
Applying MDA to the Development
of Air Traffic Management Systems

CASE STUDY

Introduction CHALLENGE

The AD4 project team needed
to improve both the quality and
safety aspects of the
development of Air-Traffic
Management systems. Based
on the existing D3 System, the
AD4 project was challenged
with a geographically distributed
development team, targeting
multiple execution platforms.

WHY ENTERPRISE
ARCHITECT

Sparx Systems Enterprise
Architect provided the AD4
team with advanced UML 2
modeling capabilities, in
addition to a powerful plug-in
architecture that enabled
models to be seamlessly
integrated into the entire AD4
tool chain.

BENEFIT

By using a Model Driven
Architecture (MDA) approach
with Enterprise Architect, the
AD4 team facilitated
implementation for multiple
target platforms, while ensuring
improved system quality
through early fault detection
using platform independent
models.

Increased efficiency and improved quality in software development is an objective that is
common to all organizations and projects. Different approaches can be adopted depending
on the particularities of the organization in question and their suitability within the context of
project execution and management.

Model-Driven ArchitectureTM (MDA) is usually portrayed as a means to perform the same
amount of work with less people, ensuring in addition, improved quality of the software
developed, decreased time to make changes to existing systems, and organizational
know-how kept within the core of the products, namely through their models.

Some of these aspects are extremely important for specific types of systems. An example
is an air-traffic management system, which must be free of defects, straightforward to modify
and comprehensively documented. A typical and logical question posed by decision-making
people, however, is how MDA could be successfully introduced in such projects.

We find that the three important factors for successful application of MDA are (1) basing
the MDA-application on an existing product, (2) defining an appropriate life cycle, and
(3) developing and using a tool chain with which to implement the software system.
Applying MDA for the first time is much easier when there is available good domain
knowledge and a clear idea about what should be modelled and the expected outputs
from the model transformations.

The resulting improvements from the application of MDA to this software development
process could be estimated through the use of metrics and empirical validation. However, at
the time of writing, this exercise has not been carried out in its entirety; the results were only
“validated” by customer satisfaction. With respect to the life cycle, an important prerequisite
is to ensure effective and efficient learning from experience, and on-time delivery of quality
results despite the potential difficulties with adopting the new technology.

This paper describes our experience when applying MDA to the development of an air-traffic
management system. We discuss the complementarities of these factors using this
particular case as an example.

Applying MDA to the Development of Air Traffic Management Systems

Background “Enterprise Architect

provides a good plug-in

mechanism which allows

the easy integration of

custom made plug-ins. This

was vital for the seamless

integration within the AD4

tool chain.”

—Terry Bailey
R&D Project Leader

European Software Institute

Aircraft coordination in increasingly crowded airspace is becoming a major concern for
air traffic management authorities around the world. Conventional management schemes
are being replaced by extensively computer-integrated Air Traffic Management (ATM)
Systems to maintain safety levels and increase throughput of congested airways.
One of the primary goals of introducing ATM systems is to provide the controllers with
as much information as they need to effectively manage the air traffic and present such
information in a comprehensive form while taking care not to overload controllers with
unnecessary information.

Research and development activities in this area have been established with the
D3 system, developed by NEXT S.p.A. for an Italian national project. D3 System provides a 3D
System for geo-referenced data representation and visualisation. The AD4 project extends D3
and develops an innovative Virtual Air-Space representation for ATM Systems to provide the
controllers with the ability to use 3D data about the air traffic/airport space in real time.

To develop and validate the requirements for the AD4 system, observations and in-depth
analysis of the work practices and strategies used by the air traffic controllers have been
carried out and a number of operational scenarios have been defined. The resulting system
requirements together with the technical solution of the D3 system are the basis for the
architectural design of the AD4 System.

