for metric reporting and estimation.

Valid values are: 1 for Easy, 2 for Medium, 3 for Difficult.

CompositeDiagram Diagram Read only. If the element is Composite, returns its associated
diagram; otherwise returns null.

Connectors Collection Read only. Returns a collection containing the connectors to
other elements.

Constraints Collection Read only. Collection of Constraint objects.

ConstraintsEx Collection Read only. Collection of Constraint objects belonging to the
current element and its parent elements.

Created Date Read/Write. The date the element was created.

CustomProperties Collection Read only. List of advanced properties for an element. The
collection of advanced properties differs depending on element
type; for example, an Action and an Activity have different
advanced properties. Currently only editable from the user
interface.

Diagrams Collection Read only. Returns a collection of sub-diagrams (child
diagrams) attached to this element as seen in the tree view.

Difficulty String Read/Write. A difficulty level associated with this element for
estimation/metrics; only useable for Requirement, Change and
Issue element types, otherwise ignored.

Valid values are: Low, Medium, High.

Efforts Collection Read only. Collection of Effort objects.

ElementGUID String Read only. A globally unique ID for this element; that is, unique
across all model files. If you have to set this value manually,
you should only do so when the element is first created, and
make sure you format the GUID exactly as Enterprise Architect
expects.

ElementID Long Read only. The local ID of the Element. Valid for this file only.

Elements Collection Read only. Returns a collection of child elements (sub-
elements) attached to this element as seen in the tree view.

EmbeddedElements Collection Read only. List of elements that are embedded into this
element, such as Ports, Parts, Pins and Parameter Sets.

EventFlags String Read/Write. A structure to hold a variety of flags to do with
signals or events.

ExtensionPoints String Read/Write. Optional extension points for a Use Case as a
comma-separated list.

Files Collection Read only. Collection of File objects.

GenFile String Read/Write. The file associated with this element for code

264

211

211 227

211

211

211

211 227

211

211

211 235

Enterprise Architect Object Model | Reference230

Enterprise Architect Software Developers' Kit

Attribute Type Notes

generation and synchronization purposes. Can include macro
expansion tags for local conversion to full path.

Genlinks String Read/Write. Links to other Classes discovered at code
reversing time; Parents and Implements connectors only.

GenType String Read/Write. The code generation type; for example, Java, C++,
C#, VBNet, Visual Basic, Delphi.

Header1 Variant Read/Write. A user defined string for inclusion as header in the
source files generated.

Header2 Variant Read/Write. Same as for Header1, but used in the CPP source
file.

IsActive Boolean Read/Write. Boolean value indicating whether the element is
active or not.

1 = True, 0 = False.

IsLeaf Boolean Read/Write. Boolean value indicating whether the element is in
leaf node or not.

1 = True, 0 = False.

IsNew Boolean Read/Write. Boolean value indicating whether the element is
new or not.

1 = True, 0 = False.

IsSpec Boolean Read/Write. Boolean value indicating whether the element is a
specification or not.

1 = True, 0 = False.

Issues Collection Read only. Collection of Issue objects.

Locked Boolean Read/Write. Indicates if the element has been locked against
further change.

MetaType String Read only. The element's domain-specific meta type, as
defined by an applied stereotype from an MDG Technology.

Methods Collection Read only. Collection of Method objects for current element.

MethodsEx Collection Read only. Collection of Method objects belonging to the
current element and its parent elements.

Metrics Collection Read only. Collection of Metric elements for current element.

MiscData String Read only. This low-level property provides information about
the contents of the PDatax fields. These database fields are not
documented and developers must gain understanding of these
fields through their own endeavors to use this property.

MiscData is zero based, therefore:

· MiscData(0) corresponds to PData1

· MiscData(1) to PData2

and so on.

Modified Date Read/Write. The date the element was last modified.

Multiplicity String Read/Write. Multiplicity value for this element.

211

211

211

211

Enterprise Architect Object Model | Reference 231

© 1998-2010 Sparx Systems Pty Ltd

Attribute Type Notes

Name String Read/Write. The element name; should be unique within the
current package.

Notes String Read/Write. Further descriptive text about the element.

ObjectType ObjectType Read only. Distinguishes objects referenced through a Dispatch
interface.

PackageID Long Read/Write. A local ID for the package containing this element.

ParentID Long Read/Write. If this element is a child of another, used to set or
retrieve the ElementID of the other element. If not, returns 0.

Partitions Collection Read only. List of logical partitions into which an element can
be divided. Only valid for elements that support partitions, such
as Activities and States.

Persistence String Read/Write. The persistence associated with this element. Can
be Persistent or Transient.

Phase String Read/Write. Phase this element scheduled to be constructed in.
Any string value.

Priority String Read/Write. The priority of this element as compared to other
project elements. Only applies to Requirement, Change and
Issue types, otherwise ignored.

Valid values are: Low, Medium and High.

Properties Properties Returns a list of specialized properties that apply to the element
that might not be available using the automation model. The
properties are purposely undocumented because of their
obscure nature and because they are subject to change as
progressive enhancements are made to them.

PropertyType Long Read/Write. The ElementID of a Type associated with this
element. Only valid for Port and Part elements.

Realizes Collection Read only. List of Interfaces realized by this element for
convenience.

Requirements Collection Read only. Collection of Requirement objects.

RequirementsEx Collection Read only. Collection of Requirement objects belonging to
the current element and its parent elements.

Resources Collection Read only. Collection of Resource objects for current
element.

Risks Collection Read only. Collection of Risk objects.

RunState String Read/Write. The object's runstate list as a string.

Scenarios Collection Read only. Collection of Scenario objects for current
element.

StateTransitions Collection Read only. List of State Transitions that an element can
support. Applies in particular to Timing elements.

Status String Read/Write. Sets or gets the status, such as Proposed or
Approved.

Stereotype String Read/Write. The primary element stereotype. This is the first of
the list of stereotypes you can access using the StereotypeEx

193

211

254

211

211 237

211 237

211 238

211 239

211 239

211

Enterprise Architect Object Model | Reference232

Enterprise Architect Software Developers' Kit

Attribute Type Notes

attribute.

StereotypeEx String Read/Write. All the applied stereotypes of the element in a
comma-separated list.

StyleEx String Read/Write. Advanced style settings. Reserved for the use of
Sparx Systems.

Subtype Long Read/Write. A numeric subtype that qualifies the Type of
the main element. For example:

· For Event: 0 = Receiver, 1 = Sender

· For Class: 1 = Parameterised, 2 = Instantiated, 3 = Both, 0
= Neither,
17 = Association Class

Note:

If 17, because an Association Class has been created through
the user interface, MiscData(3) will contain the ID of the
related Association. As MiscData is read-only, you cannot
create an Association Class through the Automation Interface.

· For Note: 1 = Note linked to connector, 2 = Constraint
linked to connector

· For StateNode: 100 = ActivityIntitial, 101 = ActivityFinal

· For Activity: 0 = Activity, 8 = composite Activity (also set to
8 for other composite elements such as Use Cases)

· For Synchronization: 0 = Horizontal, 1 = Vertical.

Note that there are many more Types than indicated in the
above examples.

Tablespace String Read/Write. Associated tablespace for a Table element.

Tag String Read/Write. Corresponds to the Keywords field in the
Enterprise Architect user interface. See the General Settings
topic in UML Modeling with Enterprise Architect – UML
Modeling Tool.

TaggedValues Collection
of type
TaggedValue

Read only. Returns a collection of TaggedValue objects.

TaggedValuesEx Collection
of type
TaggedValue

Read only. Returns a collection of TaggedValue objects
belonging to the current element and the elements specialized
or realized by the current element.

Tests Collection Read only. Collection of Test objects for current element.

TreePos Long Read/Write. Sets or gets the tree position.

Type String Read/Write. The element type (such as Class, Component).

Note that Type is case sensitive inside Enterprise Architect and
should be provided with an initial capital (proper case). Valid
types are:

Action
Activity
ActivityPartition
ActivityRegion

InteractionOccurrence
InteractionState
Interface
InterruptibleActivityRegion

232

211

242

242

211

242

242

211 243

Enterprise Architect Object Model | Reference 233

© 1998-2010 Sparx Systems Pty Ltd

Attribute Type Notes

Actor
Artifact
Association
Boundary
Change
Class
Collaboration
Component
Constraint
Decision
DeploymentSpecification
DiagramFrame
EmbeddedElement
Entity
EntryPoint
Event
ExceptionHandler
ExitPoint
ExpansionNode
ExpansionRegion
GUIElement
InteractionFragment

Issue
Node
Note
Object
Package
Parameter
Part
Port
ProvidedInterface
Report
RequiredInterface
Requirement
Screen
Sequence
State
StateNode
Synchronization
Text
TimeLine
UMLDiagram
UseCase

Version String Read/Write. The version of the element.

Visibility String Read/Write. The Scope of this element within the current
package.

Valid values are: Public, Private, Protected or Package.

Element Methods

Method Type Notes

ApplyGroupLock (string
aGroupName)

Boolean Applies a group lock to the element object, for the specified
group, on behalf of the current user.

Throws an exception if the operation fails. Use GetLastError() to
retrieve error information.

Parameter:

· aGroupName: String - the name of the user group for
which to set the group lock.

ApplyUserLock () Boolean Applies a user lock to the element object for the current user.

Throws an exception if the operation fails. Use GetLastError() to
retrieve error information.

GetLastError () String Returns a string value describing the most recent error that
occurred in relation to this object.

This function is rarely used as an exception is thrown when an
error occurs.

GetLinkedDocument () String Returns a string value containing the element's linked
document contents, in RTF format.

If the element contains no linked document, an empty string is
returned.

GetRelationSet String Returns a string containing a comma-separated list of

Enterprise Architect Object Model | Reference234

Enterprise Architect Software Developers' Kit

Method Type Notes

(EnumRelationSetType
Type)

ElementIDs of directly- and indirectly-related elements based
on the given type. See EnumRelationSetType .

Recurses using the same relation type on all elements it finds,
retrieving all dependencies and sub-dependencies of the
current element; for example, Object1 depends on Object2,
which depends on Object3. Therefore this method returns
Object2 and Object3.

To obtain only the direct relationships of the element, use the
Connector collection instead.

GetStereotypeList () String Returns a comma-separated list of stereotypes allied to this
element.

LoadLinkedDocument
(string Filename)

Boolean Loads the RTF document from the specified file into the
element's linked document.

Parameter:

· FileName: String - the name of the file from which to load
the RTF document.

Refresh () Void Refreshes the element features in the Project Browser. Usually
called after adding or deleting attributes or methods, when the
user interface is required to be updated as well.

ReleaseUserLock () Boolean Releases a user lock or group lock on the element object.

Throws an exception if the operation fails. Use GetLastError() to
retrieve error information.

SaveLinkedDocument
(string Filename)

Boolean Saves the linked document for this element to the specified
RTF file.

Parameter:

· FileName: String - the name of the RTF file to which to
save the linked document.

SetAppearance (long
Scope, long Item, long
Value)

Void Sets the visual appearance of the element.

Parameter:

· Scope: Long - Scope of appearance set to modify

0 – Local (Diagram-local appearance)
1 – Base (Default appearance across entire model)

· Item: Long - Appearance item to modify

0 – Background color
1 – Font Color
2 – Border Color
3 – Border Width

· Value: Long - Value to set appearance to.

Update () Boolean Update the current element object after modification or
appending a new item.

If false is returned, check the GetLastError function for more
information.

192

255

Enterprise Architect Object Model | Reference 235

© 1998-2010 Sparx Systems Pty Ltd

7.2.5.4 File

public Class

A File represents an associated file for an element. It is accessed through the Element Files collection.

Associated table in .EAP file: t_objectfiles

File Attributes

Attribute Type Notes

FileDate String Read/Write. The file date when entry is created.

Name String Read/Write. The file name can be a logical file or a reference to a web
address (using http://).

Notes String Read/Write. Notes about the file.

ObjectType ObjectTyp
e

Read only. Distinguishes objects referenced through a Dispatch interface.

Size String Read/Write. The file size.

Type String Read/Write. File type.

File Methods

Method Type Notes

GetLastError
()

String Returns a string value describing the most recent error that occurred in relation
to this object.

This function is rarely used as an exception is thrown when an error occurs.

Update () Boolean Update the current File object after modification or appending a new item. If
false is returned, check the GetLastError function for more information.

7.2.5.5 Issue (Maintenance)

public Class

An Issue is either a Change or a Defect, is associated with the containing element, and is accessed through
the Issues collection of an element.

Associated table in .EAP file: t_objectproblems

Issue Attributes

Attribute Type Notes

DateReported Date Read/Write. Date issue reported.

DateResolved Date Read/Write. Date issue resolved.

ElementID Long Read/Write. ID of element associated with this issue.

Name String Read/Write. The Issue name; that is, the Issue itself.

Notes String Read/Write. Issue description.

193

Enterprise Architect Object Model | Reference236

Enterprise Architect Software Developers' Kit

Attribute Type Notes

ObjectType ObjectType Read only. Distinguishes objects referenced through a Dispatch interface.

Priority String Read/Write. Issue priority. Generally should use Low, Medium and High.

Reporter String Read/Write. Person reporting issue.

Resolver String Read/Write. Person resolving issue.

ResolverNotes String Read/Write. Notes entered by resolver about resolution.

Severity String Read/Write. Issue severity. Should be marked as Low, Medium or High.

Status String Read/Write. The current status of the issue.

Type Variant Read/Write. Issue type - can be Defect or Change, Issue and ToDo.

Version String Read/Write. Version associated with issue. Note that this method is only
available through a Dispatch interface. For example:

Object ob = Issue;
Print ob.Version;

Issue Methods

Method Type Notes

GetLastError () String Returns a string value describing the most recent error that occurred in
relation to this object.

This function is rarely used as an exception is thrown when an error occurs.

Update () Boolean Update the current Issue object after modification or appending a new item.
If false is returned, check the GetLastError function for more information.

7.2.5.6 Metric

public Class

A Metric is a named item with a weighting that can be associated with an element for purposes of building
metrics about the model. Accessed through the Element Metrics collection.

Associated table in .EAP file: t_objectmetrics

Metric Attributes

Attribute Type Notes

Name String Read/Write. The name of the metric.

Notes String Read/Write. Notes about this metric.

ObjectType ObjectType Read only. Distinguishes objects referenced through a Dispatch
interface.

Type String Read/Write. The metric type.

Weight Long Read/Write. A user defined weighting for estimation or metric purposes.

193

193

Enterprise Architect Object Model | Reference 237

© 1998-2010 Sparx Systems Pty Ltd

Metric Methods

Method Type Notes

GetLastError () String Returns a string value describing the most recent error that occurred in
relation to this object.

This function is rarely used as an exception is thrown when an error
occurs.

Update () Boolean Update the current Metric object after modification or appending a new
item. If false is returned, check the GetLastError function for more
information.

7.2.5.7 Requirement

public Class

An Element Requirement object holds information about the responsibilities of an element in the context of the
model. Accessed using the Element Requirements collection.

Associated table in .EAP file: t_objectrequires

Requirement Attributes

Attribute Type Notes

Difficulty String Read/Write. Estimated difficulty to implement.

LastUpdate Date Read/Write. Date requirement last updated.

Name String Read/Write. The requirement itself.

Notes String Read/Write. Further notes about requirement.

ObjectType ObjectType Read only. Distinguishes objects referenced through a Dispatch interface.

ParentID Long Read only. The ElementID of the element to which this requirement
applies.

Priority String Read/Write. Assigned priority of the requirement.

RequirementID Long Read only. A local ID for this requirement.

Stability String Read/Write. Estimated stability of the requirement.

This is an indication of the probability of the requirement - or
understanding of the requirement - changing. High stability indicates a
low probability of the requirement changing.

Status String Read/Write. Current status of the requirement.

Type String Read/Write. Requirement type.

Requirement Methods

Method Type Notes

GetLastError () String Returns a string value describing the most recent error that occurred in
relation to this object.

This function is rarely used as an exception is thrown when an error

193

Enterprise Architect Object Model | Reference238

Enterprise Architect Software Developers' Kit

Method Type Notes

occurs.

Update () Boolean Update the current Requirement object after modification or appending a
new item. If false is returned, check the GetLastError function for more
information.

7.2.5.8 Resource

public Class

An Element Resource is a named person/task pair with timing constraints and percent complete indicators.
Use this to manage the work associated with delivering an Element.

Associated table in .EAP file: t_objectresources

Resource Attributes

Attribute Type Notes

ActualHours Long Read/Write. Time already expended on the task, in hours, days or other
units.

DateEnd Date Read/Write. Expected end date.

DateStart Date Read/Write. Date to start work.

ExpectedHours Long Read/Write. The total expected time the task might run, in hours, days
or other units.

History String Read/Write. Gets or sets history text.

Name String Read/Write. Name of resource (for example, person's name).

Notes String Read/Write. Descriptive notes.

ObjectType ObjectType Read only. Distinguishes objects referenced through a Dispatch
interface.

PercentComplete Long Read/Write. Current percent complete figure.

Role String Read/Write. Role they play in implementing the element.

Time Long Read/Write. Time expected; numeric indicating number of days.

Resource Methods

Method Type Notes

GetLastError () String Returns a string value describing the most recent error that occurred in
relation to this object.

This function is rarely used as an exception is thrown when an error
occurs.

Update () Boolean Update the current Resource object after modification or appending a
new item. If false is returned, check the GetLastError function for more
information.

193

Enterprise Architect Object Model | Reference 239

© 1998-2010 Sparx Systems Pty Ltd

7.2.5.9 Risk

public Class

A Risk object represents a named risk associated with an element and is used for project management
purposes. Accessed through the Element Risks collection.

Associated table in .EAP file: t_objectrisks

Risk Attributes

Attribute Type Notes

Name String Read/Write. The risk.

Notes String Read/Write. Further notes describing the risk.

ObjectType ObjectType Read only. Distinguishes objects referenced through a Dispatch interface.

Type String Read/Write. The risk type associated with this element.

Weight Long Read/Write. A weighting for estimation or metric purposes.

Risk Methods

Method Type Notes

GetLastError
()

String Returns a string value describing the most recent error that occurred in
relation to this object.

This function is rarely used as an exception is thrown when an error occurs.

Update () Boolean Update the current Risk object after modification or appending a new item. If
false is returned, check the GetLastError function for more information.

7.2.5.10 Scenario

public Class

A Scenario corresponds to a Collaboration or Use Case instance. Each Scenario is a path of execution
through the logic of a Use Case. Scenarios can be added to using the Element Scenarios collection.

Associated table in .EAP file: t_objectscenarios

Scenario Attributes

Attribute Type Notes

Name String Read/Write. The Scenario name.

Notes String Read/Write. Description of the Scenario. Usually contains the steps to
execute the scenario.

ObjectType ObjectType Read only. Distinguishes objects referenced through a Dispatch interface.

ScenarioGUID String Read/Write. A unique ID for the Scenario. Used to identify the Scenario
unambiguously within a model.

Steps Collection of
ScenarioStep

Read only. A collection of step objects for this Scenario. Use the AddNew
 and Delete functions to manage steps. AddNew passes the step

193

193

211

Enterprise Architect Object Model | Reference240

Enterprise Architect Software Developers' Kit

Attribute Type Notes

name and "1" as the type for an actor step.

Type String Read/Write. The scenario type (for example, Basic Path).

Weight Long Read/Write. Currently used to position scenarios in the scenario list (that
is, List Position).

XMLContent String Read/Write. A structured field that can contain scenario details in XML
format. It is recommended that you use the Steps collection to read
or modify this field.

Scenario Methods

Method Type Notes

GetLastError
()

String Returns a string value describing the most recent error that occurred in
relation to this object.

This function is rarely used as an exception is thrown when an error
occurs.

Update () Boolean Update the current Scenario object after modification or appending a new
item. If false is returned, check the GetLastError function for more
information.

7.2.5.11 ScenarioExtension

ScenarioExtension Attributes

Attribute Type Notes

ExtensionGUI
D

String Read/Write. A unique GUID for this Extension.

Join String Read/Write. The GUID of the step where this Extension rejoins the
Scenario.

JoiningStep ScenarioStep Read only. The actual step where this Extension rejoins the Scenario, if
any.

Level String Read only. The number of this Extension as shown in the scenario editor.
This is derived from the value of Pos for this object and the owning step.

Name String Read/Write. The Extension name.

Note:

This should match the name of the linked scenario.

ObjectType ObjectType Read only. Distinguishes objects referenced through a Dispatch interface.

Pos Long Read/Write. The position of the Extension in the Extensions list

Scenario Scenario Read only. The scenario that is executed as an alternative path for this
Extension.