From the point of view of the MDA technology, the principal benefit of having the D3 system
available is that it significantly facilitates the understanding of what the resulting product has
to accomplish and how it is expected to work. Having a correct idea about the operational
aspects of a software product is a crucial point in the MDA-development. It enables formal
specification by means of models, initially leaving aside the technological and engineering
details which are irrelevant to the fundamental functionality of the software system. At the
same time, knowing the background system guarantees, to a great extent, the correctness
of the architectural solution for AD4. In particular, it ensures that the AD4 components and
their interfaces are adequately defined.

As a successor of D3, a number of specific requirements exist with respect to AD4.
Namely, it has to be a distributed component based system, reusing existing D3 components
and providing integration with external, pre-selected platforms.

Additionally, the AD4 development has to be model-driven. In order to minimize the risk of
applying the new MDA technology and to ensure rapid development of the AD4 system,
agile approaches to software development also need to be put in place.

AD4 life cycle

A System Development Life Cycle is the overall process of developing a software system
through a multi step process from investigation of initial requirements through analysis,
design, implementation and maintenance. Defining an appropriate life cycle for a project
helps to achieve predictable results and to coordinate resources. This is an essential
success factor for a project such as AD4, developing big and complex systems, involving
specialists from different organizations and countries.

Taking into consideration that the AD4 system (i) is based on the D3 software, which
includes a number of components, to be reused, (ii) is developed by a distributed team
of experts in the ATM domain and in software development, and (iii) involves exploration
of the new MDA technology, a number of constraints to the life cycle are identified.

Applying MDA to the Development of Air Traffic Management Systems

More precisely, it has to:

• Support component-based development
• Support model-based development
• Be iterative
• Support collaboration of distributed teams
• Support learning from experience.

A number of established life cycle models have been investigated with respect to their
suitability to the AD4 project. Among these are the Component-based software development
life cycle model, Spiral Rapid Application development, Also, life cycles derived from the
best known agile methods, Agile Modelling, eXtreme Programming, Feature Driven
Development and Adaptive Software Development] have been analyzed.

A key feature of the component-based software development life cycle model is the
emphasis on reusability during software creation, and the production of components
that are meant to be used in future projects.

Challenges

Reusability implies the use of composition techniques during software development, which
is achieved by initially selecting reusable components and assembling them or by adapting
the software to a point where it is possible to pick out components from a library.

In general, this life cycle model supports the requirement to build the AD4 system based
on components and to reuse components from D3. However, since D3 was developed within
another R&D project, the system components have not been fully packaged as to be easily
reused in future similar applications. This implies performing additional activities related to
the completion and the preparation of these components for usage in AD4. Moreover, this
has to be aligned with the scope and the effort planned for the AD4 project, i.e. it requires
decision making for each D3 component to be included in AD4.

Another problem is that the AD4 system is foreseen to be integrated in different platforms.
Additionally, specific security aspects have to be considered and implemented in it. Since
both, the platforms and the definition of the security aspects to be addressed in AD4 are a
subject to investigate, the life cycle should provide the necessary flexibility with respect to
changing requirements. This is not that easy in the component-based life cycle due to the
extent of rework related to completing the components.

The agile methodologies provide features like iterativity, team collaboration and learning
from experience. These methods are also suitable for developing products which
requirements are rather in a process of investigation. However, the agile methods are
not quite appropriate when the product development is carried out by teams distributed in
several countries, with different types of expertise and different levels of experience with
the technologies to be used. Therefore, only some of the most relevant aspects have been
selected to be included in the AD4 life cycle.

With respect to the MDA technology, it is important that the life cycle reflects the
development of a tool chain, which will be used to implement the software system.
The process of tool chain development includes the following steps (1) identifying the
Platform Independent Model (PIM) and the Platform Specific Model (PSM) metamodels
(concept spaces), (2) creating model repositories and (3) creating model transformation
(PIM → PSM) and code generation (PSM → Platform).

Applying MDA to the Development of Air Traffic Management Systems

Director
 - registeredComponent: string[]

- systemStatus: boolean
- dataLayerConfParameter: string[]

requestforwardRequest

DataLayer Submission

status

Fig. 1 The PIM of the Director

Based on the considerations about the life cycles related to the AD4 one, two alternative
life cycles have been defined and analysed according to specified criteria. The one which
has been selected for the AD4 project is illustrated and explained in the next section.

Phases of the AD4 development life cycle

The overall AD4 life cycle is organized in phases (iterations) with each phase being
characterized by a series of goals and activities to be performed in order to achieve these
goals. Within each of the iterations a small subset of requirements is selected to be
developed. At the beginning of an iteration the system requirements are revised:
existing requirements can be updated (on the basis of the previous iteration review)
and new ones added.

Fig. 2 Cyclic phases in the AD4 life cycle

Changes are clearly propagated to subsequent activities such as platform independent
modelling, architectural design, implementation, test and deployment. Each iteration

Registration ComponentInfo

registration componentInfo
SystemStatusChanged

Applying MDA to the Development of Air Traffic Management Systems

terminates with a review and a retrospective of all the activities performed within it with
the objective to assess development results achieved in the period.

As a result each development phase allows us to incorporate lessons learned into the
next iteration. In the following sections we outline the content for each phase and describe
what we hope to achieve:

Phase 0: Preparation

This phase aims to prepare the “environment” for later phases and lay the foundations
for all of the iterations throughout the project’s duration. Key activities of this phase are
centered on requirements gathering and planning of infrastructural concerns such as the
modelling and development infrastructure (AD4 Tool Chain) and the actual physical and
logical platform (preliminary architectural design) on which the system will be built. Later,
a subset of requirements for next phase, are selected and a preliminary PIM model
is produced.

Phase 1: First release

The aim is to provide the first release of system infrastructure and core components.
The development focuses on the implementation of requirements selected in the previous
phase. Key activities concern the identification and enhancement of D3 components to be
reused in AD4, the identification of simulation platforms components to interoperate with
and the design of integration strategies. System integration and test activities are part of this
phase as well. The first PIM to PSM transformation is produced and then, after refining the
PSM model, the code for the identified components is generated.

To check the validity of these new components we need to prepare the system integration
and test environment. Another key part of this phase is the updating of existing assets and
the identification of new components that will need to be developed. In order to include
improvements in future phases, a “retrospective” workshop is held, where we decide on
any corrective action that needs to be included in the next phases and identify and
problematic areas.

Phase 2: Final release

The aim is to provide the final release of system infrastructure and core components.
A key is the inclusion of the lessons learned in the previous phase. The activities to be
carried out are those already defined in Phase 0 modified according to the conclusions of
the retrospective workshop. At the end of this phase we will hold another workshop to
provide another feedback loop making sure we continually adapt our process by applying
best practices thus mitigating risk throughout the projects development.

Phase 3: Demonstrator

This phase aims to define a scenario, to construct the demonstrator and to integrate it
with ATC simulation platforms in order to validate the proposed airspace/airdrome 3D
representation. In this phase we will include the components developed up to now and
define the test cases for the demonstrator. The lessons learned from this phase will be
used for future development work and the whole life cycle will be stabilized.

Applying MDA to the Development of Air Traffic Management Systems

activ e_system
registration (unregistration) of client or scenario /
send systemStatusChanged to all component,
add (remove) component to (from)
registeredComponent and set
property systemStatus

registration (unregistration) of a new DataLayer /
send systemStatusChanged to all component,
add (remove) component to (from) registeredComponent
and set property systemStatus. Add (remove)
configurationData to dataLayerConfParameter

getComponents(category) /
return the registered component
of the specified category

submission (domain, data, parameter) /
submitRequest(domain, parameter)
executed on the dataLayer
with the specified data

start_ up

Fig. 3 State chart of Director

Technology Choice

The model-driven development process in the AD4 project consists of two parts: first,
designing and building of the AD4 tool chain; second, designing and building the AD4
system by using the AD4 tool chain following the AD4 development lifecycle. The idea is
to integrate the most suitable existing development tools for AD4 in one open integrated
environment, and implement just model transformers and profiles to make it work. The
artefacts that are needed for the tool chain construction are shown in Fig. 4 and explained
in the following sections.