241

239

241

193

239

Enterprise Architect Object Model | Reference 241

© 1998-2010 Sparx Systems Pty Ltd

ScenarioExtension Methods

Method Type Notes

GetLastError
()

String Returns a string value describing the most recent error that occurred in
relation to this object.

This function is rarely used as an exception is thrown when an error
occurs.

Update () Boolean Update the current ScenarioExtension object after modification or
appending a new item. If false is returned, check the GetLastError
function for more information.

7.2.5.12 ScenarioStep

ScenarioStep Attributes

Attribute Type Notes

Extensions Collection of
ScenarioExtens
ion

Read only. A collection of ScenarioExtension objects that specify how
the scenario is extended from this step. The arguments to AddNew
should match the name and GUID of the alternative scenario being
linked to.

Level String Read only. The number of this Step as shown in the scenario editor. This
is derived from the value of Pos.

Link String Read/Write. The GUID of a Use Case that is relevant to this step.

LinkedElemen
t

Element Read only. The actual element specified by Link, if any.

Name String Read/Write. The Step name.

ObjectType ObjectType Read only. Distinguishes objects referenced through a Dispatch
interface.

Pos Long Read/Write. The position of the Step in the Scenario Step list.

Results String Read/Write. Any results that are given from this step.

State String Read/Write. A description of the state the system enters when this Step
is executed.

StepGUID String Read/Write. A unique GUID for this Step.

StepType ScenarioStepT
ype

Read/Write. Identifies whether this step is being performed by a user or
the system.

Uses String Read/Write. Input and requirements that are relevant to this step.

ScenarioStep Methods

Method Type Notes

GetLastError
()

String Returns a string value describing the most recent error that occurred in
relation to this object.

This function is rarely used as an exception is thrown when an error
occurs.

240

211

228

193

195

Enterprise Architect Object Model | Reference242

Enterprise Architect Software Developers' Kit

Method Type Notes

Update () Boolean Update the current ScenarioStep object after modification or appending a
new item. If false is returned, check the GetLastError function for more
information.

7.2.5.13 TaggedValue

public Class

A TaggedValue is a named property and value associated with an element. It is accessed through the
TaggedValues collection.

Associated table in .EAP file: t_objectproperties

TaggedValue Attributes

Attribute Type Notes

ElementID Long Read/Write. The local ID of the associated element.

Name String Read/Write. Name of the tag.

Notes String Read/Write. Further descriptive notes about this tag.

If Value (below) is set to "<memo>", then Notes should contain the
actual Tagged Value content.

ObjectType ObjectType Read only. Distinguishes objects referenced through a Dispatch interface.

PropertyGUID String Read/Write. The tag global ID.

PropertyID Long Read only. The tag local ID.

Value String Read/Write. The value assigned to this tag.

This field has a 255 character limit. If the value is greater than 255
characters long, set the value to "<memo>" and insert the body of text in
the Notes attribute (above).

When reading existing Tagged Values, if Value = "<memo>" then the
developer should read the actual body of text from the Notes attribute.

TaggedValue Methods

Method Type Notes

GetLastError() String Returns a string value describing the most recent error that occurred in
relation to this object.

This function is rarely used as an exception is thrown when an error
occurs.

Update() Boolean Update the current TaggedValue object after modification or appending a
new item. If false is returned, check the GetLastError function for more
information.

193

Enterprise Architect Object Model | Reference 243

© 1998-2010 Sparx Systems Pty Ltd

7.2.5.14 Test

public Class

A Test is a single Test Case applied to an element. Tests are added and accessed through the Element Tests
collection.

Associated table in .EAP file: t_objecttests

Test Attributes

Attribute Type Notes

AcceptanceCriteria String Read/Write. The acceptance criteria for successful execution.

CheckedBy String Read/Write. Results confirmed by.

Class Long Read/Write. The test Class:

 1 = Unit Test
2 = Integration Test
3 = System Test
4 = Acceptance Test
5 = Scenario Test.

DateRun Date Read/Write. Date last run.

Input String Read/Write. Input data.

Name String Read/Write. The test name.

Notes String Read/Write. Detailed notes about test to be carried out.

ObjectType ObjectType Read only. Distinguishes objects referenced through a Dispatch
interface.

RunBy String Read/Write. Person conducting test.

Status String Read/Write. Current status of test.

TestResults Variant Read/Write. Results of test.

Type String Read/Write. The test type, such as Load or Regression.

Test Methods

Method Type Notes

GetLastError () String Returns a string value describing the most recent error that occurred in
relation to this object.

This function is rarely used as an exception is thrown when an error
occurs.

Update () Boolean Update the current Test object after modification or appending a new
item. If false is returned, check the GetLastError function for more
information.

7.2.6 Element Features

public Package

The ElementFeatures package contains descriptions of the model interfaces that enable access to operations

193

Enterprise Architect Object Model | Reference244

Enterprise Architect Software Developers' Kit

and attributes, and their associated Tagged Values and constraints.

This diagram illustrates the components associated with element features. These include Attributes and
Methods, and the associated constraints and Tagged Values related to them. It also includes the Parameter
object that defines the arguments associated with an operation (method).

7.2.6.1 Attribute

public Class

An attribute corresponds to a UML Attribute. It contains further collections for constraints and Tagged Values.
Attributes are accessed from the Element Attributes collection.

Associated table in .EAP file: t_attribute

Enterprise Architect Object Model | Reference 245

© 1998-2010 Sparx Systems Pty Ltd

Attribute Attributes

Attribute Type Notes

AllowDuplicate
s

Boolean Read/Write. Indicates if duplicates are allowed in the collection. If the
attribute represents a database column, this when set represents the Not
Null option.

AttributeGUID String Read/Write. A globally unique ID for the current attribute. System
generated.

AttributeID Long Read only. Local ID number of the attribute.

ClassifierID Long Read/Write. Classifier ID, if appropriate; indicates the base type
associated with attribute, if not a primitive type.

Container String Read/Write. The container type.

Containment String Read/Write. Type of containment. Can be Not Specified, By Reference or
By Value.

Constraints Collection

Read only. A collection of AttributeConstraint objects. Used to access and
manage constraints associated with this attribute.

Default String Read/Write. Initial value assigned to this attribute.

IsCollection Boolean Read/Write. Indicates if the current feature is a collection or not. If the
attribute represents a database column, this when set represents a
Foreign Key.

IsConst Boolean Read/Write. Flag indicating if the attribute is Const or not.

IsDerived Boolean Read/Write. Indicates if the attribute is derived (that is, a calculated value).

IsOrdered Boolean Read/Write. Indicates if a collection is ordered or not. If the attribute
represents a database column, this when set represents a Primary Key.

IsStatic Boolean Read/Write. Indicates if the current attribute is a static feature or not. If the
attribute represents a database column, this when set represents the
Unique option.

Length String Read/Write. The attribute length, where applicable.

LowerBound String Read/Write. A value for the collection lower bound.

Name String Read/Write. The attribute name.

Notes String Read/Write. Further notes about this attribute.

ObjectType ObjectType Read only. Distinguishes objects referenced through a Dispatch interface.

ParentID Long Read only. Returns the ElementID of the element that this attribute is a
part of.

Pos Long Read/Write. Position of the attribute in the Class attribute list.

Precision String Read/Write. Precision value.

Scale String Read/Write. Scale value.

Stereotype String Read/Write. Sets or gets the stereotype for this attribute.

StereotypeEx String Read/Write. All the applied stereotypes of the attribute in a comma-
separated list.

211

193

Enterprise Architect Object Model | Reference246

Enterprise Architect Software Developers' Kit

Attribute Type Notes

Style String Read/Write. Contains the Alias property for this attribute.

StyleEx String Read/Write. Advanced style settings. Reserved for the use of Sparx
Systems.

TaggedValues Collection
 of type

AttributeTag

Read only. A collection of AttributeTag objects. Use to access and manage
Tagged Values associated with this attribute.

TaggedValuesE
x

Collection
 of type

TaggedValu
e

Read only. Collection of TaggedValue objects belonging to the current
attribute and the TaggedValuesEx property of its classifier.

Type String Read/Write. The attribute type (by name; also see ClassifierID).

UpperBound String Read/Write. A value for the collection upper bound.

Visibility String Read/Write. The scope of the attribute. Can be Private, Protected, Public
or Package.

Attribute Methods

Method Type Notes

GetLastError () String Returns a string value describing the most recent error that occurred in
relation to this object.

This function is rarely used as an exception is thrown when an error
occurs.

Update () Boolean Updates the current attribute object after modifying or appending a new
item. If false is returned, check the GetLastError function for more
information.

7.2.6.2 AttributeConstraint

public Class

An AttributeConstraint is a constraint associated with the current Attribute.

Associated table in .EAP file: t_attributeconstraints

AttributeConstraint Attributes

Attribute Type Notes

AttributeID Long Read/Write. ID of the attribute this constraint applies to.

Name String Read/Write. The constraint.

Notes String Read/Write. Descriptive notes about constraint.

ObjectType ObjectType Read only. Distinguishes objects referenced through a Dispatch
interface.

Type String Read/Write. Type of constraint.

211

247

211

242

193

Enterprise Architect Object Model | Reference 247

© 1998-2010 Sparx Systems Pty Ltd

AttributeConstraint Methods

Method Type Notes

GetLastError () String Returns a string value describing the most recent error that occurred
in relation to this object.

This function is rarely used as an exception is thrown when an error
occurs.

Update () Boolean Update the current AttributeConstraint object after modification or
appending a new item. If false is returned, check the GetLastError
function for more information.

7.2.6.3 AttributeTag

public Class

An AttributeTag represents a Tagged Value associated with an attribute.

Associated table in .EAP file: t_attributetag

AttributeTag Attributes

Attribute Type Notes

AttributeID Long Read/Write. Local ID of attribute associated with this Tagged Value.

Name String Read/Write. Name of tag.

Notes String Read/Write. Further descriptive notes about this tag.

If Value (below) is set to "<memo>", then Notes should contain the
actual Tagged Value content.

ObjectType ObjectType Read only. Distinguishes objects referenced through a Dispatch
interface.

TagGUID String Read/Write. A globally unique ID for this Tagged Value.

TagID Long Read only. Local ID to identify Tagged Value.

Value String Read/Write. The value assigned to this tag.

This field has a 255 character limit. If the value is greater than 255
characters long, set the value to "<memo>" and insert the body of text
in the Notes attribute (above).

When reading existing Tagged Values, if Value = "<memo>" then the
developer should read the actual body of text from the Notes attribute.

AttributeTag Methods

Method Type Notes

GetLastError () String Returns a string value describing the most recent error that occurred in
relation to this object.

This function is rarely used as an exception is thrown when an error
occurs.

Update () Boolean Update the current AttributeTag object after modification or appending
a new item. If false is returned, check the GetLastError function for

193

Enterprise Architect Object Model | Reference248

Enterprise Architect Software Developers' Kit

Method Type Notes

more information.

7.2.6.4 CustomProperties

public Collection

The CustomProperties collection contains 0 or more Cust Properties associated with the current element.
These properties provide advanced UML configuration options, and must not be added to or deleted. The
value of each property can be set.

Note:

The number and type of properties vary depending on the actual element.

CustomProperty

Attribute Type Notes

Name String Read only. The CustomProperty name.

ObjectType ObjectType Read only. Distinguishes objects referenced through a Dispatch interface.

Value String Read/Write. The value associated with this custom property. Can be a string,
the boolean values true or false, or an enumeration value from a defined
list. The UML 2.1.1 specification in general provides information on
enumeration kinds relevant here.

7.2.6.5 EmbeddedElements

public Collection

In UML 2.1 an element can have one or more embedded elements such as Ports, Pins, Parameters or
ObjectNodes. These are attached to the boundary of the host element and cannot be moved off the element.
They are owned by their host element. This collection gives easy access to the set of elements embedded on
the surface of an element. Note that some embedded elements can have their own embedded element
collection (for example, Ports can have Interfaces embedded on them).

The EmbeddedElements collection contains Element objects.

193

Enterprise Architect Object Model | Reference 249

© 1998-2010 Sparx Systems Pty Ltd

7.2.6.6 Method

public Class

A method represents a UML operation. It is accessed from the Element Methods collection and includes
collections for parameters, constraints and Tagged Values.

Associated table in .EAP file: t_operation

Method Attributes

Attribute Type Notes

Abstract Boolean Read/Write. Flag indicating if the method is abstract (1) or not (0).

Behavior String Read/Write. Some further explanatory behavior notes (for example,
pseudocode).

Note:

In earlier releases of Enterprise Architect this attribute had the UK/
Australian spelling 'Behaviour'; this is still present for backwards
compatibility, but please now use the 'Behavior' attribute for consistency.

ClassifierID String Read/Write. Classifier ID that applies to the ReturnType.

Code String Read/Write. Optional field to hold the method Code (used for the Initial
Code field).

Concurrency Variant Read/Write. Concurrency type of method.

IsConst Boolean Read/Write. Flag indicating the method is Const.

Enterprise Architect Object Model | Reference250

Enterprise Architect Software Developers' Kit

Attribute Type Notes

IsLeaf Boolean Read/Write. Flag to indicate if the method is Leaf (cannot be overridden).

IsPure Boolean Read/Write. Flag indicating the method is defined as Pure in C++.

IsQuery Boolean Read/Write. Flag to indicate if the method is a query (that is, does not
alter Class variables).

IsRoot Boolean Read/Write. Flag to indicate if the method is Root.

IsStatic Boolean Read/Write. Flag to indicate a static method.

IsSynchronized Boolean Read/Write. Flag indicating a Synchronized method call.

MethodGUID String Read/Write. A globally unique ID for the current method. System
generated.

MethodID Long Read only. A local ID for the current method, only valid within this .EAP
file.

Name String Read/Write. The method name.

Notes String Read/Write. Descriptive notes about the method.

ObjectType ObjectType Read only. Distinguishes objects referenced through a Dispatch
interface.

Parameters Collection Read only. The Parameters collection for the current method. Use to add
and access parameter objects for the current method.

ParentID Long Read only. Returns the ElementID of the element that this method
belongs to.

Pos Long Read/Write. Specifies the position of the method within the set of
operations defined for a Class.

PostConditions Collection Read only. PostConditions (constraints) as they apply to this method.
Returns a MethodConstraint object of type post.

PreConditions Collection Read only. PreConditions (constraints) as they apply to this method.
Returns a MethodConstraint object of type pre.

ReturnIsArray Boolean Read/Write. Flag to indicate the return value is an array.

ReturnType String Read/Write. Return type for the method; can be a primitive data type or a
Class or Interface type.

StateFlags String Read/Write. Some flags as applied to methods in State elements.

Stereotype String Read/Write. The method stereotype (optional).

StereotypeEx String Read/Write. All the applied stereotypes of the method in a comma-
separated list.

Style String Read/Write. Contains the Alias property for this method.

StyleEx String Read/Write. Advanced style settings. Reserved for the use of Sparx
Systems.

TaggedValues Collection
of type
MethodTag

Read only. TaggedValues collection for the current method. Accesses a
list of MethodTag objects.

Throws String Read/Write. Exception information.

193

211

211

211

211

252

Enterprise Architect Object Model | Reference 251

© 1998-2010 Sparx Systems Pty Ltd

Attribute Type Notes

Visibility String Read/Write. The method scope: Public, Protected, Private or Package.

Method Methods

Method Type Notes

GetLastError () String Returns a string value describing the most recent error that occurred in
relation to this object.

This function is rarely used as an exception is thrown when an error
occurs.

Update () Boolean Update the current method object after modification or appending a new
item. If false is returned, check the GetLastError function for more
information.

7.2.6.7 MethodConstraint

public Class

A MethodConstraint is a condition imposed on a method. It is accessed through either the Method
PreConditions or Method PostConditions collection.

Associated table in .EAP file: t_operationpres and t_operationposts

MethodConstraint Attributes

Attribute Type Notes

MethodID Long Read/Write. The local ID of the associated method.

Name String Read/Write. The name of the constraint.

Notes String Read/Write. Descriptive notes about this constraint.

ObjectType ObjectType Read only. Distinguishes objects referenced through a Dispatch
interface.

Type String Read/Write. The constraint type.

MethodConstraint Methods

Method Type Notes

GetLastError () String Returns a string value describing the most recent error that occurred in
relation to this object.

This function is rarely used as an exception is thrown when an error
occurs.

Update () Boolean Update the current MethodConstraint object after modification or
appending a new item. If false is returned, check the GetLastError
function for more information.

193

Enterprise Architect Object Model | Reference252

Enterprise Architect Software Developers' Kit

7.2.6.8 MethodTag

public Class

A MethodTag is a Tagged Value associated with a method.

Associated table in .EAP file: t_operationtag

MethodTag Attributes

Attribute Type Notes

MethodID Long Read/Write. The ID of the associated method.

Name String Read/Write. The tag or name of the property.

Notes String Read/Write. Further descriptive notes about this tag.

If Value (below) is set to "<memo>", then Notes should contain the
actual Tagged Value content.

ObjectType ObjectType Read only. Distinguishes objects referenced through a Dispatch interface.

TagGUID String Read/Write. A unique GUID for this Tagged Value.

TagID Long Read only. A unique ID for this Tagged Value.

Value String Read/Write. The value assigned to this tag.

This field has a 255 character limit. If the value is greater than 255
characters long, set the value to "<memo>" and insert the body of text in
the Notes attribute (above).

When reading existing Tagged Values, if Value = "<memo>" then the
developer should read the actual body of text from the Notes attribute.

MethodTag Methods

Method Type Notes

GetLastError () String Returns a string value describing the most recent error that occurred in
relation to this object.

This function is rarely used as an exception is thrown when an error
occurs.

Update () Boolean Update the current MethodTag object after modification or appending a
new item. If false is returned, check the GetLastError function for more
information.

7.2.6.9 Parameter

public Class

A Parameter object represents a method argument and is accessed through the Method Parameters
collection.

Associated table in .EAP file: t_operationparams

193

Enterprise Architect Object Model | Reference 253

© 1998-2010 Sparx Systems Pty Ltd

Parameter Attributes

Attribute Type Notes

Alias String Read/Write. An optional alias for this parameter.

ClassifierID String Read/Write. A ClassifierID for the parameter, if known.

Default String Read/Write. A default value for this parameter.

IsConst Boolean Read/Write. Flag indicating the parameter is Const (cannot be altered).

Kind String Read/Write. The parameter kind - in, inout, out, return.

Name String Read/Write. The parameter name; must be unique for a single method.

Notes String Read/Write. Descriptive notes.

ObjectType ObjectType Read only. Distinguishes objects referenced through a Dispatch interface.

OperationID Long Read only. ID of the method associated with this parameter.

ParameterGUI
D

String Read/Write. A globally unique ID for the current Parameter. System
generated.

Position Long Read/Write. The position in the argument list.

Stereotype String Read/Write. The first stereotype of the parameter.

StereotypeEx String Read/Write. All the applied stereotypes of the parameter in a comma-
separated list.

Style String Read/Write. Some style information.

StyleEx String Read/Write. Advanced style settings. Reserved for the use of Sparx
Systems.

Type Variant Read/Write. The parameter type; can be a primitive type or defined
classifier.

Parameter Methods

Method Type Notes

GetLastError
()

String Returns a string value describing the most recent error that occurred in
relation to this object.

This function is rarely used as an exception is thrown when an error occurs.

Update () Boolean Update the current Parameter object after modifying or appending a new
item. If false is returned, check the GetLastError function for more
information.

7.2.6.10 Partitions

public Collection

A collection of internal element partitions (regions). This is commonly seen in Activity, State, Boundary,
Diagram Frame and similar elements (see the UML Dictionary). Not all elements support partitions.

This collection contains a set of Partition elements. The set is read/write: information is not saved until the host
element is saved, so ensure that you call the Element.Save method after making changes to a Partition.

193

Enterprise Architect Object Model | Reference254

Enterprise Architect Software Developers' Kit

Partition Attributes

Attribute Type Notes

Name String Read/Write. The partition name; can represent a condition or constraint in
some cases.

Note String Read/Write. A free text note associated with this partition.

ObjectType ObjectType Read only. Distinguishes objects referenced through a Dispatch interface.

Operator String Read/Write. An optional operator value that specifies the partition type.

Size String Read/Write. Vertical or horizontal width of partition in pixels.

7.2.6.11 Properties

Properties

Properties Attributes

Attribute Type Notes

Count Long The number of properties that are available for this object.

ObjectType ObjectType Read only. Distinguishes objects referenced through a Dispatch
interface.

Properties Methods

Method Type Notes

Item (object Index) Property Returns a property either by name or by zero-based integer offset
into the list of properties.