Platforms

In order to automate mappings between application models we have to identify and define
an executable technology or platform for AD4 system. Indeed, the input to and output from
AD4 tool chain steps is directly dependent on the way platforms are used and described.

Fig. 4 AD4 Tool Chain building artefacts

The CORBA Component Model (CCM) [1] defines a component model based on CORBA
which supports interactions of complex distributed objects written in different languages for
different operating systems. All components of the AD4 system are developed as CORBA
Components to gain from benefits a component based platform provides with respect to the
composition and the deployment of applications. In the AD4 project we use Qedo [2] which
is an open source implementation of CCM. Qedo provides code generators, development
support, runtime environment, and deployment infrastructure for CORBA Components.

Applying MDA to the Development of Air Traffic Management Systems

Metamodels and Repositories

Metamodels play an important role in the AD4 tool chain building process because they
provide a means to manage models. Out of metamodels we can create repositories where
models are stored and managed. For the AD4 project we need both a PIM and a PSM
metamodel. For PIM modeling (see Fig 5) we use UML2. However, in order to avoid huge
repository size, premature design and to facilitate the comprehensibility of the modelling
techniques to the involved user with varying UML2 backgrounds, a specialized subset of
UML2 language, namely eUML (essential UML) has been tailored. eUML includes only
required UML2 metamodel elements which formally define modelling elements, their
semantic and relations. The PSM metamodel is the standardized CCM metamodel as
defined by the OMG.

Fig 5: AD4 PIM Model with eUML

Tools and Profiles

Selecting the right tools is essential for building an effective tool chain. Since we use UML2
for metamodel specification and for system design we selected Enterprise Architect (EA)
from Sparx Systems as a host UML modelling tool and realised the eUMLModeller, (see Fig
6) which is a Plug-In implementation of the eUML Profile for EA and used for PIM modelling.
eUMLModeller is synchronized with the AD4 repository in both directions (load and store of
eUML models), including the synchronization of graphical information of the models stored
in the repository.

As a modelling front-end for CCM an Eclipse Plug-In, the CCM Modeller, has been
developed based on EMF and GEF. The Eclipse Plug-In is a profile implementation for
CCM. The Plug-In is also synchronized with the AD4 repository in both directions.

Applying MDA to the Development of Air Traffic Management Systems

Figure 6: eUML Modeller Plug-In: Connection to the eUML repository

Transformers

To achieve the integration of different modelling techniques and for different modelling
layers, the repositories (eUML and CCM) are interconnected together by specific model
transformers, which map models to other models or to a programming language code.

Two transformers have been built and integrated into the tool chain: eUML2CCM and
CCM2IFR. eUML2CCM transforms eUML models into CCM models. Since Qedo’s code
generators are based on the Interface Repository (IFR), the CCM2IFR transformer has been
developed, which integrates Qedo into the AD4 tool chain. CCM2IFR implicitly generates
C++ code for CCM components by triggering the Qedo code generators after transforming
the CCM model into an IFR Model.

AD4 Tool Chain Architecture

The heart of the AD4 tool chain (see Fig 7) is a generic control application component,
implemented for AD4 and used to manage and control the various components of the tool
chain. The AD4 Control Application completely manages the loading of repositories,
transformers and models.

Fig. 7 AD4 Tool Chain architecture

Applying MDA to the Development of Air Traffic Management Systems

In the standard configuration of the Control Application loads the eUML and the
CCM repositories, and two transformers: the eUML2CCM and CCM2IFR.

Fig. 8: Applying the AD4 tool chain to system development.

The development of the new AD4 platform starts with requirements specification and
analysis. Afterwards, it has to be decided how the existing D3 platform will be modified, in
particular what components will be created or updated and what technologies and
techniques will be used for this. In the next step new components are designed using the
eUMLModeller. The created eUML model is then ready to be transformed into the CCM
model applying the eUML2CCM transformer. The transformed CCM models can be either
refined, by using the CCM Modeller, or directly transformed into the Qedo IFR repository
which implicitly invokes the Qedo code generators and produces the source code of the
CCM components.

Tying it all together

MDA is a new technology allowing the organizations to benefit from the model-centric
approach of software development. However, applying MDA requires performing specific
practices related to preparing and handling the needed modelling environment, as well as to
developing software based on models. These requirements imply specific adjustments to the
life cycles which would be used in code-centric approaches to development.

In the AD4 project, the preparation of the modelling environment started together with the
investigation of the system requirements and the development of the operational al
scenarios, in Phase 0. Normally, the requirements should be traceable to the PIM and PSM
constructs that implement them, and vice versa. However, requirements specification in the
case of the AD4 project involves considerations of human, psychological and 4D Human
Machine Interaction factors, which substantially increases the complexity of this task.
Moreover, defining the requirements in a format, which allows integrating them in the tool
chain, proved to be an issue that still requires deep investigation. Therefore, the AD4 tool
chain begins with a PIM, developed by means of the eUMLModeller, and the system
requirements are modelled independently from the AD4 tool chain.

Designing and building the AD4 system by using the AD4 tool chain is iterated through
Phases 1 and 2. The approach is to prioritise the requirements for the AD4 system and to
start with modelling and creating new or updating D3 components addressed by the highest
priority requirements and proceed like this with requirements having lower priority. The PIM
and PSM models are continually synchronized.

Applying MDA to the Development of Air Traffic Management Systems

«signal»
DataAv ailable

«dataType»
DataHeade r

«dataType»
BasicDomain

- category: string
- dataType: string
- update: boolean
- time: long
- totalSize: long
- currentSize: long

- startLon: float
- endLon: float
- startLat: float
- endLat: float

- header: Header
- data: any

«signal»
SystemStatusChanged «enumeration»

ComponentStatus
«enumeration»
SystemStatus

«enumeration»
ComponentCategory

+ id: string
+ category: ComponentCategory
+ configurationData: string
+ systemStatus: SystemStatus
+ componentStatus: ComponentStatus

 UNREGISTERED
 REGISTERED

 ACTIVE
 INACTIVE

 DATALAYER
 CLIENT
 SCENARIO

«interface»
DataLayer

«interface»
Submission

+ submitRequest(string, BasicDomain) : void + submitRequest(BasicDomain, string, string) : void

«interface»
ComponentInfo

«interface»
Registration

+ getComponents(ComponentCategory) : st ring[] + register(ComponentCategory, string) : void
+ unregister(string) : void

Figure 9a: A PIM of AD4 interfaces, signals, data types and enumerations

«CORBAEvent»
DataAv ailable

«CORBAStruct»
DataHeade r

«CORBAStruct»
BasicDomain

+ header: Header
+ data: any

+ category: string
+ dataType: string
+ update: boolean
+ time: long
+ totalSize: long
+ currentSize: long

+ startLon: float
+ endLon: float
+ startLat: float
+ endLat: float

«CORBAEvent»
SystemStatusChanged «CORBAEnum»

ComponentStatus
«CORBAEnum»
SystemStatus

«CORBAEnum»
ComponentCategory

+ id: string
+ category: ComponentCategory
+ configurationData: string
+ systemStatus: SystemStatus
+ componentStatus: ComponentStatus