Parameter:

· Index: Variant - either a string representing the property name
or an integer representing the zero-based offset into the
property list.

Property

Property Attributes

Attribute Type Notes

Name String Read only. Identifies the property. The object to which the
properties list applies can have an automation property with the
same name, in which case the data accessed through Value is
identical to that obtained through the automation property.

ObjectType ObjectType Read only. Distinguishes objects referenced through a Dispatch
interface.

Type PropType Read only. Provides an indication of what sort of data is going to
be stored by this property. This restriction can be further defined by
the Validation attribute.

Validation String Read only. Optional string that is used to validate any data that is
passed to the Value attribute. This string is used by the

193

193

193

194

Enterprise Architect Object Model | Reference 255

© 1998-2010 Sparx Systems Pty Ltd

Attribute Type Notes

programmer at run time to provide an indication of what's
expected, and by Enterprise Architect to ensure that the submitted
data is appropriate.

Value Variant Read/write. The value of the property as defined in the other fields.

7.2.6.12 Transitions

public Collection

Applies only to Timeline elements. A Timeline element displays 0 or more state transitions at set times on its
extent. This collection enables you to access the transition set. You can also access additional information by
referring to the connectors associated with the Timeline, and by referencing messages passed between
timelines. Note that any changes made to elements in this collection are only saved when the main element is
saved.

Transition Attributes

Attribute Type Notes

DurationConstra
int

String Read/Write. A constraint on the time duration that the transition takes.

Event String Read/Write. Event (optional) that initiated transition.

Note String Read/Write. A free text note.

ObjectType ObjectType Read only. Distinguishes objects referenced through a Dispatch interface.

TimeConstraint String Read/Write. A constraint on when the transition has to be complete by.

TxState String Read/Write. The state to transition to. Defined in the Timeline Properties
dialog.

TxTime String Read/Write. The time that the transition occurs. Value depends on range
set in diagram.

7.2.7 Connector

public Package

The Connector package details how connectors between elements are accessed and managed.

193

Enterprise Architect Object Model | Reference256

Enterprise Architect Software Developers' Kit

7.2.7.1 ConnectorConstraint

public Class

A ConnectorConstraint holds information about special conditions that apply to a connector. It is accessed
through the Connector Constraints collection.

Associated table in .EAP file: t_connectorconstraints

ConnectorConstraint Attributes

Attribute Type Notes

ConnectorID Long Read/Write. A local ID value (long) - system generated.

Enterprise Architect Object Model | Reference 257

© 1998-2010 Sparx Systems Pty Ltd

Attribute Type Notes

Name String Read/Write. The constraint name.

Notes String Read/Write. Notes about this constraint.

ObjectType ObjectType Read only. Distinguishes objects referenced through a Dispatch interface.

Type String Read/Write. The constraint type.

ConnectorConstraint Methods

Method Type Notes

GetLastError
()

String Returns a string value describing the most recent error that occurred in relation
to this object.

This function is rarely used as an exception is thrown when an error occurs.

Update () Boolean Update the current ConnectorConstraint object after modification or appending
a new item. If false is returned, check the GetLastError function for more
information.

7.2.7.2 Connector

public Class

A Connector object represents the various kinds of connectors between UML elements. It is accessed from
either the Client or Supplier element, using the Connectors collection of that element. When creating a new
connector you must assign it a valid type from the following list:

· Aggregation

· Assembly

· Association

· Collaboration

· CommunicationPath

· Connector

· ControlFlow

· Delegate

· Dependency

· Deployment

· ERLink

· Generalization

· InformationFlow

· Instantiation

· InterruptFlow

· Manifest

· Nesting

· NoteLink

· ObjectFlow

· Package

· Realization

· Sequence

· StateFlow

· UseCase

193

Enterprise Architect Object Model | Reference258

Enterprise Architect Software Developers' Kit

Associated table in .EAP file: t_connector

Connector Attributes

Attribute Type Notes

Alias String Read/Write. An optional alias for this connector.

ClientEnd ConnectorEn
d

Read only. A pointer to the ConnectorEnd object representing the source
end of the relationship.

ClientID Long Read/Write. ElementID of the element at the source end of this
connector.

Color Long Read/Write. Sets the color of the connector.

ConnectorGUID Variant Read only. A globally unique ID for the current connector. System
generated.

ConnectorID Long Read only. Local identifier for the current connector. System generated.

Constraints Collection Read only. Collection of constraint objects.

CustomProperti
es

Collection Read only. Returns a collection of advanced properties associated with
an element in the form of CustomProperty objects.

DiagramID Long Read/Write. The DiagramID of the connector.

Direction String Read/Write. Connector direction. Can be set to one of the following:

· Unspecified

· Bi-Directional

· Source -> Destination

· Destination -> Source

EndPointX Long Read/Write. The x-coordinate of the connector's end point.

Note:

Connector end points are specified in Cartesian coordinates with the
origin to the top left of the screen.

EndPointY Long Read/Write. The y-coordinate of the connector's end point.

Note:

Connector end points are specified in Cartesian coordinates with the
origin to the top left of the screen.

EventFlags String Read/Write. Structure to hold a variety of flags concerned with event
signaling on messages.

IsLeaf Boolean Read/Write. Flag indicating connector is a leaf.

IsRoot Boolean Read/Write. Flag indicating connector is a root.

IsSpec Boolean Read/Write. Flag indicating connector is a specification.

MetaType String Read only. The connector's domain-specific meta type, as defined by an
applied stereotype from an MDG Technology.

MiscData String Read only. This low-level property provides information about the
contents of the PDatax fields. These database fields are not
documented and developers must gain understanding of these fields
through their own endeavors to use this property.

260

211 227

211

248

Enterprise Architect Object Model | Reference 259

© 1998-2010 Sparx Systems Pty Ltd

Attribute Type Notes

MiscData is zero based, therefore:

· MiscData(0) corresponds to PData1

· MiscData(1) to PData2

and so on.

Name String Read/Write. The connector name.

Notes String Read/Write. Descriptive notes about the connector.

ObjectType ObjectType Read only. Distinguishes objects referenced through a Dispatch
interface.

Properties Properties Returns a list of specialized properties that apply to the connector that
might not be available using the automation model. The properties are
purposely undocumented because of their obscure nature and because
they are subject to change as progressive enhancements are made to
them.

RouteStyle Long Read/Write. The route style.

SequenceNo Long Read/Write. The SequenceNo of the connector.

StartPointX Long Read/Write. The x-coordinate of the connector's start point.

Note:

Connector end points are specified in Cartesian coordinates with the
origin to the top left of the screen.

StartPointY Long Read/Write. The y-coordinate of the connector's start point.

Note:

Connector end points are specified in Cartesian coordinates with the
origin to the top left of the screen.

StateFlags String Read/Write. Structure to hold a variety of flags concerned with State
signaling on messages, the list delimited by semi-colons.

Stereotype String Read/Write. Sets or gets the stereotype for this connector end.

StereotypeEx String Read/Write. All the applied stereotypes of the connector in a comma-
separated list.

StyleEx String Read/Write. Advanced style settings. Reserved for the use of Sparx
Systems.

Subtype String Read/Write. A possible subtype to refine the meaning of the connector.

SupplierEnd ConnectorEn
d

Read only. A pointer to the ConnectorEnd object representing the target
end of the relationship.

SupplierID Long Read/Write. ElementID of the element at the target end of this
connector.

TaggedValues Collection Read only. Collection of ConnectorTag objects.

TransitionActio
n

String Read/Write. See the Transition topic in the UML Dictionary for
appropriate values.

TransitionEvent String Read/Write. See the Transition topic in the UML Dictionary for

193

254

260

Enterprise Architect Object Model | Reference260

Enterprise Architect Software Developers' Kit

Attribute Type Notes

appropriate values.

TransitionGuard String Read/Write. See the Transition topic in the UML Dictionary for
appropriate values.

Type String Read/Write. Connector type. Valid types are held in the
t_connectortypes table in the .EAP file.

VirtualInheritanc
e

String Read/Write. For Generalization, indicates if inheritance is virtual.

Width Long Read/Write. Specifies the width of the connector.

Connector Methods

Method Type Notes

GetLastError () String Returns a string value describing the most recent error that occurred in
relation to this object.

This function is rarely used as an exception is thrown when an error
occurs.

MiscData (long
Index)

String Read only. This low-level property provides information about the contents
of the PDatax fields. These database fields are not documented and
developers must gain understanding of these fields through their own
endeavors to use this property.

MiscData is zero based, therefore:

· MiscData(0) corresponds to PData1

· MiscData(1) to PData2

Parameters:

· Index: long - the zero based index of the PData field to access.

Update () Boolean Update the current ConnectorObject after modification or appending a new
item. If false is returned, check the GetLastError function for more
information.

7.2.7.3 ConnectorEnd

public Class

A ConnectorEnd contains information about a single end of a connector. A ConnectorEnd is accessed from
the connector as either the ClientEnd or SupplierEnd.

Associated table in .EAP file: derived from t_connector

ConnectorEnd Attributes

Attribute Type Notes

Aggregation Long Read/Write. Aggregation as it applies to this end. Valid values are:

 0 = None
1 = Shared
2 = Composite.

Alias String Read/Write. An optional alias for this connector end.

AllowDuplicates Boolean Read/Write. For multiplicities greater than 1, indicates that duplicate

Enterprise Architect Object Model | Reference 261

© 1998-2010 Sparx Systems Pty Ltd

Attribute Type Notes

entries are possible.

Cardinality String Read/Write. Cardinality associated with this end.

Constraint String Read/Write. A constraint that can be applied to this connector end.

Containment String Read/Write. Containment type applied to this connector end.

Derived Boolean Read/Write. Indicates that the value of this end is derived.

DerivedUnion Boolean Read/Write. Indicates the value of this role derived from the union of
all roles that subset this.

End String Read only. The end this ConnectorEnd object applies to: Client or
Supplier.

IsChangeable String Read/Write. Flag indicating whether this end is changeable or not.

Values: frozen, addOnly or none.

IsNavigable Boolean Read/Write. Flag indicating this end is navigable from the other end.

Navigable String Read/Write. Indicates whether this role of an association is navigable
from the opposite classifier. Three values are valid: Navigable, Non-
Navigable and Unspecified.

ObjectType ObjectType Read only. Distinguishes objects referenced through a Dispatch
interface.

Ordering Long Read/Write. Ordering for this connector end.

OwnedByClassifie
r

Boolean Read/Write. Indicates this Association end corresponds to an
attribute on the opposite end of the Association.

Qualifier String Read/Write. A qualifier that can apply to connector end.

Role String Read/Write. The connector end role.

RoleNote String Read/Write. Notes associated with the role of this connector end.

RoleType String Read/Write. The role type applied to this end of the connector.

Stereotype String Read/Write. Sets or gets the stereotype for this connector end.

StereotypeEx String Read/Write. All the applied stereotypes of the connector end in a
comma-separated list.

TaggedValues Private Read only. Collection of RoleTag objects.

Visibility String Read/Write. Scope associated with this connector end. Valid types
are: Public, Private, Protected and Package.

ConnectorEnd Methods

Method Type Notes

GetLastError () String Returns a string value describing the most recent error that occurred
in relation to this object.

This function is rarely used as an exception is thrown when an error
occurs.

Update () Boolean Update the current ConnectorEnd object after modification or

193

263

Enterprise Architect Object Model | Reference262

Enterprise Architect Software Developers' Kit

Method Type Notes

appending a new item. If false is returned, check the GetLastError
function for more information.

7.2.7.4 ConnectorTag

public Class

A ConnectorTag is a Tagged Value for a connector and is accessed through the Connector TaggedValues
collection.

Associated table in .EAP file: t_connectortag

ConnectorTag Attributes

Attribute Type Notes

ConnectorID Long Read/Write. The local ID of the associated connector.

Name String Read/Write. The tag or name.

Notes String Read/Write. Further descriptive notes about this tag.

If Value (below) is set to "<memo>", then Notes should contain the
actual Tagged Value content.

ObjectType ObjectType Read only. Distinguishes objects referenced through a Dispatch
interface.

TagGUID String Read/Write. A globally unique ID for this Tagged Value.

TagID Long Read only. A local ID to identify the Tagged Value.

Value String Read/Write. The value assigned to this tag.

This field has a 255 character limit. If the value is greater than 255
characters long, set the value to "<memo>" and insert the body of text
in the Notes attribute (above).

When reading existing Tagged Values, if Value = "<memo>" then the
developer should read the actual body of text from the Notes attribute.

ConnectorTag Methods

Method Type Notes

GetLastError () String Returns a string value describing the most recent error that occurred in
relation to this object.

This function is rarely used as an exception is thrown when an error
occurs.

Update () Boolean Update the current ConnectorTag object after modification or appending
a new item. If false is returned, check the GetLastError function for
more information.

193

Enterprise Architect Object Model | Reference 263

© 1998-2010 Sparx Systems Pty Ltd

7.2.7.5 RoleTag

public Class

This interface provides access to the association Role Tagged Values. Each connector end has a RoleTag
collection that can be accessed to add, delete and access the RoleTags.

In code you create something that resembles the following (where con is a Connector Object):

Code fragment for accessing a RoleTag in VB.NET:

 client = con.ClientEnd
 client.Role = "m_client"
 client.Update()
 tag = client.TaggedValues.AddNew("tag", "value")
 tag.Update()
 tag = client.TaggedValues.AddNew("tag2", "value2")
 tag.Update()
 client.TaggedValues.Refresh()
 For idx = 0 To client.TaggedValues.Count - 1
 tag = client.TaggedValues.GetAt(idx)
 Console.WriteLine(tag.Tag)
 client.TaggedValues.DeleteAt(idx, False)
 Next
 tag = Nothing

RoleTag Attributes

Attribute Type Notes

BaseClass String Read/Write. Indicates the role end; set to ASSOCIATION_SOURCE or
ASSOCIATION_TARGET.

ElementGUID String Read/Write. GUID of the connector with which this role tag is associated.

ObjectType ObjectType Read only. Distinguishes objects referenced through a Dispatch interface.

PropertyGUID String Read/Write. A system generated GUID to identify the Tagged Value.

Tag String Read/Write. The actual tag name.

Value String Read/Write. The value associated with this tag.

RoleTag Methods

Method Type Notes

GetLastError
()

String Returns a string value describing the most recent error that occurred in
relation to this object.

This function is rarely used as an exception is thrown when an error occurs.

Update () Boolean Update the RoleTag after changes or on initial creation. If false is returned,
check the GetLastError function for more information.

7.2.8 Diagram

public Package

The Diagram package has information on a diagram and on DiagramObjects and DiagramLinks, which are the
instances of elements within a diagram.

193

Enterprise Architect Object Model | Reference264

Enterprise Architect Software Developers' Kit

7.2.8.1 Diagram

public Class

A Diagram corresponds to a single Enterprise Architect diagram. It is accessed through the Package
Diagrams collection and in turn contains a collection of diagram objects and diagram connectors. Adding to
the DiagramObjects collection adds an element to the diagram (the element must already exist). When adding
a new diagram, you must set the diagram type to a valid type; these are:

· Activity

· Analysis

· Component

· Custom

· Deployment

Enterprise Architect Object Model | Reference 265

© 1998-2010 Sparx Systems Pty Ltd

· Logical

· Sequence

· Statechart

· Use Case

Note:

Use the Analysis type for a Collaboration Diagram.

Associated table in .EAP file: t_diagram

Diagram Attributes

Attribute Type Notes

Author String Read/Write. The author.

CreatedDate Date Read/Write. The date the diagram was created.

cx Long Read/Write. The X dimension of the diagram (default is 800).

cy Long Read/Write. The Y dimension of the diagram (default is 1100).

DiagramGUID Variant Read/Write. A globally unique ID for this diagram.

DiagramID Long Read only. A local ID for the diagram.

DiagramLinks Collection Read only. A list of DiagramLink objects, each containing information
about the display characteristics of a connector in a diagram.

Note:

A DiagramLink is only created once a user modifies a connector in a
diagram in some way. Until this condition has been met default values
are used and the DiagramLink is not in use.

DiagramObjects Collection Read only. A collection of references to DiagramObjects . A
DiagramObject is an instance of an element in a diagram, and includes
size and display characteristics.

ExtendedStyle String Read/Write. An extended style attribute.

HighlightImports Boolean Read/Write. Flag to indicate elements from other packages should be
highlighted.

IsLocked Boolean Read/Write. Flag indicating whether this diagram is locked or not.

MetaType String Read only. The diagram's domain-specific meta type, as defined by an
MDG Technology.

ModifiedDate Variant Read/Write. The date the diagram was last modified.

Name String Read/Write. The diagram name.

Notes String Read/Write. Set/retrieve notes for this diagram.

ObjectType ObjectTyp
e

Read only. Distinguishes objects referenced through a Dispatch interface.

Orientation String Read/Write. Page orientation: P for Portrait or L for Landscape.

PackageID Long Read/Write. An ID of the package that this diagram belongs to.

ParentID Long Read/Write. An optional ID of an element that 'owns' this diagram; for

211

211

268

193

Enterprise Architect Object Model | Reference266

Enterprise Architect Software Developers' Kit

Attribute Type Notes

example, a Sequence diagram owned by a Use Case.

Scale Long Read/Write. The zoom scale (default is 100).

SelectedConnector Connector Read/Write. The currently selected connector on this diagram. Null if
there is no currently selected diagram.

SelectedObjects Collection Read only. Gets a collection representing the currently selected elements
on the diagram. Can remove objects from this collection to deselect them,
and add elements to the collection by passing the Object ID as a name to
select them.

ShowDetails Long Read/Write. Flag to indicate Diagram Details text should be shown. 1 =
Show, 0 = Hide.

ShowPackageCont
ents

Boolean Read/Write. Flag to indicate package contents should be shown in the
current diagram.

ShowPrivate Boolean Read/Write. Flag to show or hide Private features.

ShowProtected Boolean Read/Write. Flag to show or hide Protected features.

ShowPublic Boolean Read/Write. Flag to show or hide Public features.

Stereotype String Read/Write. Sets or gets the stereotype for this diagram.

StyleEx String Read/Write. Advanced style settings. Reserved for the use of Sparx
Systems.

Swimlanes String Read/Write. Information on swimlanes contained in the diagram. Please
note that this property is superseded by SwimlaneDef .

SwimlaneDef Swimlane
Def

Read/Write. Information on swimlanes contained in the diagram.

Type String Read only. The diagram type. See the t_diagramtypes table in the .EAP
file for more information.

Version String Read/Write. The version of the diagram.

Diagram Methods

Method Type Notes

ApplyGroupLock
(string
aGroupName)

Boolean Applies a group lock to this diagram object, for the specified group, on
behalf of the current user.

Throws an exception if the operation fails. Use GetLastError() to retrieve
error information.

Parameter:

· aGroupName: String - the name of the user group for which to set the
group lock.

ApplyUserLock () Boolean Applies a user lock to this diagram object, for the current user.

Throws an exception if the operation fails. Use GetLastError() to retrieve
error information.

GetLastError () String Returns a string value describing the most recent error that occurred in
relation to this object.

This function is rarely used as an exception is thrown when an error
occurs.

257

211

269

269

Enterprise Architect Object Model | Reference 267

© 1998-2010 Sparx Systems Pty Ltd

Method Type Notes

ReleaseUserLock
()

Boolean Releases a group lock or user lock on this diagram object.

Throws an exception if the operation fails. Use GetLastError() to retrieve
error information.

ReorderMessages
()

Void Resets the display order of Sequence and Collaboration messages.
Typically used after inserting or deleting messages in the diagram.

ShowAsElementLi
st (bool
ShowAsList, bool
Persist)

Boolean Toggles the diagram display between diagram format and Element List
depending on the value of ShowAsList.

If Persist is set, the display format is written to the database so the
diagram always opens in that format (diagram or list). Otherwise, the
display format falls back to the default (diagram) once the display is
closed.

Parameters:

· ShowAsList: Boolean - indicates diagram or Element List

· Persist: Boolean - indicates set (maintain ShowAsList value) or not
(revert to default).

Update () Boolean Updates this diagram object after modification or appending a new item.

If false is returned, use GetLastError() to retrieve error information.

7.2.8.2 DiagramLinks

public Class

A DiagramLink is an object that holds display information about a connector between two elements in a
specific diagram. It includes, for example, the custom points and display appearance. Accessed from the
Diagram DiagramLinks collection.

Associated table in .EAP file: t_diagramlinks

DiagramLinks Attributes

Attribute Type Notes

ConnectorID Long Read/Write. The ID of the associated connector.

DiagramID Long Read/Write. The local ID for the associated diagram.

Geometry String Read/Write. The geometry associated with the current connector in this
diagram.

InstanceID Long Read only. Holds the connector identifier for the current model.