+ UNREGISTERED
+ REGISTERED

+ ACTIVE
+ INACTIVE

+ DATALAYER
+ CLIENT
+ SCENARIO

«CORBAInterface»
DataLayer

«CORBAInterface»
Submission

+ submitRequest(string, BasicDomain) : void + submitRequest(BasicDomain, string, string) : void

«CORBAInterface»
Registration

«CORBAInterface»
ComponentInfo

+ register(ComponentCategory, string) : void
+ unregister(string) : void

+ getComponents(ComponentCategory) : string[]

Figure 9b: A PSM of AD4 interfaces, signals, data types and enumerations

At the end of each iteration a key activity is the retrospective workshop, which gathers
together all involved in the iteration, to discuss which practices were particularly useful for
the joint work and how to improve other practices as to achieve better development results.
This activity fosters the adoption of the new MDA technology and the learning from experience.

Applying MDA to the Development of Air Traffic Management Systems

The proposed tool chain provides the developers with the opportunity to decide later on
which platform to run the product. This opportunity is realized by relevant transformers that
should be integrated into the tool chain once the target platform is selected. Additionally,
since other specific technologies or platforms (e.g. J2EE) can be supported and the eUML
models can be transformed to new platform specific models, the list of loadable tool chain
components can be arbitrarily extended.

«CORBAHome»
ClientHome

«CORBAComponent»
Client

- dataLayerConfParameter: string[]

«consumes»
status

registration

«CORBAManage»

request

Submission

RegistrationSystemStatusChanged

 component Client {
 attribute string[] dataLayerConfParameter;
 uses Registration registration;
 uses Submission request;
 consumes SystemStatusChanged status;
 };

Figure 9c: The PSM of Client & Generated Code

Enterprise Architect

We looked for a tool which had the potential of great acceptance in different domains and
companies. Enterprise Architect was chosen for two reasons. First of all, it has a good cost
structure and a good cost/value balance with the range of supported UML2 features.
Secondly, EA provides a good plugin mechanism which allows the easy integration of
custom made plugins. This was vital for the seamless integration within the AD4 tool chain.
Finally most important in our consideration for using Enterprise Architect was the
extensibility, the cost-benefit ratio and the industrial strength which was the most visible
property of EA at this point in time.

It should also be noted that EA also provides a good “out-of-the-box” backbone for
MDA adoption and provides the basis on which we could easily extend the solution;
especially in the domain of requirements modelling and traceability.

Applying MDA to the Development of Air Traffic Management Systems

Findings

Our experience in the AD4 project shows three main conclusions:

A practical approach to adopting MDA, especially in complex software development
projects is to apply the new technology to extend an existing application. This provides
a clear idea about the expected inputs and outputs from the modelling activities, as
well as benefiting from domain expertise in the area of development.

Defining a life cycle, which is based on short iterations, active feedback between the
designed system and the actual output, and retrospective workshops at the end of
each iteration, facilitated the adoption of the new technology and learning from
experience.

Developing an adequate tool chain not only speeds up the development process and
guarantees the quality of the results, but also increases the flexibility with respect to
future developments. For the time being, these conclusions are only based on
qualitative data since quantitative ones from the previous and the current project are
not yet available.

Using MDA provides a number of benefits to projects like AD4:

• Easier implementation on different platforms while conforming to the system structure
and behaviour as described in the PIM.

• Integration of different applications by explicitly relating their models, enabling
integration, interoperability and incremental system evolution.

• Easier validation of models uncluttered by platform-specific semantics, since the
PIM does not include unnecessary information.

• Clear separation of concerns throughout the development process.

• Improved system quality due to better and earlier fault detection.

Integration of requirements specification within the tool chain remains an open issue and this
is the focus of our future work.