IsHidden Boolean Read/Write. Flag to indicate if this item is hidden or not.

ObjectType ObjectType Read only. Distinguishes objects referenced through a Dispatch interface.

Path String Read/Write. The path of the connector in this diagram.

Style String Read/Write. Additional style information; for example, color, thickness.

265

193

Enterprise Architect Object Model | Reference268

Enterprise Architect Software Developers' Kit

DiagramLinks Methods

Method Type Notes

GetLastError
()

String Returns a string value describing the most recent error that occurred in
relation to this object.

This function is rarely used as an exception is thrown when an error occurs.

Update () Boolean Update the current DiagramLink object after modification or appending a
new item.

If false is returned, check the GetLastError function for more information.

7.2.8.3 DiagramObjects

public Class

The DiagramObjects collection holds a list of element IDs and presentation information that indicates what is
displayed in a diagram and how it is shown.

Associated table in .EAP file: t_diagramobjects

DiagramObjects Attributes

Attribute Type Notes

Bottom Long Read/Write. The bottom position of the element.

DiagramID Long Read/Write. The ID of the associated diagram (long).

ElementID Long Read/Write. The ElementID of the object instance in this diagram.

InstanceID Long Read/Write. Read only attribute. Holds the connector identifier for the
current model.

Left Long Read/Write. The left position of the element.

ObjectType ObjectType Read only. Distinguishes objects referenced through a Dispatch interface.

Right Long Read/Write. The right position of the element.

Sequence Long Read/Write. The sequence position when loading into diagram (affects Z
order). The Z-order is one-based and the lowest value is in the
foreground.

Style Variant Write only (reading this value gives undefined results). Style information
for this object.

See Setting the Style below for more information.

Top Long Read/Write. The top position of the element.

DiagramObjects Methods

Method Type Notes

GetLastError () String Returns a string value describing the most recent error that occurred in
relation to this object.

This function is rarely used as an exception is thrown when an error
occurs.

193

269

Enterprise Architect Object Model | Reference 269

© 1998-2010 Sparx Systems Pty Ltd

Method Type Notes

Update () Boolean Update the current DiagramObject object after modification or appending
a new item.

If false is returned, check the GetLastError function for more information.

Setting The Style

The Style attribute is used for setting the appearance of a DiagramObject. It is set with a string value in the
format:

 BCol=n;BFol=n;LCol=n;LWth=n;

where:

· BCol = Background Color

· BFol = Font Color

· LCol = Line Color

· LWth = Line Width

The color value is a decimal representation of the hex RGB value, where Red=FF, Green=FF00 and
Blue=FF0000. For example:

DiagObj.Style = "BCol=35723;BFol=9342520;LCol=9342520;LWth=1;"

The following code snippet shows how you might change the style settings for all of the objects in the current
diagram, in this case changing everything to red.

For Each aDiagObj In aDiag.DiagramObjects
 aDiagObj.Style = "BCol=255;BFol=9342520;LCol=9342520;LWth=1;"
 aDiagObj.Update
 aRepos.ReloadDiagram aDiagObj.DiagramID
Next

7.2.8.4 SwimlaneDef

A SwimlaneDef object makes available attributes relating to a single row or column in a list of swimlanes.

Attribute Type Notes

Bold Boolean Read/Write. Show the title text in bold.

FontColor Long Read/Write. RGB color used to draw the titles.

HideClassifier Boolean Read/Write. Removes any classifier from title display.

HideNames Boolean Read/Write. Set to true to hide the swimlane titles.

LineColor Long Read/Write. RGB color used to draw swimlane borders.

LineWidth Long Read/Write. Width of line, in pixels, used to draw swimlanes. Valid
values: 1, 2 or 3.

Locked Boolean Read/Write. If set to true, disables user modification of the swimlanes via
the diagram.

ObjectType ObjectType Read only. Distinguishes objects referenced through a Dispatch interface.

Orientation String Read/Write. Indication of whether the swimlanes are vertical or horizontal.

ShowInTitleBar Boolean Read/Write. Enables vertical swimlane titles to be shown in title bar.

193

Enterprise Architect Object Model | Reference270

Enterprise Architect Software Developers' Kit

Attribute Type Notes

Swimlanes Swimlanes Read/Write. A list of individual swimlanes.

7.2.8.5 Swimlanes

A Swimlanes object is attached to a diagram's SwimlaneDef object and provides a mechanism to access
individual swimlanes.

Swimlanes Attributes

Attribute Type Notes

Count Long Read/Write. Gives the number of swimlanes.

ObjectType ObjectType Read only. Distinguishes objects referenced through a Dispatch
interface.

Swimlanes Methods

Method Type Notes

Add (string Title,
long Width)

Swimlane Adds a new swimlane to the end of the list. Returns a swimlane object
representing the newly added entry.

Parameters:

· Title: String - The title text that appears at the top of the swimlane.
Can be the same as an existing swimlane title.

· Width: Long - The width of the swimlane in pixels.

Delete (object
Index)

Void Deletes a selected swimlane.

If the string matches more than one entry, only the first entry is deleted.

Parameter:

· Index: Object - Either a string representing the title text or an
integer representing the zero-based index of the swimlane to
delete.

DeleteAll () Void Removes all swimlanes.

Insert (long
Index, string
Title, long Width)

Swimlane Inserts a swimlane at a specific position.Returns a swimlane object
representing the newly added entry.

Parameters:

· Index: Long - The zero-based index of the existing Swimlane before
which this new entry is inserted.

· Title: String - The title text which appears at the top of the
swimlane. Can be the same as an existing swimlane title.

· Width: Long - The width of the swimlane in pixels.

Items (object
Index)

Swimlane
collection

Accesses an individual swimlane.

If the string matches more than one swimlane title, the first matching
swimlane is returned.

Parameter:

· Index: Object - Either a string representing the title text or an
integer representing the zero-based index of the swimlane to get.

270

269

193

193

271

271

271

Enterprise Architect Object Model | Reference 271

© 1998-2010 Sparx Systems Pty Ltd

7.2.8.6 Swimlane

A Swimlane object makes available attributes relating to a single row or column in a list of swimlanes .

Attribute Type Notes

BackColor Long Read/Write. The swimlane is filled with this RGB color.

ClassifiedGuid String Read/Write. The GUID of the classifier Class. This can be obtained from
the corresponding Element object via the ElementGUID property.

ObjectType ObjectType Read only. Distinguishes objects referenced through a Dispatch interface.

Title String Read/Write. Text at the head of the swimlane.

Width Long Read/Write. The width of the swimlane in pixels.

7.2.9 Project Interface

public Package

The Enterprise Architect.Project interface. This is the XML-based interface to Enterprise Architect elements; it
also includes some utility functions. You can get a pointer to this interface using the Repository.
GetProjectInterface method.

7.2.9.1 Project

public Class

The Project interface can be accessed from the Repository using GetProjectInterface(). The returned interface
provides access to the XML-based Enterprise Architect Automation Interface. Use this interface to get XML for
the various internal elements and to run some utility functions to perform tasks such as load diagrams or run
reports.

Note:

These methods all require input GUIDs in XML format; use GUIDtoXML to change the Enterprise
Architect GUID to an XML GUID.

270

193

278

Enterprise Architect Object Model | Reference272

Enterprise Architect Software Developers' Kit

Project Attributes

Attribute Type Notes

ObjectType ObjectType Read only. Distinguishes objects referenced through a
Dispatch interface.

Project Methods

Method Type Notes

CreateBaseline (string
PackageGUID, string Version,
string Notes)

Boolean Creates a Baseline of a specified package.

Parameters:

· PackageGUID: String - the GUID (in XML format)
of the package to Baseline.

· Version: String - the version of the Baseline.

· Notes: String - any notes concerning the
Baseline.

CreateBaselineEx(string
PackageGUID, string Version,
string Notes, EA.
CreateBaselineFlag Flags)

Boolean Creates a Baseline of a specified package, with a flag
to exclude package contents below the first level.
(See Baseline UML Models.)

Parameters:

· PackageGUID: String - the GUID (in XML format)
of the package to Baseline.

· Version: String - the version of the Baseline.

· Notes: String - any notes concerning the
Baseline.

· Flags: EA.CreateBaselineFlag - whether or
not to exclude package contents below the first
level

DefineRule (string CategoryID,
EA.EnumMVErrorType
ErrorType, string
ErrorMessage

String Defines the individual rules that can be performed
during model validation. It must be called once for
each rule from the EA_OnInitializeUserRules
broadcast handler.

The return value is a RuleId, which can be used for
reference purposes when an individual rule is
executed by Enterprise Architect during model
validation.

See Model Validation Example for a detailed
example of use of this method.

Parameters:

· CategoryId: String - should be passed the return
value from the DefineRuleCategory method.

· ErrorType: EA.EnumMVErrorType - depending on
the severity of the error being validated, can be:

· mvErrorCritical

· mvError

· mvWarning, or

· mvInformation.

· ErrorMessage: String - can contain a default error
string, although this is probably overridden by the
PublishResult call.

DefineRuleCategory (string String Defines a category of rules that can be performed
during model validation (there is typically one category

193

192

160

165

272

281

Enterprise Architect Object Model | Reference 273

© 1998-2010 Sparx Systems Pty Ltd

Method Type Notes

CategoryName) per Add-In). It must be called once from the
EA_OnInitializeUserRules broadcast handler.

The return value is a CategoryId that must to be
passed to the DefineRule method.

See Model Validation Example for a detailed
example of use of this method.

Parameters:

· CategoryName: String - a text string that is visible
in the Model Validation Configuration dialog.

DeleteBaseline (string
BaselineGUID)

Boolean Deletes a Baseline, identified by the BaselineGUID,
from the repository.

Parameters:

· BaselineGUID: String - the GUID (in XML format) of
the Baseline to delete.

DoBaselineCompare
(string PackageGUID, string
Baseline, string ConnectString
)

String Performs a Baseline comparison using the supplied
package GUID and Baseline GUID (obtained in the
result list from GetBaselines).

Optionally you can include the connection string
required to find the Baseline if it exists in a different
model file.

This method returns a log file of the status of all
elements found and compared in the difference
procedure. You can use this log information as input
to DoBaselineMerge - automatically merging
information from the Baseline.

Parameters:

· PackageGUID: String - the GUID (in XML format)
of the package to run the comparison on.

· Baseline: String - the GUID (in XML format) of the
Baseline to run the comparison on.

· ConnectString: String - the location of the external
.EAP file or DBMS to extract the Baseline from.

DoBaselineMerge
(string PackageGUID, string
Baseline, string
MergeInstructions, string
ConnectString)

String Performs a batch merge based on instructions
contained in an XML file (MergeInstructions). You can
supply an optional connection string if the Baseline is
located in another model.

In the MergeInstructions file, each MergeItem node
supplies the GUID of a differenced item from the XML
difference log. As the merge is uni-directional and
actioned in only one possible way, no additional
arguments are required. Enterprise Architect chooses
the correct procedure based on the Difference results.

<Merge>

<MergeItem guid="{XXXXXX}" />

<MergeItem guid="{XXXXXX}" />

</Merge>

Alternatively, you can supply a single Mergeitem with a
GUID of RestoreAll. In this case, Enterprise Architect
batch-processes ALL differences.

<Merge>

160

272

165

277

273

Enterprise Architect Object Model | Reference274

Enterprise Architect Software Developers' Kit

Method Type Notes

<MergeItem guid="RestoreAll" />

</Merge>

Parameters:

· PackageGUID: String - the GUID (in XML format)
of the package to merge the Baseline into.

· Baseline: String - the GUID of the Baseline (in
XML format) to merge into the package.

· MergeInstructions: String - the file containing the
GUID of each differenced item from the XML
difference log returned by DoBaselineCompare()

.

· ConnectString: String - the location of the EAP
file or DBMS to get the Baseline from, if not in the
same model as the package.

EnumDiagramElements (string
DiagramGUID)

protected
abstract: String

Gets an XML list of all elements in a diagram.

Parameters:

· DiagramGUID: String - the GUID (in XML format)
of the diagram to get elements for.

EnumDiagrams (string
PackageGUID)

protected
abstract: String

Gets an XML list of all diagrams in a specified
package.

Parameters:

· PackageGUID: String - the GUID (in XML format)
of the package to list diagrams for.

EnumElements (string
PackageGUID)

protected
abstract: String

Gets an XML list of elements in a specified package.

Parameters:

· PackageGUID: String - the GUID (in XML format)
of the package to get a list of elements for.

EnumLinks (string
ElementGUID)

protected
abstract: String

Gets an XML list of connectors for a specified element.

Parameters:

· ElementGUID: String - the GUID (in XML format)
of the element to get all associated connectors
for.

EnumPackages (string
PackageGUID)

protected
abstract: String

Gets an XML list of child packages inside a parent
package.

Parameters:

· PackageGUID: String - the GUID (in XML format)
of the parent package.

EnumProjects () protected
abstract: String

Gets a list of projects in the current file; corresponds
to Models in Repository.

EnumViews () protected
abstract: String

Enumerates the Views for a project. Returned as an
XML document.

EnumViewEx (string
ProjectGUID)

protected
abstract: String

Gets a list of Views in the current project.

Parameters:

· ProjectGUID: String - the GUID (in XML format) of
the project to get views for.

Exit () protected
abstract: String

Exits the current instance of Enterprise Architect; this
function is maintained for backward compatibility and

273

198

Enterprise Architect Object Model | Reference 275

© 1998-2010 Sparx Systems Pty Ltd

Method Type Notes

should never be called.

Enterprise Architect automatically exits when you are
no longer using any of the provided objects.

ExportPackageXMI (string
PackageGUID, enumXMIType
XMIType, long DiagramXML,
long DiagramImage, long
FormatXML, long UseDTD,
string FileName)

protected
abstract: String

Exports XMI for a specified package.

Parameters:

· PackageGUID: String - the GUID (in XML format)
of the package to be exported.

· XMIType: EnumXMIType - specifies the XMI type
and version information; see XMIType Enum
for accepted values.

· DiagramXML: Long - true if XML for diagrams is
required; accepted values:
0 = Do not export diagrams
1 = Export diagrams
2 = Export diagrams along with alternate images.

· DiagramImage: Long - the format for diagram
images to be created at the same time; accepted
values:
-1=NONE
0=EMF
1=BMP
2=GIF
3=PNG
4=JPG.

· FormatXML: Long - true if XML output should be
formatted prior to saving.

· UseDTD: Long - true if a DTD should be used.

· FileName: String - the filename to output to.

ExportPackageXMIEx (string
PackageGUID, enumXMIType
XMIType, long DiagramXML,
long DiagramImage, long
FormatXML, long UseDTD,
string FileName, ea.
ExportPackageXMIFlag Flags)

protected
abstract: String

Exports XMI for a specified package, with a flag to
determine whether the export includes package
content below the first level. (See the Controlled
Packages section in UML Model Management.)

Parameters:

· PackageGUID: String - the GUID (in XML format)
of the package to be exported.

· XMIType: EnumXMIType - specifies the XMI type
and version information; see XMIType Enum
for accepted values.

· DiagramXML: Long - true if XML for diagrams is
required; accepted values:
0 = Do not export diagrams
1 = Export diagrams
2 = Export diagrams along with alternate images.

· DiagramImage: Long - the format for diagram
images to be created at the same time; accepted
values:
-1=NONE
0=EMF
1=BMP
2=GIF
3=PNG
4=JPG.

· FormatXML: Long - true if XML output should be
formatted prior to saving.

195

195

Enterprise Architect Object Model | Reference276

Enterprise Architect Software Developers' Kit

Method Type Notes

· UseDTD: Long - true if a DTD should be used.

· FileName: String - the filename to output to.

· Flags: ea.ExportPackageXMIFlag - whether or
not to include package content below the first
level (currently only supported for xmiEADefault).

GenerateClass (string
ElementGUID, string
ExtraOptions)

Boolean Generates the code for a single Class.

Parameters:

· ElementGUID: String - the GUID (in XML format)
of the element to generate.

· ExtraOptions: String - enables extra options to be
given to the command; currently unused.

GenerateDiagramFromScenari
o (string ElementGUID,
EnumScenarioDiagramType
DiagramType, long
OverwriteExistingDiagram)

Boolean Generates various diagrams from the Structured
Specification of an element.

Parameters:

· ElementGUID: String - the GUID (in XML format)
of the element containing the Structured
Specification.

· DiagramType: EnumScenarioDiagramType - the
type of diagram to generate; see
ScenarioDiagramType Enum for accepted
values

· OverwriteExistingDiagram: Long - determines
whether to overwrite the existing diagram or
synchronize the existing elements with the
scenario steps
0 = Delete existing diagram and elements, and
create new diagram and elements
1 = Synchronize existing elements with scenario
steps and preserve diagram layout
2 = Synchronize existing elements with scenario
steps and re-cast diagram layout
3 = Do not generate diagram if one already exists.

GeneratePackage (string
Package GUID, string
ExtraOptions)

Boolean Generates the code for all Classes within a package.

For example: recurse=1;overwrite=1;dir=C:\

Parameters:

· PackageGUID: String - the GUID (in XML format)
of the package to generate.

· ExtraOptions: String - enables extra options to be
given to the command; currently enables:

· Generation of all subpackages (recurse)

· Force overwrite of all files (overwrite) and

· Specification to auto generate all paths (dir).

GenerateTestFromScenario
(string ElementGUID,
EnumScenarioTestType
TestType)

Boolean Generates either an Internal test or an External test
from the Structured Specification of an element. (See
the Scenarios section of UML Modeling With
Enterprise Architect - UML Modeling Tool.)

Parameters:

· ElementGUID: String - the GUID (in XML format)
of the element containing the Structured
Specification.

· TestType: EnumScenarioTestType - the type of
test to generate; see ScenarioTestType Enum

193

194

195

Enterprise Architect Object Model | Reference 277

© 1998-2010 Sparx Systems Pty Ltd

Method Type Notes

for accepted values.

GenerateXSD (string
PackageGUID, string
FileName, string Encoding,
string Options)

Boolean Creates an XML schema for this GenerateXSD.
Returns true on success.

Parameters:

· PackageGUID: String - the GUID (in XML format)
of the package.

· FileName: String - target filepath.

· Encoding: String - the XML encoding for the code
page instruction.

· Options: String - enables extra options to be given
to the command; currently enables:

· GenGlobalElement - turn the generation of
global elements for all global ComplexTypes
On or Off; for example: - GenGlobalElement=1.

GetBaselines (string
PackageGUID, string
ConnectString)

String Returns a list (in XML format) of Baselines associated
with the supplied package GUID. Optionally, you can
provide a connection string to get Baselines from the
same package, but located in a different model file (or
DBMS).

Parameters:

· PackageGUID: String - the GUID (in XML format)
of the package to get Baselines for.

· ConnectString: String - the location of the EAP file
or DBMS to get the Baselines from, if not in the
same model as the package.

GetDiagram (string
DiagramGUID)

protected
abstract: String

Gets diagram details, in XML format.

Parameters:

· DiagramGUID: String - the GUID (in XML format)
of the diagram to get details for.

GetElement (string
ElementGUID)

protected
abstract: String

Gets XML for the specified element.

Parameters:

· ElementGUID: String - the GUID (in XML format)
of the element to retrieve XML for.

GetElementConstraints (string
ElementGUID)

protected
abstract: String

Gets constraints for an element, in XML format.

Parameters:

· ElementGUID: String - the GUID (in XML format)
of the element.

GetElementEffort (string
ElementGUID)

protected
abstract: String

Gets efforts for an element, in XML format.

Parameters:

· ElementGUID: String - the GUID (in XML format)
of the element.

GetElementFiles (string
ElementGUID)

protected
abstract: String

Gets metrics for an element, in XML format.

Parameters:

· ElementGUID: String - the GUID (in XML format)
of the element.

GetElementMetrics (string
ElementGUID)

protected
abstract: String

Gets files for an element, in XML format.

Parameters:

· ElementGUID: String - the GUID (in XML format)

Enterprise Architect Object Model | Reference278

Enterprise Architect Software Developers' Kit

Method Type Notes

of the element.

GetElementProblems (string
ElementGUID)

protected
abstract: String

Gets a list of issues (problems) associated with an
element, in XML format.

Parameters:

· ElementGUID: String - the GUID (in XML format)
of the element.

GetElementProperties (string
ElementGUID)

protected
abstract: String

Gets Tagged values for an element, in XML format.

Parameters:

· ElementGUID: String - the GUID (in XML format)
of the element.

GetElementRequirements (s
tring ElementGUID)

protected
abstract: String

Gets a list of requirements for an element, in XML
format.

Parameters:

· ElementGUID: String -the GUID (in XML format)
of the element.

GetElementResources (string
ElementGUID)

protected
abstract: String

Gets a list of resources for an element, in XML format.

Parameters:

· ElementGUID: String - the GUID (in XML format)
of the element.

GetElementRisks (string
ElementGUID)

protected
abstract: String

Gets a list of risks associated with an element, in XML
format.

Parameters:

· ElementGUID: String - the GUID (in XML format)
of the element.

GetElementScenarios (string
ElementGUID)

protected
abstract: String

Gets a list of scenarios for an element, in XML format.

Parameters:

· ElementGUID: String - the GUID (in XML format)
of the element.

GetElementTests (string
ElementGUID)

protected
abstract: String

Gets a list of tests for an element, in XML format.

Parameters:

· ElementGUID: String - the GUID (in XML format)
of the element.

GetLastError () protected
abstract: String

Returns a string value describing the most recent error
that occurred in relation to this object.

This function is rarely used as an exception is thrown
when an error occurs.

GetLink (string LinkGUID) protected
abstract: String

Gets connector details, in XML format.

Parameters:

· LinkGUID: String - the GUID (in XML format) of
the connector to get details of.

GUIDtoXML (string GUID) String Changes an internal GUID to the form used in XML.

Parameters:

· GUID: String - the Enterprise Architect style GUID
to convert to XML format.

ImportDirectory (string Boolean Imports a source code directory into the model.

Enterprise Architect Object Model | Reference 279

© 1998-2010 Sparx Systems Pty Ltd

Method Type Notes

PackageGUID, string
Language, string
DirectoryPath, string
ExtraOptions)

Parameters:

· PackageGUID: String - the GUID (in XML format)
of the package to reverse engineer code into.

· Language: String - specifies the language of the
code to be imported.

· DirectoryPath: String - specifies the path where
the code is found on the computer.

· ExtraOptions: String - enables extra options to be
given to the command; currently enables import
of source from all child directories (recurse) - for
example: recurse=1.

ImportFile (string
PackageGUID, string
Language, string FileName,
string ExtraOptions)

Boolean Imports an individual file or binary module into the
model, in a package per namespace style import.

Parameters:

· PackageGUID: String - the GUID (in XML format)
of the package to reverse engineer code into; this
is expected to be a namespace root package.

· Language: String - specifies the language of the
code to be imported.

Note:

Use the value "DNPE" to import a binary module. This
imports a .Net assembly or Java .class file, but not a .
jar file.

· Filename: String - specifies the path where the
code or module is found on the computer.

· ExtraOptions: String - enables extra options to be
given to the command; currently unused.

ImportPackageXMI (string
PackageGUID, string
Filename, long
ImportDiagrams, long
StripGUID)

String Imports an XMI file at a point in the tree.

Parameters:

· PackageGUID: String - the GUID (in XML format)
of the target package to import the XMI file into
(or overwrite with the XMI file).

· Filename or XMLText: String - the name of the
XMI file.

Note:

If the String is of type filename it is interpreted as a
source file, otherwise the String is imported as XML
text.

· ImportDiagrams: Long.

· StripGUID: Long - boolean value to indicate
whether to replace the element UniqueIDs on
import; if stripped, then a package could be
imported twice into Enterprise Architect, as two
different versions.

LayoutDiagram (string
DiagramGUID, long
LayoutStyle)

Boolean Deprecated. it is recommended that
LayoutDiagramEx is used instead.

Calls the function to automatically layout a diagram in
hierarchical fashion. It is only recommended for Class
and Object diagrams.

Parameters:

Enterprise Architect Object Model | Reference280

Enterprise Architect Software Developers' Kit

Method Type Notes

· DiagramGUID: String - the GUID (in XML format)
of the diagram to lay out.

· LayoutStyle: Long - always ignored.

LayoutDiagramEx (string
DiagramGUID, long
LayoutStyle, long Iterations,
long LayerSpacing, long
ColumnSpacing, boolean
SaveToDiagram)

Boolean Calls the function to automatically layout a diagram in
hierarchical fashion. It is only recommended for Class
and Object diagrams.

LayoutStyle accepts the following options (also see
ConstLayoutStyles Enum):

· Default Options:

lsDiagramDefault

lsProgramDefault.

· Cycle Removal Options:

lsCycleRemoveGreedy

lsCycleRemoveDFS.

· Layering Options:

lsLayeringLongestPathSink

lsLayeringLongestPathSource

lsLayeringOptimalLinkLength.

· Initialize Options:

IsInitializeNaive

IsInitializeDFSOut

IsInitializeDFSIn.

· Crossing Reduction Option:

lsCrossReduceAggressive.

· Layout Options - Direction

lsLayoutDirectionUp

lsLayoutDirectionDown

lsLayoutDirectionLeft

lsLayoutDirectionRight.

Parameters:

· DiagramGUID: String - the GUID (in XML format)
of the diagram to lay out.

· LayoutStyle: Long - the layout style.

· Iterations: Long - the number of layout iterations
the Layout process should take to perform cross
reduction (Default value = 4).

· LayerSpacing: Long - the per-element layer
spacing the Layout process shall use (Default
value = 20).

· ColumnSpacing: Long - the per-element column
spacing the Layout process shall use (Default
value = 20).

· SaveToDiagram: Boolean - specifies whether or
not Enterprise Architect should save the supplied
layout options as default to the diagram in
question.

LoadControlledPackage (
string PackageGUID)

String Loads a package that has been marked and
configured as controlled. The filename details are
stored in the package control data.

Parameters:

· PackageGUID: String - the GUID (in XML format)
of the package to load.

191

Enterprise Architect Object Model | Reference 281

© 1998-2010 Sparx Systems Pty Ltd

Method Type Notes

LoadDiagram (string
DiagramGUID)

protected
abstract:
Boolean

Loads a diagram by its GUID.

Parameter:

· DiagramGUID: String - the GUID (in XML format)
of the diagram to load; if you retrieve the GUID
using the Diagram interface, use the GUIDtoXML

 function to convert it to XML format.

LoadProject (string FileName) protected
abstract:
Boolean

Loads an Enterprise Architect project file. Do not use
this method if you have accessed the Project interface
from the Repository, which has already loaded a file.

Parameters:

· FileName: String - the name of the project file to
load.

MigrateToBPMN11 (string
GUID, string Type)

Void Migrates every BPMN 1.0 construct in a package or an
element (including elements, attributes, diagrams and
connectors) to BPMN 1.1.

Parameters

· GUID: String - the GUID of the package or
element for which the contents are to be migrated
to BPMN 1.1

· Type: String - the type of upgrade, either just to
BPMN 1.1 or to BPMN 1.1 and BPEL. Accepted
values:

BPMN = migrate to BPMN 1.1
BPEL = migrate to BPMN 1.1 and update:

· any diagram with stereotype BPMN to
BPEL

· any element with stereotype
BusinessProcess to BPELProcess.

Note:

Migrating to BPEL is possible only in the Ultimate or
Business and Software Engineering editions of
Enterprise Architect.

PublishResult (string
CategoryID, EA.
EnumMVErrorType ErrorType,
string ErrorMessage

String Returns the results of each rule that can be performed
during model validation. It must be called once for
each rule from the EA_OnInitializeUserRules
broadcast handler.

The return value is a RuleId, which can be used for
reference purposes when an individual rule is
executed by Enterprise Architect during model
validation.

See Model Validation Example for a detailed
example of use of this method.

Parameters:

· CategoryId: String - should be passed the return
value from the DefineRuleCategory method.

· ErrorType: EA.EnumMVErrorType - depending on
the severity of the error being validated, can be:

· mvErrorCritical

· mvError

· mvWarning, or

278

160

165

272

Enterprise Architect Object Model | Reference282

Enterprise Architect Software Developers' Kit

Method Type Notes

· mvInformation.

· ErrorMessage: String - contains an error string.

PutDiagramImageOnClipboard
(string DiagramGUID, long
Type)

protected
abstract:
Boolean

Copies an image of the specified diagram to the
clipboard.

Parameters:

· DiagramGUID: String - the GUID (in XML format)
of the diagram to copy.

· Type: Long - the file type.

· If Type = 0 then it is a metafile

· If Type = 1 then it is a Device Independent
Bitmap.

PutDiagramImageToFile (s
tring Diagram GUID, string
FileName, long Type)

protected
abstract:
Boolean

Saves an image of the specified diagram to file.

Parameters:

· DiagramGUID: String - the GUID (in XML format)
of the diagram to save.

· FileName: String - the name of the file to save the
diagram into.

· Type: Long - the file type.

· If type = 0 then it is a metafile

· If type = 1 then it uses the file type from the
name extension (that is, .bmp, .jpg, .gif, .png, .
tga)

ReloadProject () protected
abstract:
Boolean

Reloads the current project. This is a convenient
method to refresh the current loaded project (in case
of outside changes to the .EAP file).

RunReport (string
PackageGUID, string
TemplateName, string
Filename)

protected
abstract: Void

Runs a named RTF report.

Parameters:

· PackageGUID: String - the GUID (in XML format)
of the package to run the report on.

· TemplateName: String - the RTF report template
to use. If the PackageGUID has a stereotype of
MasterDocument, the template is not required.

· FileName: String - the file name to store the
generated report in.

RunHTMLReport (string
PackageGUID, string
ExportPath, string
ImageFormat, string Style,
string Extension)

String Runs an HTML report (same as Documentation |
HTML Documentation when you right-click on a
package in the Project Browser).

Parameters:

· PackageGUID: String - the GUID (in XML format)
of the package to run the report on.

· ExportPath: String - the file name to store the
generated report in.

· ImageFormat: String.

· Style: String.

· Extension: String.

SaveControlledPackage (s
tring PackageGUID)

String Saves a package that has been configured as a
controlled package, to XMI. Only the package GUID is
required, Enterprise Architect picks the rest up from
the package control information.

Enterprise Architect Object Model | Reference 283

© 1998-2010 Sparx Systems Pty Ltd

Method Type Notes

Parameter:

· PackageGUID: String - the GUID (in XML format)
of the package to save.

SaveDiagramImageToFile (s
tring Filename)

protected
abstract: String

Saves a diagram image of the current diagram to file.

Parameters:

· FileName: String - the filename of the image to
save.

ShowWindow (long Show) protected
abstract: Void

Shows or hides the Enterprise Architect User
Interface.

Parameters:

· Show: Long.

SynchronizeClass (string
ElementGUID, string
ExtraOptions)

Boolean Synchronizes a Class with the latest source code.

Parameters:

· ElementGUID: String - the GUID (in XML format)
of the element to update from code.

· ExtraOptions: String - enables extra options to be
given to the command; currently unused.

SynchronizePackage (string
PackageGUID, string
ExtraOptions)

Boolean Synchronizes each Class in a package with the latest
source code.

Parameters:

· PackageGUID: String - the GUID (in XML format)
of the package containing the elements to update
from code.

· ExtraOptions: String - enables extra options to be
given to the command; currently enables
synchronization of all child packages (children) -
for example: children=1.

TransformElement (string
TransformName, string
ElementGUID, string
TargetPackage, string
ExtraOptions)

Boolean Transforms an element into a package.

Parameters:

· TransformName: String - specifies the
transformation that should be executed.

· ElementGUID: String - the GUID (in XML format)
of the element to transform.

· TargetPackageGUID: String - the GUID (in XML
format) of the package to transform into.

· ExtraOptions: String - enables extra options to be
given to the command; currently unused.

TransformPackage (string
TransformName, string
SourcePackage, string
TargetPackage, string
ExtraOptions)

Boolean Runs a transformation on the contents of a package.

Parameters:

· TransformName: String - specifies the
transformation that should be executed.

· SourcePackageGUID: String - the GUID (in XML
format) of the package to transform.

· TargetPackageGUID: String - the GUID (in XML
format) of the package to transform into.

· ExtraOptions: String - enables extra options to be
given to the command; currently unused.

XMLtoGUID (string GUID) String Changes a GUID in XML format to the form used
inside Enterprise Architect.

Enterprise Architect Object Model | Reference284

Enterprise Architect Software Developers' Kit

Method Type Notes

Parameters:

· GUID: String - the XML style GUID to convert to
Enterprise Architect internal format.

7.2.10 Code Samples

This topic contains various code examples indicating how to use the Automation Interface, written in VB.Net:

· Open the Repository

· Iterate Through a .EAP File

· Add and Manage Packages

· Add and Manage Elements

· Add a Connector

· Add and Manage Diagrams

· Add and Delete Features

· Element Extras

· Repository Extras

· Stereotypes

· Work with Attributes

· Work with Methods

7.2.10.1 Open the Repository

public Object

''An example of how to open an Enterprise Architect repository
''in VB.Net.

Public Class AutomationExample

 ''class level variable for Repository
 Public m_Repository As Object

 Public Sub Run()
 try
 ''create the repository object
 m_Repository = CreateObject("EA.Repository")

 ''open an EAP file
 m_Repository.OpenFile("F:\Test\EAAuto.EAP")
 ''use the Repository in any way required
 'DumpModel

 ''close the repository and tidy up
 m_Repository.Exit()
 m_Repository = Nothing

....catch e as exception
 Console.WriteLine(e)
 End try
 End Sub
end Class

7.2.10.2 Iterate Through a .EAP File

public Object

''Assume repository has already been opened.

284

284

285

286

286

287

288

288

290

292

292

293

Enterprise Architect Object Model | Reference 285

© 1998-2010 Sparx Systems Pty Ltd

''Start at the model level
Sub DumpModel()

Dim idx as Integer
For idx=0 to m_Repository.Models.Count-1

DumpPackage("",m_Repository.Models.GetAt(idx))
Next

End Sub

'output package name, then element contents, then process child packages
Sub DumpPackage(Indent as String, Package as Object)

Dim idx as Integer
Console.WriteLine(Indent + Package.Name)
DumpElements(Indent + " ", Package)

For idx = 0 to Package.Packages.Count-1
DumpPackage(Indent + " ", Package.Packages.GetAt(idx))

Next
End Sub

''dump element name
Sub DumpElements(Indent as String, Package as Object)

Dim idx as Integer
For idx = 0 to Package.Elements.Count-1

Console.WriteLine(Indent + "::" + Package.Elements.GetAt(idx).Name)
Next

End Sub

7.2.10.3 Add and Manage Packages

public Object

Example illustrating how to add a Model or a Package.

Sub TestPackageLifecycle

 Dim idx as integer
 Dim idx2 as integer
 Dim package as object
 Dim model as object
 Dim o as object

 ''first add a new Model

 model = m_Repository.Models.AddNew("AdvancedModel","")
 If not model.Update() Then
 Console.WriteLine(model.GetLastError())
 End If

 ''refresh the models collection
 m_Repository.Models.Refresh

 ''now work through models collection and add a package

 For idx = 0 to m_Repository.Models.Count -1
 o = m_Repository.Models.GetAt(idx)
 Console.WriteLine(o.Name)
 If o.Name = "AdvancedModel" Then
 package = o.Packages.Addnew("Subpackage","Nothing")
 If not package.Update() Then
 Console.WriteLine(package.GetLastError())
 End If

 package.Element.Stereotype = "system"
 package.Update

 ''for testing purposes just delete the
 ''newly created Model and its contents
 m_Repository.Models.Delete(idx)

 End If
 Next

Enterprise Architect Object Model | Reference286

Enterprise Architect Software Developers' Kit

End Sub

7.2.10.4 Add and Manage Elements

public Object

''Add and delete elements in a package.

Sub ElementLifecycle

 Dim package as Object
 Dim element as Object

 package = m_Repository.GetPackageByID(2)
 element = package.elements.AddNew("Login to Website","UseCase")
 element.Stereotype = "testcase"
 element.Update
 package.elements.Refresh()

 Dim idx as integer

 ''note the repeated calls to "package.elements.GetAt"
 ''in general you should make this call once and assign to a local
 ''variable - in the example below, Enterprise Architect loads the element required
 ''everytime a call is made - rather than loading once and keeping
 ''a local reference

 For idx = 0 to package.elements.count-1
 Console.WriteLine(package.elements.GetAt(idx).Name)
 If (package.elements.GetAt(idx).Name = "Login to Website" and _
 package.elements.GetAt(idx).Type = "UseCase") Then
 package.elements.deleteat(idx, false)
 End If
 Next
End Sub

7.2.10.5 Add a Connector

public Object

"Add a connector and set values.

Sub ConnectorTest

 Dim source as object
 Dim target as object
 Dim con as object
 Dim o as object

 Dim client as object
 Dim supplier as object

 ''use ElementID's to quickly load an element in this example
 ''... you must find suitable ID's in your model

 source = m_Repository.GetElementByID(129)
 target = m_Repository.GetElementByID(169)

 con = source.Connectors.AddNew ("test link 2", "Association")

 ''again- replace ID with a suitable one from your model
 con.SupplierID = 169

 If not con.Update Then
 Console.WriteLine(con.GetLastError)
 End If
 source.Connectors.Refresh

Enterprise Architect Object Model | Reference 287

© 1998-2010 Sparx Systems Pty Ltd

 Console.WriteLine("Connector Created")

 o = con.Constraints.AddNew ("constraint2","type")
 If not o.Update Then
 Console.WriteLine(o.GetLastError)
 End If

 o = con.TaggedValues.AddNew ("Tag","Value")
 If not o.Update Then
 Console.WriteLine(o.GetLastError)
 End If

''use the client and supplier ends to set
''additional information

 client = con.ClientEnd
 client.Visibility = "Private"
 client.Role = "m_client"
 client.Update
 supplier = con.SupplierEnd
 supplier.Visibility = "Protected"
 supplier.Role = "m_supplier"
 supplier.Update

 Console.WriteLine("Client and Supplier set")

 Console.WriteLine(client.Role)
 Console.WriteLine(supplier.Role)

End Sub

7.2.10.6 Add and Manage Diagrams

public Object

''An example of how to create a diagram and add an element to it.
''Note the optional use of element rectangle setting using
''left,right,top and bottom dimensions in AddNew call.

Sub DiagramLifeCycle

 Dim diagram as object
 Dim v as object
 Dim o as object
 Dim package as object

 Dim idx as Integer
 Dim idx2 as integer

 package = m_Repository.GetPackageByID(5)

 diagram = package.Diagrams.AddNew("Logical Diagram","Logical")
 If not diagram.Update Then
 Console.WriteLine(diagram.GetLastError)
 End if

 diagram.Notes = "Hello there this is a test"
 diagram.update()

 o = package.Elements.AddNew("ReferenceType","Class")
 o.Update

 '' add element to diagram - supply optional rectangle co-ordinates

 v = diagram.DiagramObjects.AddNew("l=200;r=400;t=200;b=600;","")
 v.ElementID = o.ElementID
 v.Update

 Console.WriteLine(diagram.DiagramID)

End Sub

Enterprise Architect Object Model | Reference288

Enterprise Architect Software Developers' Kit

7.2.10.7 Add and Delete Features

public Object

Dim element as object
Dim idx as integer
Dim attribute as object
Dim method as object

'just load an element by ID - you must
'substitute a valid ID from your model
element = m_Repository.GetElementByID(246)

''create a new method
method = element.Methods.AddNew("newMethod", "int")
method.Update
element.Methods.Refresh

'now loop through methods for Element - and delete our addition
For idx = 0 to element.Methods.Count-1
 method =element.Methods.GetAt(idx)
 Console.Writeline(method.Name)
 If(method.Name = "newMethod") Then
 element.Methods.Delete(idx)
 End if
Next

'create an attribute
attribute = element.attributes.AddNew("NewAttribute", "int")
attribute.Update
element.attributes.Refresh

'loop through and delete our new attribute
For idx = 0 to element.attributes.Count-1
 attribute =element.attributes.GetAt(idx)
 Console.Writeline(attribute.Name)
 If(attribute.Name = "NewAttribute") Then
 element.attributes.Delete(idx)
 End If
Next

7.2.10.8 Element Extras

public Object

''Examples of how to access and use element extras, such as
''scenarios, constraints and requirements.

Sub ElementExtras

 Dim element as object
 Dim o as object
 Dim idx as Integer
 Dim bDel as boolean
 bDel = true

 try
 element = m_Repository.GetElementByID(129)

 'manage constraints for an element
 'demonstrate addnew and delete
 o = element.Constraints.AddNew("Appended","Type")
 If not o.Update Then
 Console.WriteLine("Constraint error:" + o.GetLastError())
 End if
 element.Constraints.Refresh
 For idx = 0 to element.Constraints.Count -1
 o = element.Constraints.GetAt(idx)
 Console.WriteLine(o.Name)
 If(o.Name="Appended") Then

Enterprise Architect Object Model | Reference 289

© 1998-2010 Sparx Systems Pty Ltd

 If bDel Then element.Constraints.Delete (idx)
 End if
 Next

 'efforts
 o = element.Efforts.AddNew("Appended","Type")
 If not o.Update Then
 Console.WriteLine("Efforts error:" + o.GetLastError())
 End if
 element.Efforts.Refresh
 For idx = 0 to element.Efforts.Count -1
 o = element.Efforts.GetAt(idx)
 Console.WriteLine(o.Name)
 If(o.Name="Appended") Then
 If bDel Then element.Efforts.Delete (idx)
 End if
 Next

 'Risks
 o = element.Risks.AddNew("Appended","Type")
 If not o.Update Then
 Console.WriteLine("Risks error:" + o.GetLastError())
 End if
 element.Risks.Refresh
 For idx = 0 to element.Risks.Count -1
 o = element.Risks.GetAt(idx)
 Console.WriteLine(o.Name)
 If(o.Name="Appended") Then
 If bDel Then element.Risks.Delete (idx)
 End if
 Next

 'Metrics
 o = element.Metrics.AddNew("Appended","Change")
 If not o.Update Then
 Console.WriteLine("Metrics error:" + o.GetLastError())
 End if
 element.Metrics.Refresh
 For idx = 0 to element.Metrics.Count -1
 o = element.Metrics.GetAt(idx)
 Console.WriteLine(o.Name)
 If(o.Name="Appended") Then
 If bDel Then element.Metrics.Delete (idx)
 End if
 Next

 'TaggedValues
 o = element.TaggedValues.AddNew("Appended","Change")
 If not o.Update Then
 Console.WriteLine("TaggedValues error:" + o.GetLastError())
 End if
 element.TaggedValues.Refresh
 For idx = 0 to element.TaggedValues.Count -1
 o = element.TaggedValues.GetAt(idx)
 Console.WriteLine(o.Name)
 If(o.Name="Appended") Then
 If bDel Then element.TaggedValues.Delete (idx)
 End if
 Next

 'Scenarios
 o = element.Scenarios.AddNew("Appended","Change")
 If not o.Update Then
 Console.WriteLine("Scenarios error:" + o.GetLastError())
 End if
 element.Scenarios.Refresh
 For idx = 0 to element.Scenarios.Count -1
 o = element.Scenarios.GetAt(idx)
 Console.WriteLine(o.Name)
 If(o.Name="Appended") Then
 If bDel Then element.Scenarios.Delete (idx)
 End if

Enterprise Architect Object Model | Reference290

Enterprise Architect Software Developers' Kit

 Next

 'Files
 o = element.Files.AddNew("MyFile","doc")
 If not o.Update Then
 Console.WriteLine("Files error:" + o.GetLastError())
 End if
 element.Files.Refresh
 For idx = 0 to element.Files.Count -1
 o = element.Files.GetAt(idx)
 Console.WriteLine(o.Name)
 If(o.Name="MyFile") Then
 If bDel Then element.Files.Delete (idx)
 End if
 Next

 'Tests
 o = element.Tests.AddNew("TestPlan","Load")
 If not o.Update Then
 Console.WriteLine("Tests error:" + o.GetLastError())
 End if
 element.Tests.Refresh
 For idx = 0 to element.Tests.Count -1
 o = element.Tests.GetAt(idx)
 Console.WriteLine(o.Name)
 If(o.Name="TestPlan") Then
 If bDel Then element.Tests.Delete (idx)
 End if
 Next

 'Defect
 o = element.Issues.AddNew("Broken","Defect")
 If not o.Update Then
 Console.WriteLine("Issues error:" + o.GetLastError())
 End if
 element.Issues.Refresh
 For idx = 0 to element.Issues.Count -1
 o = element.Issues.GetAt(idx)
 Console.WriteLine(o.Name)
 If(o.Name="Broken") Then
 If bDel Then element.Issues.Delete (idx)
 End if
 Next

 'Change
 o = element.Issues.AddNew("Change","Change")
 If not o.Update Then
 Console.WriteLine("Issues error:" + o.GetLastError())
 End if
 element.Issues.Refresh
 For idx = 0 to element.Issues.Count -1
 o = element.Issues.GetAt(idx)
 Console.WriteLine(o.Name)
 If(o.Name="Change") Then
 If bDel Then element.Issues.Delete (idx)
 End if
 Next

 catch e as exception
 Console.WriteLine(element.Methods.GetLastError())
 Console.WriteLine(e)
 End try

End Sub

7.2.10.9 Repository Extras

public Object

'' Examples of how to access repository
'' collections for system level information.

Enterprise Architect Object Model | Reference 291

© 1998-2010 Sparx Systems Pty Ltd

Sub RepositoryExtras

 Dim o as object
 Dim idx as integer

 'issues
 o = m_Repository.Issues.AddNew("Problem","Type")
 If(o.Update=false) Then
 Console.WriteLine (o.GetLastError())
 End if
 o = nothing
 m_Repository.Issues.Refresh
 For idx = 0 to m_Repository.Issues.Count-1
 Console.Writeline(m_Repository.Issues.GetAt(idx).Name)
 If(m_Repository.Issues.GetAt(idx).Name = "Problem") then
 m_Repository.Issues.DeleteAt(idx,false)
 Console.WriteLine("Delete Issues")
 End if
 Next

 ''tasks
 o = m_Repository.Tasks.AddNew("Task 1","Task type")
 If(o.Update=false) Then
 Console.WriteLine ("error - " + o.GetLastError())
 End if
 o = nothing
 m_Repository.Tasks.Refresh
 For idx = 0 to m_Repository.Tasks.Count-1
 COnsole.Writeline(m_Repository.Tasks.GetAt(idx).Name)
 If(m_Repository.Tasks.GetAt(idx).Name = "Task 1") then
 m_Repository.Tasks.DeleteAt(idx,false)
 Console.WriteLine("Delete Tasks")
 End if
 Next

''glossary
 o = m_Repository.Terms.AddNew("Term 1","business")
 If(o.Update=false) Then
 Console.WriteLine ("error - " + o.GetLastError())
 End if
 o = nothing
 m_Repository.Terms.Refresh
 For idx = 0 to m_Repository.Terms.Count-1
 COnsole.Writeline(m_Repository.Terms.GetAt(idx).Term)
 If(m_Repository.Terms.GetAt(idx).Term = "Term 1") then
 m_Repository.Terms.DeleteAt(idx,false)
 Console.WriteLine("Delete Terms")
 End if
 Next

 'authors
 o = m_Repository.Authors.AddNew("Joe B","Writer")
 If(o.Update=false) Then
 Console.WriteLine (o.GetLastError())
 End if
 o = nothing
 m_Repository.Authors.Refresh
 For idx = 0 to m_Repository.authors.Count-1
 COnsole.Writeline(m_Repository.Authors.GetAt(idx).Name)
 If(m_Repository.authors.GetAt(idx).Name = "Joe B") then
 m_Repository.authors.DeleteAt(idx,false)
 Console.WriteLine("Delete Authors")
 End if
 Next

 o = m_Repository.Clients.AddNew("Joe Sphere","Client")
 If(o.Update=false) Then
 Console.WriteLine (o.GetLastError())
 End if
 o = nothing
 m_Repository.Clients.Refresh
 For idx = 0 to m_Repository.Clients.Count-1
 COnsole.Writeline(m_Repository.Clients.GetAt(idx).Name)
 If(m_Repository.Clients.GetAt(idx).Name = "Joe Sphere") then

Enterprise Architect Object Model | Reference292

Enterprise Architect Software Developers' Kit

 m_Repository.Clients.DeleteAt(idx,false)
 Console.WriteLine("Delete Clients")
 End if
 Next

 o = m_Repository.Resources.AddNew("Joe Worker","Resource")
 If(o.Update=false) Then
 Console.WriteLine (o.GetLastError())
 End if
 o = nothing
 m_Repository.Resources.Refresh
 For idx = 0 to m_Repository.Resources.Count-1
 COnsole.Writeline(m_Repository.Resources.GetAt(idx).Name)
 If(m_Repository.Resources.GetAt(idx).Name = "Joe Worker") then
 m_Repository.Resources.DeleteAt(idx,false)
 Console.WriteLine("Delete Resources")
 End if
 Next

End Sub

7.2.10.10 Stereotypes

public Object

Sub TestStereotypes

 Dim o as object
 Dim idx as integer

 ''add a new stereotype to the Stereotypes collection
 o = m_Repository.Stereotypes.AddNew("funky","class")
 If(o.Update=false) Then
 Console.WriteLine (o.GetLastError())
 End if
 o = nothing

 ''make sure you refresh
 m_Repository.Stereotypes.Refresh

 ''then iterate through - deleting our new entry in the process
 For idx = 0 to m_Repository.Stereotypes.Count-1
 COnsole.Writeline(m_Repository.Stereotypes.GetAt(idx).Name)
 If(m_Repository.Stereotypes.GetAt(idx).Name = "funky") then
 m_Repository.Stereotypes.DeleteAt(idx,false)
 Console.WriteLine("Delete element")
 End if
 Next

End Sub

7.2.10.11 Work With Attributes

public Object

''An example of working with attributes.

Sub AttributeLifecycle

 Dim element as object
 Dim o as object
 Dim t as object
 Dim idx as Integer
 Dim idx2 as integer
 try
 element = m_Repository.GetElementByID(129)

 For idx = 0 to element.Attributes.Count -1

Enterprise Architect Object Model | Reference 293

© 1998-2010 Sparx Systems Pty Ltd

 Console.WriteLine("attribute=" + element.Attributes.GetAt(idx).Name)

 o = element.Attributes.GetAt(idx)
 t = o.Constraints.AddNew("> 123","Precision")
 t.Update()
 o.Constraints.Refresh
 For idx2 = 0 to o.Constraints.Count-1
 t = o.Constraints.GetAt(idx2)
 Console.WriteLine("Constraint: " + t.Name)
 If(t.Name="> 123") Then
 o.Constraints.DeleteAt(idx2, false)
 End if
 Next

 For idx2 = 0 to o.TaggedValues.Count-1
 t = o.TaggedValues.GetAt(idx2)
 If(t.Name = "Type2") Then
 'Console.WriteLine("deleteing")
 o.TaggedValues.DeleteAt(idx2, true)
 End if
 Next

 t = o.TaggedValues.AddNew("Type2","Number")
 t.Update
 o.TaggedValues.Refresh
 For idx2 = 0 to o.TaggedValues.Count-1
 t = o.TaggedValues.GetAt(idx2)
 Console.WriteLine("Tagged Value: " + t.Name)
 Next

 If(element.Attributes.GetAt(idx).Name = "m_Tootle") Then
 Console.WriteLine("delete attribute")
 element.Attributes.DeleteAt(idx, false)
 End If

 Next

 catch e as exception
 Console.WriteLine(element.Attributes.GetLastError())
 Console.WriteLine(e)
 End try
End Sub

7.2.10.12 Work With Methods

public Object

''An example of working with the Methods collection
''of an element - and with Method collections.

Sub MethodLifeCycle

 Dim element as object
 Dim method as object
 Dim t as object
 Dim idx as Integer
 Dim idx2 as integer

 try
 element = m_Repository.GetElementByID(129)

 For idx = 0 to element.Methods.Count -1
 method = element.Methods.GetAt(idx)
 Console.WriteLine(method.Name)

 t = method.PreConditions.AddNew("TestConstraint","something")
 If t.Update = false Then
 Console.WriteLine("PreConditions: " + t.GetLastError)
 End if

 method.PreConditions.Refresh

Enterprise Architect Object Model | Reference294

Enterprise Architect Software Developers' Kit

 For idx2 = 0 to method.PreConditions.Count-1
 t = method.PreConditions.GetAt(idx2)
 Console.WriteLine("PreConditions: " + t.Name)
 If t.Name = "TestConstraint" Then
 method.PreConditions.DeleteAt(idx2,false)
 End If
 Next

 t = method.PostConditions.AddNew("TestConstraint","something")
 If t.Update = false Then
 COnsole.WriteLine("PostConditions: " + t.GetLastError)
 End if

 method.PostConditions.Refresh
 For idx2 = 0 to method.PostConditions.Count-1
 t = method.PostConditions.GetAt(idx2)
 Console.WriteLine("PostConditions: " + t.Name)
 If t.Name = "TestConstraint" Then
 method.PostConditions.DeleteAt(idx2, false)
 End If
 Next

 t = method.TaggedValues.AddNew("TestTaggedValue","something")
 If t.Update = false Then
 COnsole.WriteLine("Tagged Values: " + t.GetLastError)
 End if

 For idx2 = 0 to method.TaggedValues.Count-1
 t = method.TaggedValues.GetAt(idx2)
 Console.WriteLine("Tagged Value: " + t.Name)
 If(t.Name= "TestTaggedValue") Then
 method.TaggedValues.DeleteAt(idx2,false)
 End If
 Next

 t = method.Parameters.AddNew("TestParam","string")
 If t.Update = false Then
 Console.WriteLine("Parameters: " + t.GetLastError)
 End if

 method.Parameters.Refresh
 For idx2 = 0 to method.Parameters.Count-1
 t = method.Parameters.GetAt(idx2)
 Console.WriteLine("Parameter: " + t.Name)
 If(t.Name="TestParam") Then
 method.Parameters.DeleteAt(idx2, false)
 End If
 Next

 method = nothing
 Next
 catch e as exception
 Console.WriteLine(element.Methods.GetLastError())
 Console.WriteLine(e)
 End try

End Sub

Index 295

© 1998-2010 Sparx Systems Pty Ltd

Index
- . -
.NET

Garbage Collect (Exit Method) 197

- A -
Add

Code Modules In MDG Technology Wizard 40

Diagram Type In MDG Technology Wizard 36

Enumeration Tags To Stereotypes 14

Images In MDG Technology Wizard 43

Linked Document Template In MDG Technology
Wizard 45

MDA Transforms In MDG Technology Wizard
42

Pattern In MDG Technology Wizard 35

Profile In MDG Technology Wizard 35

RTF Report Template In MDG Technology
Wizard 44

Scripts In MDG Technology Wizard 43

Shape Script To Stereotype In Profile 15

Tagged Value Types In MDG Technology Wizard
 39

Task Panel In MDG Technology Wizard 38

Toolbox In MDG Technology Wizard 37

Add And Delete Attributes

Automation Interface Code Example 288

Add And Delete Methods

Automation Interface Code Example 288

Add And Manage Diagrams

Automation Interface Code Example 287

Add And Manage Elements

Automation Interface Code Example 286

Add And Manage Packages

Automation Interface Code Example 285

Add Connector

Automation Interface Code Example 286

Add Stereotypes

Automation Interface Code Example 292

Add-In

And Enterprise ArchitectDeadlocks (.NET) 126

COM Interoperability 126

Concurrent Method Calls 126

Create 124

Create, Define Menu Items 124

Deploy 125

Disable 128

Enable 128

Events 129

Holding State Information 126

Manage 128

Manager 128

Pre-2004 126

Re-entrancy 126

Run Functions From Tasks Pane 56

Search 128

Search Data 129

Tasks 124

Visual Basic Issues 126

Add-In Event

EA_Connect 130

EA_Disconnect 130

EA_GetMenuItems 131

EA_GetmenuState 131

EA_MenuClick 132

EA_OnOutputItemClicked 133

EA_OnOutputItemDoubleClicked 133

EA_ShowHelp 134

Add-In Model

Add-In Event, EA_Connect 130

Add-In Event, EA_Disconnect 130

Add-In Event, EA_GetMenuItems 131

Add-In Event, EA_GetMenuState 131

Add-In Event, EA_MenuClick 132

Add-In Event, EA_OnOutputItemClicked 133

Add-In Event, EA_OnOutputItemDoubleClicked
 133

Add-In Event, EA_ShowHelp 134

Add-In Event, Overview 129

Add-In Tasks 124

Benefits 123

Broadcast Event, EA_FileClose 136

Broadcast Event, EA_FileNew 136

Broadcast Event, EA_FileOpen 135

Broadcast Event, EA_OnPostCloseDiagram
137

Broadcast Event, EA_OnPostInitialized 151

Broadcast Event, EA_OnPostOpenDiagram
137

Broadcast Event, EA_OnPostTransform 151

Broadcast Event, EA_OnPreExitInstance 146

Broadcast Event, EA_OnRetrieveModelTemplate
 168

Broadcast Events 135

Compartment Events 158

Compartment Events, EA_GetCompartmentData
 159

Compartment Events,
EA_QueryAvailableCompartments 158

Context Item Events 155

Index296

Enterprise Architect Software Developers' Kit

Add-In Model

Context Item Events,
EA_OnContextItemChanged 155, 157

Context Item Events,
EA_OnContextItemDoubleClicked 156

Create Add-In 124

Create Add-In, Tricks and Traps 126

Create Custom View 169

Custom View 169

EA_Connect 130

EA_Disconnect 130

EA_FileClose 136

EA_FileNew 136

EA_FileOpen 135

EA_GetCompartmentData 159

EA_GetMenuItems 131

EA_GetMenuState 131

EA_MenuClick 132

EA_OnContextItemChanged 155, 157

EA_OnContextItemDoubleClicked 156

EA_OnDeleteTechnology 154

EA_OnEndValidation 161

EA_OnImportTechnology 155

EA_OnInitializeTechnologies 152

EA_OnInitializeUserRules 160

EA_OnOutputItemClicked 133

EA_OnOutputItemDoubleClicked 133

EA_OnPostActivateTechnology 153

EA_OnPostCloseDiagram 137

EA_OnPostInitialized 151

EA_OnPostNewAttribute 149

EA_OnPostNewConnector 147

EA_OnPostNewDiagram 148

EA_OnPostNewDiagramObject 148

EA_OnPostNewElement 147

EA_OnPostNewMethod 149

EA_OnPostNewPackage 150

EA_OnPostOpenDiagram 137

EA_OnPostTransform 151

EA_OnPreActivateTechnology 152

EA_OnPreDeleteAttribute 138

EA_OnPreDeleteConnector 139

EA_OnPreDeleteDiagram 140

EA_OnPreDeleteElement 138

EA_OnPreDeleteMethod 139

EA_OnPreDeletePackage 141

EA_OnPreDeleteTechnology 153

EA_OnPreExitInstance 146

EA_OnPreNewAttribute 144

EA_OnPreNewConnector 142

EA_OnPreNewDiagram 143

EA_OnPreNewDiagramObject 143

EA_OnPreNewElement 141

EA_OnPreNewMethod 145

EA_OnPreNewPackage 145

EA_OnRetrieveModelTemplate 168

EA_OnRunAttributeRule 163

EA_OnRunConnectorRule 163

EA_OnRunDiagramRule 162

EA_OnRunElementRule 162

EA_OnRunMethodRule 164

EA_OnRunPackageRule 162

EA_OnRunParameterRule 164

EA_OnStartValidation 161

EA_QueryAvailableCompartments 158

EA_ShowHelp 134

Interface 123

Introduction 123

MDG Add-Ins 170

MDG Add-Ins, MDG Events 170

MDG Events, MDG_BuildProject 171

MDG Events, MDG_Connect 171

MDG Events, MDG_Disconnect 172

MDG Events, MDG_GetConnectedPackages
173

MDG Events, MDG_GetProperty 173

MDG Events, MDG_Merge 174

MDG Events, MDG_NewClass 175

MDG Events, MDG_PostGenerate 176

MDG Events, MDG_PostMerge 176

MDG Events, MDG_PreGenerate 177

MDG Events, MDG_PreMerge 177

MDG Events, MDG_PreReverse 178

MDG Events, MDG_RunExe 179

MDG Events, MDG_View 179

Model Validation Broadcasts 160

Model Validation Broadcasts,
EA_OnEndValidation 161

Model Validation Broadcasts,
EA_OnInitializeUserRules 160

Model Validation Broadcasts,
EA_OnRunAttributeRule 163

Model Validation Broadcasts,
EA_OnRunConnectorRule 163

Model Validation Broadcasts,
EA_OnRunDiagramRule 162

Model Validation Broadcasts,
EA_OnRunElementRule 162

Model Validation Broadcasts,
EA_OnRunMethodRule 164

Model Validation Broadcasts,
EA_OnRunPackageRule 162

Model Validation Broadcasts,
EA_OnRunParameterRule 164

Model Validation Broadcasts,
EA_OnStartValidation 161

Index 297

© 1998-2010 Sparx Systems Pty Ltd

Add-In Model

Model Validation Example 165

Post-New Events 146

Post-New Events, EA_OnPostNewAttribute
149

Post-New Events, EA_OnPostNewConnector
147

Post-New Events, EA_OnPostNewDiagram
148

Post-New Events,
EA_OnPostNewDiagramObject 148

Post-New Events, EA_OnPostNewElement
147

Post-New Events, EA_OnPostNewMethod 149

Post-New Events, EA_OnPostNewPackage
150

Pre-Deletion Events 138

Pre-Deletion Events, EA_OnPreDeleteAttribute
138

Pre-Deletion Events, EA_OnPreDeleteConnector
 139

Pre-Deletion Events, EA_OnPreDeleteDiagram
 140

Pre-Deletion Events, EA_OnPreDeleteElement
138

Pre-Deletion Events, EA_OnPreDeleteMethod
139

Pre-Deletion Events, EA_OnPreDeletePackage
 141

Pre-New Events 141

Pre-New Events, EA_OnPreNewAttribute 144

Pre-New Events, EA_OnPreNewConnector
142

Pre-New Events, EA_OnPreNewDiagram 143

Pre-New Events, EA_OnPreNewDiagramObject
 143

Pre-New Events, EA_OnPreNewElement 141

Pre-New Events, EA_OnPreNewMethod 145

Pre-New Events, EA_OnPreNewPackage 145

Search Data, XML Format 129

Technology Event, EA_OnInitializeTechnologies
 152

Technology Events 152

Technology Events, EA_OnDeleteTechnology
154

Technology Events, EA_OnImportTechnology
155

Technology Events,
EA_OnPostActivateTechnology 153

Technology Events,
EA_OnPreActivateTechnology 152

Technology Events, EA_OnPreDeleteTechnology
 153

App Object

Automation Interface 190

Attribute

Add And Delete, Automation Interface Code
Example 288

Automation Interface, ElementFeatures Package
 244

Of Toolbox Page 48

PData & StyleEx, Diagram Profiles 53

Supported, Create Composite Elements 23

Supported, Define Child Diagram Types 23

Supported, Metatype In UML Profiles 19

Supported, Stereotype In UML Profiles 19

Work With, Automation Interface Code Example
 292

AttributeConstraint

Automation Interface, ElementFeatures Package
 246

AttributeTag

Automation Interface, ElementFeatures Package
 247

Author

Attributes 210

Methods 210

Author Collection

Automation Interface Repository 210

Automation Interface

App Object 190

Attribute, ElementFeatures Package 244

AttributeConstraint, ElementFeatures Package
246

AttributeTag, ElementFeatures Package 247

Available Resources 186

Call Executables From Enterprise Architect
181

Call From Enterprise Architect 185

Code Example, Add And Delete Attributes 288

Code Example, Add And Delete Methods 288

Code Example, Add And Manage Diagrams
287

Code Example, Add And Manage Elements
286

Code Example, Add And Manage Packages
285

Code Example, Add Connector 286

Code Example, Add Stereotypes 292

Code Example, Iterate Through EAP File 284

Code Example, Open The Repository 284

Code Example, Use Element Extras 288

Code Example, Use Repository Extras 290

Code Example, Work With Attributes 292

Code Example, Work With Methods 293

Code Examples, Introduction 284

Connect From Borland Delphi 7.0 181

Connect From Java 181

Connect From MS C# 181

Index298

Enterprise Architect Software Developers' Kit

Automation Interface

Connect From MS Visual Basic 6.0 181

Connect To 181

Connector Package Diagram 255

Connector, Connector Package 257

ConnectorConstraint, Connector Package 256

ConnectorEnd, Connector Package 260

ConnectorTag, Connector Package 262

ConstLayoutStyles Enum 191

Constraint, Element Package 227

CreateBaselineFlag Enum 192

CreateModelType Enum 192

CustomProperties Collection, ElementFeatures
Package 248

Diagram Package 263

Diagram, Diagram Package 264

DiagramLinks, Diagram Package 267

DiagramObjects, Diagram Package 268

Effort, Element Package 227

Element Package Diagram 225

Element Package, File 235

Element, Element Package 228

ElementFeatures Package Diagram 243

EmbeddedElements Collection, ElementFeatures
Package 248

Enumerations 191

EnumRelationSetType Enum 192

Examples 181

Examples and Tips 184

ExportPackageXMIFlag Enum 193

Introduction 181

Issue, Element Package 235

MDGMenus Enum 193

Method, ElementFeatures Package 249

MethodConstraint, ElementFeatures Package
251

MethodTag, ElementFeatures Package 252

Metric, Element Package 236

Model 187

ObjectType Enum 193

Package 187

Parameter, ElementFeatures Package 252

Partitions Collection, ElementFeatures Package
 253

Project Interface 271

Project, Project Interface 271

Properties, ElementFeatures Package 254

Property ElementFeatures Package 254

PropType Enum 194

Reference 186

ReloadType Enum 194

Repository 197

Repository Package 196, 215

Repository, Author Collection 210

Repository, Client Collection 210

Repository, Collection Class 211

Repository, Datatype 213

Repository, EventProperties 214

Repository, EventProperty 214

Repository, ModelWatcher 214

Repository, ProjectIssues 219

Repository, ProjectResource 220

Repository, PropertyType 221

Repository, Reference 222

Repository, Stereotype 223

Repository, Task 223

Repository, Term 224

Requirement, Element Package 237

Resource, Element Package 238

Risk, Element Package 239

RoleTag, Connector Package 263

Scenario, Element Package 239

ScenarioDiagramType Enum 194

ScenarioExtension, Element Package 240

ScenarioStep, Element Package 241

ScenarioStepType Enum 195

ScenarioTestType Enum 195

Set Up Visual Basic 183

Swimlane, Diagram Package 271

SwimlaneDef, Diagram Package 269

Swimlanes, Diagram Package 270

TaggedValue, Element Package 242

Test, Element Package 243

Transitions Collection, ElementFeatures Package
 255

Using 181

VB GetObject Support 190

XMIType Enum 195

Available Resources

Automation Interface 186

- B -
Behavioral Model Templates 109

Branching Macros

Code Template Syntax 106

Broadcast Event

Add-In Model 135

EA_FileClose 136

EA_FileNew 136

EA_FileOpen 135

EA_OnPostCloseDiagram 137

EA_OnPostInitialized 151

EA_OnPostOpenDiagram 137

EA_OnPostTransform 151

Index 299

© 1998-2010 Sparx Systems Pty Ltd

Broadcast Event

EA_OnPreExitInstance 146

EA_OnRetrieveModelTemplate 168

Built-In

Diagram Types 53

- C -
Call

Automation Interface From Enterprise Architect
 185

CLASSGUID

Add-In Hidden Field 128

CLASSTYPE

Add-In Hidden Field 128

Client Collection

Automation Interface Repository 210

Code Module

Add To MDG Technology 40

Code Template

Custom Templates, Create 119

Default Templates 120

Editor 119

Editor, Add New Stereotyped Templates 121

Editor, Create Templates For Custom Languages
 122

Editor, In SDK 118

Export 119

Framework, In SDK 88

Import 119

Syntax, Introduction 88

Syntax, Literal Text 88

Syntax, Macros 89

Syntax, Template Substitution Macros 89

Code Template Syntax

Variable Definitions 117

Variable References 117

Variables 117

Collection Class

Automation Interface Repository 211

Collections, EASL

Action 111

Behaviors 111

Classifier 111

Construct 111

Node 111

State 111

State Machine 111

Transition 111

Trigger 111

Vertex 111

Color Query

Shape Scripts 72

COM Object

.NET Garbage Collect (Exit Method) 197

Compartment Events

Add-In Model 158

EA_GetCompartmentData 159

EA_QueryAvailableCompartments 158

Composite Elements

Metaclass, Create With Supported Attributes
23

Concurrent Method Calls

In Add-Ins 126

Conditional Substitution

Field Substitution Macros, Code Template Syntax
 90

Connect

To Automation Interface 181

Connector

Add, Automation Interface Code Example 286

Automation Interface, Connector Package 257

Shape Script Properties 72

Tagged Value, Use 11

Connector Package

Connector, Automation Interface 257

ConnectorConstraint, Automation Interface
256

ConnectorEnd, Automation Interface 260

ConnectorTag, Automation Interface 262

RoleTag, Automation Interface 263

Connector Package Diagram

Automation Interface 255

ConnectorConstraint

Automation Interface, Connector Package 256

ConnectorEnd

Automation Interface, Connector Package 260

ConnectorTag

Automation Interface, Connector Package 262

ConstLayoutStyles Enum

Automation Interface 191

Constraint

Automation Interface, Element Package 227

Profile 12

Stereotype 12

Context Item Events

Add-In Model 155

EA_OnContextItemChanged 155, 157

EA_OnContextItemDoubleClicked 156

Control Macros

Code Template Syntax 106

Create

Add-In 124

Custom Tagged Values 86

Index300

Enterprise Architect Software Developers' Kit

Create

Custom View, Add-In Model 169

Hidden Submenu In Toolbox Profile 48

Masked Tagged Values 86

MDG Technologies 30

Profiles 5

Reference Data Tagged Values 85

Structured Tagged Values 83

Tasks Pane Profiles 54

Toolbox Profile For MDG Technology 47

UML Profiles 5

CreateBaselineFlag Enum

Automation Interface 192

CreateModelType Enum

Automation Interface 192

CTF

In SDK 88

Custom

Diagram Types 52

Stereotypes 3

Custom Language

Create Templates For In Code Template Editor
 122

Custom Tagged Values

Create 86

Custom View

Add-In Model 169

CustomProperties Collection

Automation Interface, ElementFeatures Package
 248

- D -
Datatype

Automation Interface Repository 213

Default

Templates 120

Default Appearance

Set For Profile Stereotype Objects 17

Default Templates

Override in Code Template Editor 120

Default Toolbox

Override In Profile 49

Define

Stereotype As Metatype 21

Stereotype Constraints 12

Tasks Pane Contexts 57

Tasks Pane Toolbox 55

Validation Configuration For MDG Technology
58

Define Menu Items

Create Add-In 124

Deploy

Add-In 125

MDG Technology From Add-In 59

MDG Technology From File 59

Diagram

Add And Manage, Automation Interface Code
Example 287

Automation Interface, Diagram Package 264

Define Child Type, Supported Attributes 23

Profile Attributes, PData and StyleEx 53

Profiles 52

Save Profile 18

Types, Built In 53

Types, Custom 52

Diagram Package

Automation Interface 263

Diagram, Automation Interface 264

DiagramLinks, Automation Interface 267

DiagramObjects, Automation Interface 268

Swimlane, Automation Interface 271

SwimlaneDef, Automation Interface 269, 270

Diagram Type

Add To MDG Technology 36

DiagramLinks

Automation Interface, Diagram Package 267

DiagramObjects

Automation Interface, Diagram Package 268

Direct Substitution

Field Substitution Macros, Code Template Syntax
 90

Disable

Add-Ins 128

Display

Connector Properties, Shape Scripts 72

Element Properties, Shape Scripts 72

Drawing Methods

Shape Scripts 68

- E -
EA_Connect

Add-In Event 130

EA_Disconnect

Add-In Event 130

EA_FileClose

Broadcast Events, Add-In Model 136

EA_FileNew

Broadcast Events, Add-In Model 136

EA_FileOpen

Broadcast Events, Add-In Model 135

EA_GetCompartmentData

Compartment Events, Add-In Model 159

Index 301

© 1998-2010 Sparx Systems Pty Ltd

EA_GetMenuItems

Add-In Event 131

EA_GetMenuState

Add-In Event 131

EA_MenuClick

Add-In Event 132

EA_OnContextItemChanged

Context Item Events, Add-In Model 155

EA_OnContextItemDoubleClicked

Context Item Events, Add-In Model 156

EA_OnDeleteTechnology

Technology Events, Add-In Model 154

EA_OnEndValidation

Model Validation Broadcasts, Add-In Model
161

EA_OnImportTechnology

Technology Events, Add-In Model 155

EA_OnInitializeTechnologies

Technology Events, Add-In Model 152

EA_OnInitializeUserRules

Model Validation Broadcasts, Add-In Model
160

EA_OnNotifyContextItemModified

Context Item Events, Add-In Model 157

EA_OnOutputItemClicked

Add-In Event 133

EA_OnOutputItemDoubleClicked

Add-In Event 133

EA_OnPostActivateTechnology

Technology Events, Add-In Model 153

EA_OnPostCloseDiagram

Broadcast Events, Add-In Model 137

EA_OnPostInitialized

Broadcast Events, Add-In Model 151

EA_OnPostNewAttribute

Post-New Events, Add-In Model 149

EA_OnPostNewConnector

Post-New Events, Add-In Model 147

EA_OnPostNewDiagram

Post-New Events, Add-In Model 148

EA_OnPostNewDiagramObject

Post-New Events, Add-In Model 148

EA_OnPostNewElement

Post-New Events, Add-In Model 147

EA_OnPostNewMethod

Post-New Events, Add-In Model 149

EA_OnPostNewPackage

Post-New Events, Add-In Model 150

EA_OnPostOpenDiagram

Broadcast Events, Add-In Model 137

EA_OnPostTransform

Broadcast Events, Add-In Model 151

EA_OnPreActivateTechnology

Technology Events, Add-In Model 152

EA_OnPreDeleteAttribute

Pre-Deletion Events, Add-In Model 138

EA_OnPreDeleteConnector

Pre-Deletion Events, Add-In Model 139

EA_OnPreDeleteDiagram

Pre-Deletion Events, Add-In Model 140

EA_OnPreDeleteElement

Pre-Deletion Events, Add-In Model 138

EA_OnPreDeleteMethod

Pre-Deletion Events, Add-In Model 139

EA_OnPreDeletePackage

Pre-Deletion Events, Add-In Model 141

EA_OnPreDeleteTechnology

Technology Events, Add-In Model 153

EA_OnPreExitInstance

Broadcast Events, Add-In Model 146

EA_OnPreNewAttribute

Pre-New Events, Add-In Model 144

EA_OnPreNewConnector

Pre-New Events, Add-In Model 142

EA_OnPreNewDiagram

Pre-New Events, Add-In Model 143

EA_OnPreNewDiagramObject

Pre-New Events, Add-In Model 143

EA_OnPreNewElement

Pre-New Events, Add-In Model 141

EA_OnPreNewMethod

Pre-New Events, Add-In Model 145

EA_OnPreNewPackage

Pre-New Events, Add-In Model 145

EA_OnRetrieveModelTemplate

Broadcast Events, Add-In Model 168

EA_OnRunAttributeRule

Model Validation Broadcasts, Add-In Model
163

EA_OnRunConnectorRule

Model Validation Broadcasts, Add-In Model
163

EA_OnRunDiagramRule

Model Validation Broadcasts, Add-In Model
162

EA_OnRunElementRule

Model Validation Broadcasts, Add-In Model
162

EA_OnRunMethodRule

Model Validation Broadcasts, Add-In Model
164

EA_OnRunPackageRule

Model Validation Broadcasts, Add-In Model
162

EA_OnRunParameterRule

Index302

Enterprise Architect Software Developers' Kit

EA_OnRunParameterRule

Model Validation Broadcasts, Add-In Model
164

EA_OnStartValidation

Model Validation Broadcasts, Add-In Model
161

EA_QueryAvailableCompartments

Compartment Events, Add-In Model 158

EA_ShowHelp

Add-In Event 134

EAP File

Iterate Through, Automation Interface Code
Example 284

EASL

Behavioral Model Templates 109

Code Generation Macros, Behavioral Model
109

Enterprise Architect Simulation Library 109

EASL Collections

Action 111

Behavior 111

Classifier 111

Construct 111

Node 111

State 111

State Machine 111

Transition 111

Trigger 111

Vertex 111

EASL Properties

Action 113

Argument 113

Behavior 113

Call Event 113

ChangeEvent 113

Classifier 113

Condition 113

Construct 113

Edge 113

EventObject 113

Instance 113

Parameter 113

Primitive 113

PropertyObject 113

SignalEvent 113

State 113

StateMachine 113

TimeEvent 113

Transition 113

Trigger 113

Vertex 113

EASL_GET

Code Generation Macro, Behavioral Model
109

EASLList

Code Generation Macro, Behavioral Model
109

Effort

Attributes 227

Automation Interface, Element Package 227

Methods 227

Element

Add And Manage, Automation Interface Code
Example 286

Add To Profile 6

Automation Interface, Element Package 228

Icon, Project Browser, User-Defined 19

Shape Script Properties 72

Use Extras, Automation Interface Code Example
 288

Element Package, Automation Interface

Constraint 227

Diagram 225

Effort 227

Element 228

File 235

Issue 235

Metric 236

Requirement 237

Resource 238

Risk 239

Scenario 239

ScenarioExtension 240

ScenarioStep 241

TaggedValue 242

Test 243

Element Templates

And Profiles 3

ElementFeatures Package, Automation Interface

Attribute 244

AttributeConstraint 246

AttributeTag 247

CustomProperties Collection 248

Diagram 243

EmbeddedElements Collection 248

Method 249

MethodConstraint 251

MethodTag 252

Parameter 252

Partitions Collection 253

Properties 254

Property 254

Transitions Collection 255

EmbeddedElements Collection

Index 303

© 1998-2010 Sparx Systems Pty Ltd

EmbeddedElements Collection

Automation Interface, ElementFeatures Package
 248

Enable

Add-Ins 128

Enterprise Architect

Add-In Model 123

Object Model, Introduction 181

SDK, Introduction 2

Enterprise Architect Simulation Library

Behavioral Model Templates 109

EASL Code Generation 109

EASL_GET Macro 109

EASLList Macro 109

Enumeration

Automation Interface 191

ConstLayoutStyles 191

CreateBaselineFlag 192

CreateModelType 192

EnumRelationSetType 192

ExportPackageXMIFlag 193

MDGMenus 193

ObjectType 193

PropType 194

ReloadType 194

ScenarioDiagramType 194

ScenarioStepType 195

ScenarioTestType 195

XMIType 195

Enumeration Elements

Add To Profiles 14

EnumRelationSetType Enum

Automation Interface 192

EventProperties

Automation Interface Repository 214

EventProperty

Automation Interface Repository 214

Examples And Tips

Automation Interface 184

Export

Code Templates 119

Profile 17

UML Profile 17

ExportPackageXMIFlag Enum

Automation Interface 193

Extend

UML Toolbox Connectors 51

UML Toolbox Elements 50

- F -
Field Substitution Macros

Access Data from Attributes 90

Access Data from Classes 90

Access Data from Operations 90

Access Data from Packages 90

Access Data from Parameters 90

Conditional Substitution 90

Direct Substitution 90

File

Element Package, Automation Interface 235

Function

Macros, Code Template Syntax 103

- H -
Hidden Submenu

Create In Toolbox Profile 48

- I -
Icon

Project Browser, User Defined 19

Icons

For Toolbox Items, Assign 49

Image

Add To MDG Technology 43

Import

Code Templates 119

Instance

Define Behavior On Creation, Supported
Attributes 22

Introduction

To Enterprise Architect SDK 2

To Quick Linker 25

To Shape Scripts 61

To Tagged Value Types 81

Issue (Defect)

Automation Interface, Element Package 235

Iterate Through EAP File

Automation Interface Code Example 284

- L -
Language

Custom, Create Templates For In Code
Template Editor 122

Linked Document Template

Add To MDG Technology 45

List Macro

Code Template Syntax 106

Index304

Enterprise Architect Software Developers' Kit

- M -
Macro

Branching 106

Code Template Syntax 106

Control 106

Field Substitution, Code Template Syntax 90

Function, Code Template Syntax 103

List 106

PI 106

Synchronization 106

Tagged Value, Code Template Syntax 102

Template Substitution, Code Template Syntax
89

Macros

Behavioral Model 109

Code Template Syntax 89

EASL Code Generation 109

EASL_GET 109

EASLList 109

Manage

Add-Ins 128

Masked Tagged Values

Create 86

MDA Transform

Add To MDG Technology 42

MDG Add-Ins

Add-In Model 170

MDG Events 170

MDG_BuildProject 171

MDG_Connect 171

MDG_Disconnect 172

MDG_GetConnectedPackages 173

MDG_GetProperty 173

MDG_Merge 174

MDG_NewClass 175

MDG_PostGenerate 176

MDG_PostMerge 176

MDG_PreGenerate 177

MDG_PreMerge 177

MDG_PreReverse 178

MDG_Run_Exe 179

MDG_View 179

MDG Events

Add-In Model 170

MDG_BuildProject 171

MDG_Connect 171

MDG_Disconnect 172

MDG_GetConnectedPackages 173

MDG_GetProperty 173

MDG_Merge 174

MDG_NewClass 175

MDG_PostGenerate 176

MDG_PostMerge 176

MDG_PreGenerate 177

MDG_PreMerge 177

MDG_PreReverse 178

MDG_Run_Exe 179

MDG_View 179

MDG Technology

Create 30

Create Toolbox Profile For 47

Define Tasks Pane Profile 54

Define Validation Configuration 58

Deploy From Add-In 59

Deploy From File 59

Example Of Development 30

In SDK 30

Include Custom Diagram Types 52

Incorporate Model Template 59

MDG Technology Selection (MTS) File 46

MDG Technology Wizard

Add Code Modules 40

Add Diagram Type To Technology 36

Add Images 43

Add Linked Document Template To Technology
 45

Add MDA Transforms 42

Add Pattern To Technology 35

Add Profile To Technology 35

Add RTF Report Template To Technology 44

Add Scripts 43

Add Tagged Value Types 39

Add Task Panel To Technology 38

Add Toolbox To Technology 37

Create Technologies 30

MDG_BuildProject

Add-In Model 171

MDG_Connect

Add-In Model 171

MDG_Disconnect

Add-In Model 172

MDG_GetConnectedPackages

Add-In Model 173

MDG_GetProperty

Add-In Model 173

MDG_Merge

Add-In Model 174

MDG_NewClass

Add-In Model 175

MDG_PostGenerate

Add-In Model 176

MDG_PostMerge

Index 305

© 1998-2010 Sparx Systems Pty Ltd

MDG_PostMerge

Add-In Model 176

MDG_PreGenerate

Add-In Model 177

MDG_PreMerge

Add-In Model 177

MDG_PreReverse

Add-In Model 178

MDG_Run_Exe

Add-In Model 179

MDG_View

Add-In Model 179

MDGMenus Enum

Automation Interface 193

Menu

Items, Define In Add-In 124

Metaclass

Add To Profile 6

Method

Add And Delete, Automation Interface Code
Example 288

Automation Interface, ElementFeatures Package
 249

Work With, Automation Interface Code Example
 293

MethodConstraint

Automation Interface, ElementFeatures Package
 251

MethodTag

Automation Interface, ElementFeatures Package
 252

Metric

Automation Interface, Element Package 236

MigrateToBPMN11()

Function 271

MiscData 228

Model

Automation Interface 187

Templates, Incorporate In Technology 59

Model Search

Access From Add-In 128

Define In MTS File 46

Model Validation

Define Configuration For MDG Technology 58

Model Validation Broadcasts

Add-In Model 160

EA_OnEndValidation 161

EA_OnInitializeUserRules 160

EA_OnRunAttributeRule 163

EA_OnRunConnectorRule 163

EA_OnRunDiagramRule 162

EA_OnRunElementRule 162

EA_OnRunMethodRule 164

EA_OnRunPackageRule 162

EA_OnRunParameterRule 164

EA_OnStartValidation 161

Model Validation Example 165

Model Views

Define In MTS File 46

Models Collection 197

ModelWatcher

Automation Interface Repository 214

MTS File

Advanced Options 46

Create 46

Incorporate Model Search 46

Incorporate Model View 46

Working With 46

Multiple Stereotype

Restrict Application Of 21

- O -
ObjectType Enum

Automation Interface 193

Open Repository

Automation Interface Code Example 284

Override

Default Toolbox In Toolbox Profile 49

- P -
Package

Add And Manage, Automation Interface Code
Example 285

Automation Interface 187

Automation Interface Repository 215

Profile 5

Save Profile 18

Parameter

Automation Interface, ElementFeatures Package
 252

Partitions Collection

Automation Interface, ElementFeatures Package
 253

Pattern

Add To MDG Technology 35

PDATA

Diagram Profile Attribute Values 53

Element Attribute In MiscData, Object Model
228

PI Macro

Code Template Syntax 106

Post-New Events

Add-In Model 146

Index306

Enterprise Architect Software Developers' Kit

Post-New Events

EA_OnPostNewAttribute 149

EA_OnPostNewConnector 147

EA_OnPostNewDiagram 148

EA_OnPostNewDiagramObject 148

EA_OnPostNewElement 147

EA_OnPostNewMethod 149

EA_OnPostNewPackage 150

Predefined Tag Type

Assign To Stereotype 9

Define 9

Predefined Tagged Value Type

Filters 81

Reference Data 84

Structured 81

Syntax 81, 84

Pre-Deletion Events

Add-In Model 138

EA_OnPreDeleteAttribute 138

EA_OnPreDeleteConnector 139

EA_OnPreDeleteDiagram 140

EA_OnPreDeleteElement 138

EA_OnPreDeleteMethod 139

EA_OnPreDeletePackage 141

Pre-New Events

Add-In Model 141

EA_OnPreNewAttribute 144

EA_OnPreNewConnector 142

EA_OnPreNewDiagram 143

EA_OnPreNewDiagramObject 143

EA_OnPreNewElement 141

EA_OnPreNewMethod 145

EA_OnPreNewPackage 145

Profile

Add Elements 6

Add Enumeration Elements 14

Add Metaclasses 6

Add Shape Script 15

Add Stereotypes 6

Add To MDG Technology 35

And Element Templates 3

Constraints 12

Create 5

Diagram, Create 52

Export 17

Import From XML 3

Package 5

Save From Diagram 18

Save From Package 18

Set Default Appearance Of Stereotype Objects
17

Stereotype 5, 24

Stereotypes 3

Tags 8

Tasks Pane, Create 54

Toolbox 47

Work With 5

Project Browser

Icon, User-Defined 19

Project Interface

Automation Interface 271

Project 271

ProjectIssues

Automation Interface Repository 219

ProjectResource

Automation Interface Repository 220

Properties

Automation Interface, ElementFeatures Package
 254

Properties, EASL

Action 113

Argument 113

Behavior 113

Call Event 113

ChangeEvent 113

Classifier 113

Condition 113

Construct 113

Edge 113

EventObject 113

Instance 113

Parameter 113

Primitive 113

PropertyObject 113

SignalEvent 113

State 113

StateMachine 113

TimeEvent 113

Transition 113

Trigger 113

Vertex 113

Property

Automation Interface, ElementFeatures Package
 254

PropertyType

Automation Interface Repository 221

PropType Enum

Automation Interface 194

- Q -
Query Methods

In Shape Scripts 72

Quick Linker

Index 307

© 1998-2010 Sparx Systems Pty Ltd

Quick Linker

Connector Names 29

Default Settings, Hide 28

Definition Format 25

Element Names 29

Example 27

Introduction 25

- R -
Re-entrancy

In Add-Ins 126

Reference

Automation Interface 186

Automation Interface Repository 222

Reference Data Tagged Value Type 84

Reference Data Tagged Values

Create 85

ReloadType Enumeration

Automation Interface 194

Repository

Attributes 197

Author Collection 210

Automation Interface 197

Client Collection 210

Collection Class 211

Datatype 213

EventProperties 214

EventProperty 214

Methods 197

ModelWatcher 214

Open, Automation Interface Code Example
284

Package 215

Package, Automation Interface 196

ProjectIssues 219

ProjectResource 220

PropertyType 221

Reference 222

Stereotype 223

Task 223

Term 224

Use Extras, Automation Interface Code Example
 290

Requirement

Automation Interface, Element Package 237

Reserved Names

In Shape Scripts, Connectors 76

In Shape Scripts, Elements 76

Resource

Automation Interface, Element Package 238

Risk

Automation Interface, Element Package 239

RoleTag

Automation Interface, Connector Package 263

RTF Report Template

Add To MDG Technology 44

- S -
Save

Profile From Diagram Context 18

Profile From Package Context 18

Tasks Pane Profile 58

Scenario

Automation Interface, Element Package 239

ScenarioDiagramType Enum

Automation Interface 194

ScenarioExtension

Automation Interface, Element Package 240

ScenarioStep

Automation Interface, Element Package 241

ScenarioStepType Enum

Automation Interface 195

ScenarioTestType Enum

Automation Interface 195

Script

Add To MDG Technology 43

SDK

Enterprise Architect 2

Search

Add-In 128

Search Data Parameter

Add-In Search 129

Shape

<LabelID> 76

Attributes 66

Decoration 76

Editor 64

Label 76

Main 76

Source 76

Target 76

Shape Attributes

Shape Scripts 66

Shape Editor 64

Shape Scripts

Add To Profile 15

Arithmetical Operations 76

Assign To Stereotype 61

Basic Shapes 77

Change Font Of Text 76

Cloud Path 77

Index308

Enterprise Architect Software Developers' Kit

Shape Scripts

Color Queries 72

Comments 76

Conditional Branching 72

Connector 77

Create 61

Custom Shapes 61

Display Element Properties 72

Double Line 77

Drawing Methods 68

Editable Field 77

Example Shape Scripts 77

Filled Arrow 77

Fonts 76

Getting Started 61

Introduction 61

Looping 76

Miscellaneous 76

Multiple Condition 77

Override Element Appearance 61

Properties, Connector 72

Properties, Element 72

Query Methods 72

Reserved Names, Connectors 76

Reserved Names, Elements 76

Return Statement 77

Shape Attributes 66

Shape Editor 64

Single Condition 77

Stereotypes 61

String Manipulation 76

Subshape 77

Subshape Layout 75

Syntax Grammar 65

Terminate Execution 76

Variable Declarations 76

Without Stereotypes 76

Writing Scripts 65

Software Development Kit

Enterprise Architect 2

Stereotype

Add Shape Script In Profile 15

Add To Profile 6

Add, Automation Interface Code Example 292

Automation Interface Repository 223

Custom 3

Define As Metatype 21

Dialog 3

Multiple, Restrict Application Of 21

Predefined Tag Types 9

Profile 24

Set Default Appearance Of Objects In Profile
17

Tagged Values In Profile 8

Tags For Supported Attributes 10

Tags, Define 8

Structured Tagged Value Type 81

Structured Tagged Values

Create 83

StyleEx

Diagram Profile Attribute Values 53

Submenu

Hidden, Create In Toolbox Profile 48

Subshape

Example 75

In Shape Scripts 75

Substitution

Conditional 90

Direct 90

Macro 72

Supported Attribute

Create Composite Elements 23

Define Behavior On Creating Instance 22

Define Child Diagram Types 23

Metatype, In UML Profiles 19

Of Stereotype Tags 10

Stereotype, In UML Profiles 19

Supported Stereotype Attribute Tags 10

SwimlaneDef

Automation Interface, Diagram Package 269

Swimlanes

Automation Interface, Diagram Package 270,
271

Synchronization

Macros, Code Template Syntax 106

Syntax Grammar

Shape Scripts 65

- T -
Tag

Profile 8

Tag Type

Predefined, Assign To Stereotype 9

Tagged Value

Connector, Use 11

Custom, Create 86

Element Package, Automation Interface 242

Macros, Code Template Syntax 102

Masked, Create 86

Reference Data, Create 85

Structured, Create 83

Tagged Value Type

Index 309

© 1998-2010 Sparx Systems Pty Ltd

Tagged Value Type

Add To MDG Technology 39

Filters 81

Introduction 81

Predefined Reference Data 84

Predefined Structured 81

TaggedValue

Automation Interface, Element Package 242

Task

Automation Interface Repository 223

Task Panel

Add To MDG Technology 38

Tasks Pane

Allocate Toolbox To Contexts 57

Commands, Built In 55

Contexts, Define 57

Named Contexts 57

Profiles, Create 54

Run Add-In Functions From 56

Save Profile 58

Toolboxes, Define 55

Technology Event

EA_OnInitializeTechnologies 152

Technology Events

Add-In Model 152

EA_OnDeleteTechnology 154

EA_OnImportTechnology 155

EA_OnPostActivateTechnology 153

EA_OnPreActivateTechnology 152

EA_OnPreDeleteTechnology 153

Template

Behavioral Model 109

Editor In SDK 118

Model, Incorporate In Technology 59

Term

Automation Interface Repository 224

Test

Automation Interface, Element Package 243

Toolbox

Add To MDG Technology 37

Connectors For Extending In Profile 51

Customize 47

Default, Override In Profile 49

Elements For Extending 50

Override Default In Toolbox Profile 49

Page Attributes 48

Profile, Create For MDG Technology 47

Profiles 47

Tasks Pane, Define 55

Toolbox Profile

Connectors For Extending 51

Create Hidden Submenu In 48

Items, Assign Icons For 49

Pages That Can be Overridden 50

Transitions Collection

Automation Interface, ElementFeatures Package
 255

Tricks and Traps

Create Add-In 126

- U -
UML Profile

And Element Templates 3

Create 5

Export 17

Import From XML 3

Save From Diagram 18

Save From Package 18

Stereotypes 3

Work With 5

Use Element Extras

Automation Interface Code Example 288

Use Repository Extras

Automation Interface Code Example 290

- V -
Validation

Of Model, Configure For MDG Technology 58

Variable

Definitions, Code Template Syntax 117

Definitions, Examples 117

References, Code Template Syntax 117

References, Examples 117

VB

Set Up In Automation Interface 183

Visual Basic

Connect To Automation Interface 181

Set Up In Automation Interface 183

- W -
Work With

Attributes, Automation Interface Code Example
 292

Methods, Automation Interface Code Example
293

- X -
XMIType Enum

Automation Interface 195

Enterprise Architect Software Developers' Kit
www.sparxsystems.com

	SDK for Enterprise Architect
	Developing Profiles
	Custom Stereotypes
	Create Profiles
	Create a Profile Package
	Add Stereotypes and Metaclasses
	Define Stereotype Tagged Values
	With Predefined Tag Types
	With Supported Attributes
	Use the Tagged Value Connector

	Define Stereotype Constraints
	Add Enumeration Elements
	Add Shape Scripts
	Set Default Appearance
	Export a UML Profile
	Save Profile Options

	Supported Attributes
	Define a Stereotype as a Metatype
	Define Multiple-Stereotype Level
	Define Creation of Instance
	Create Composite Elements
	Define Child Diagram Types

	Stereotype Profiles

	Quick Linker
	Quick Linker Definition Format
	Quick Linker Example
	Hide Default Quick Linker Settings
	Quick Linker Object Names

	MDG Technologies in SDK
	Create MDG Technologies
	Add a Profile
	Add a Pattern
	Add a Diagram Profile
	Add a Toolbox Profile
	Add Task Panel Pages
	Add Tagged Value Types
	Add Code Modules
	Add MDA Transforms
	Add Images
	Add Scripts
	Add RTF Report Templates
	Add Linked Document Templates

	Working with MTS Files
	Customize Toolbox Profiles
	Create Toolbox Profiles
	Toolbox Page Attributes

	Create Hidden Sub-Menus
	Override Default Toolboxes
	Assign Icons To Toolbox Items
	Enterprise Architect Toolboxes
	Elements Used in Toolboxes
	Connectors Used In Toolboxes

	Create Diagram Profiles
	Built-In Diagram Types
	Attribute Values - stylex & pdata

	Create Tasks Pane Profiles
	Define Tasks Pane Toolboxes
	Built-In Tasks Pane Commands
	Run Add-In Functions

	Define Tasks Pane Contexts
	Allocate Tasks Pane Contexts
	Save a Tasks Pane Profile

	Define Validation Configuration
	Incorporate Model Templates
	Deploy An MDG Technology

	Shape Scripts
	Getting Started With Shape Scripts
	Shape Editor
	Write Scripts
	Syntax Grammar
	Shape Attributes
	Drawing Methods
	Color Queries
	Conditional Branching
	Query Methods
	Display Item Properties
	Sub-Shapes
	Reserved Names
	Miscellaneous

	Example Scripts

	Tagged Value Types
	Predefined Structured Types
	Create Structured Tagged Values
	Predefined Reference Data Types
	Create Reference Data Tagged Values
	Create Custom Tagged Value Type

	Code Template Framework in SDK
	Code Template Syntax
	Literal Text
	Macros
	Template Substitution Macros
	Field Substitution Macros
	Tagged Value Macros
	Function Macros
	Control Macros
	EASL Code Generation Macros
	EASL Collections
	EASL Properties

	Variables

	The Code Template Editor in SDK
	Custom Templates
	Override Default Templates
	Add New Stereotyped Templates
	Create Custom Language Template

	Enterprise Architect Add-In Model
	Add-In Tasks
	Create Add-Ins
	Define Menu Items
	Deploy Add-Ins
	Tricks and Traps

	The Add-In Manager
	Add-In Search
	XML Format (Search Data)

	Add-In Events
	EA_Connect
	EA_Disconnect
	EA_GetMenuItems
	EA_GetMenuState
	EA_MenuClick
	EA_OnOutputItemClicked
	EA_OnOutputItemDoubleClicked
	EA_ShowHelp

	Broadcast Events
	EA_FileOpen
	EA_FileClose
	EA_FileNew
	EA_OnPostCloseDiagram
	EA_OnPostOpenDiagram
	Pre-Deletion Events
	EA_OnPreDeleteElement
	EA_OnPreDeleteAttribute
	EA_OnPreDeleteMethod
	EA_OnPreDeleteConnector
	EA_OnPreDeleteDiagram
	EA_OnPreDeletePackage

	Pre-New Events
	EA_OnPreNewElement
	EA_OnPreNewConnector
	EA_OnPreNewDiagram
	EA_OnPreNewDiagramObject
	EA_OnPreNewAttribute
	EA_OnPreNewMethod
	EA_OnPreNewPackage

	EA_OnPreExitInstance
	Post-New Events
	EA_OnPostNewElement
	EA_OnPostNewConnector
	EA_OnPostNewDiagram
	EA_OnPostNewDiagramObject
	EA_OnPostNewAttribute
	EA_OnPostNewMethod
	EA_OnPostNewPackage

	EA_OnPostInitialized
	EA_OnPostTransform
	Technology Events
	EA_OnInitializeTechnologies
	EA_OnPreActivateTechnology
	EA_OnPostActivateTechnology
	EA_OnPreDeleteTechnology
	EA_OnDeleteTechnology
	EA_OnImportTechnology

	Context Item Events
	EA_OnContextItemChanged
	EA_OnContextItemDoubleClicked
	EA_OnNotifyContextItemModified

	Compartment Events
	EA_QueryAvailableCompartments
	EA_GetCompartmentData

	Model Validation Broadcasts
	EA_OnInitializeUserRules
	EA_OnStartValidation
	EA_OnEndValidation
	EA_OnRunElementRule
	EA_OnRunPackageRule
	EA_OnRunDiagramRule
	EA_OnRunConnectorRule
	EA_OnRunAttributeRule
	EA_OnRunMethodRule
	EA_OnRunParameterRule
	Model Validation Example

	EA_OnRetrieveModelTemplate

	Custom Views
	Create a Custom View

	MDG Add-Ins
	MDG Events
	MDGBuild Project
	MDGConnect
	MDGDisconnect
	MDGGetConnectedPackages
	MDGGetProperty
	MDGMerge
	MDGNewClass
	MDGPostGenerate
	MDGPostMerge
	MDGPreGenerate
	MDGPreMerge
	MDGPreReverse
	MDGRunExe
	MDGView

	Enterprise Architect Object Model
	Using the Automation Interface
	Connect to the Interface
	Set References In Visual Basic

	Examples and Tips
	Call from Enterprise Architect
	Available Resources

	Reference
	Interface Overview
	App
	Enumerations
	ConstLayoutStyles Enum
	CreateBaselineFlag Enum
	CreateModelType Enum
	EAEditionTypes Enum
	EnumRelationSetType Enum
	ExportPackageXMIFlag Enum
	MDGMenus Enum
	ObjectType Enum
	PropType Enum
	ReloadType Enum
	ScenarioDiagramType Enum
	ScenarioStepType Enum
	ScenarioTestType Enum
	XMIType Enum

	Repository
	Repository
	Author
	Client
	Collection
	Datatype
	EventProperties
	EventProperty
	ModelWatcher
	Package
	ProjectIssues
	ProjectResource
	PropertyType
	Reference
	Stereotype
	Task
	Term

	Element
	Constraint
	Effort
	Element
	File
	Issue (Maintenance)
	Metric
	Requirement
	Resource
	Risk
	Scenario
	ScenarioExtension
	ScenarioStep
	TaggedValue
	Test

	Element Features
	Attribute
	AttributeConstraint
	AttributeTag
	CustomProperties
	EmbeddedElements
	Method
	MethodConstraint
	MethodTag
	Parameter
	Partitions
	Properties
	Transitions

	Connector
	ConnectorConstraint
	Connector
	ConnectorEnd
	ConnectorTag
	RoleTag

	Diagram
	Diagram
	DiagramLinks
	DiagramObjects
	SwimlaneDef
	Swimlanes
	Swimlane

	Project Interface
	Project

	Code Samples
	Open the Repository
	Iterate Through a .EAP File
	Add and Manage Packages
	Add and Manage Elements
	Add a Connector
	Add and Manage Diagrams
	Add and Delete Features
	Element Extras
	Repository Extras
	Stereotypes
	Work With Attributes
	Work With Methods