References

1. Object Management Group. CORBA Component Model. OMG document number

formal/02-06-65

2. Qedo Team. Qedo (Quality of Service Enabled Distributed Objects) CCM

Implementation Web Page, http://www.qedo.org/, March 2006

Applying MDA to the Development of Air Traffic Management Systems

About the authors

Terry Bailey is an R&D Projects Area Project Leader at ESI (European Software Institute).
He joined ESI at the beginning of 2005. Until then, and since 1992, he has worked in
industry in the fields of Systems Engineering and Software Engineering, working for
companies such as Caudwell Communications, Safeway and Thales. His work on Software
Engineering has been cantered on the management and development of software
applications, mainly using new technologies.

At ESI Mr. Bailey has actively participated, among other projects, in the MODELPLEX IST
project as a member of the Technical Coordination Team, Exploitation Manager and
member of the Executive Board. He is also the organizer of the successful workshop series
“From code centric to model centric software engineering.” Mr. Bailey obtained his BSc
(Hons) from Staffordshire University and his MSc (Euro) from the University of Brighton/IUT
de Bayonne (France).

Tom Ritter graduated with a Masters degree in Computer Science from the Technical
University of Berlin. Since 1998 he worked at Fraunhofer Institute FOKUS in the area of tool
development and distributed systems. His major interest is the development of model based
software engineering tools and the development of component-oriented Middleware
platforms with consideration of extra-functional properties.

In his recent work he developed a CORBA Component based Middleware Platform (Qedo)
and participated to the design and implementation of the ModelBus as part of the MDDi
project. Tom is involved in different standardization activities at the Object Management
Group and has contributed to workshops and conferences.

Applying MDA to the Development of Air Traffic Management Systems

Company Profiles

European Software Institute (www.esi.es)

ESI is a member-based technology research centre located in Bilbao (Spain). ESI has an
international team of more than 100 staff members, with extensive technical and managerial
experience from research and industry. ESI was created in 1993 by the initiative of the
European Commission and with the support of leading European companies and the
Basque Government. Since 2003, ESI is integrated in TECNALIA Technology Corporation,
which gathers together more than 1,300 highly qualified professionals and researchers
working in several technological domains and industrial sectors.

ESI R&D projects are instrumental in developing high-quality technology, products and
services that aim to support and promote the adoption of technology in software-intensive
industries such as telecommunications, banking, aeronautics, insurance, administration and
ICT. Research activities are performed in close collaboration and co-operation with its
members and with leading European companies, putting the emphasis on the validation of
the approaches by performing experimental trials to ensure the effectiveness.

ESI competencies are on open systems interoperability and standards, model-driven design
and reuse through software product-line approach, dynamic reconfiguration and
interoperability, COTS integration management, embedded systems development
processes and tools, integrated quality, quality of service, certification of products and
processes, built-in security, risk and vulnerability analysis and trustability models.

Technology transfer is an essential complement to research at ESI, ensuring the uptake of
research results and an impact in industry competitiveness. ESI dedicates much effort to
practical dissemination and implementation of technology through its own consultancy and
training units and through ESI’s Commercial Network, named ESI@net., with partners in
more than 50 countries achieving a real multiplication effect and world-wide impact.

The ESICenter network is integrated by a series of independent institutions, which are
similar to ESI in their goals, objectives, activities and legal status. Each centre is focussed in
supporting the IT industry in a certain region. The ESICenter network complements ESI’s
existing technological capabilities enabling to launch initiatives at a global level.
Currently the ESICenters network comprises seven centres as listed below:

• ESICenter UNISINOS, Río Grande do Sul, Brazil;
• ESICenter SSEAC, Shanghai, China;
• ESICenter Bulgaria, Sofia, Bulgaria;
• ESICenter Australia, Melbourne, Australia;
• ESICenter Tec de Monterrey, Guadalajara, Mexico
• ESICenter SECC in Cairo, Egypt
• ESICenter Cono Sur, Buenos Aires, Argentina
• ESICenter Sinertic Andino, Bogota, Colombia

http://www.esi.es/

Applying MDA to the Development of Air Traffic Management Systems

Fraunhofer FOKUS (www.fokus.fraunhofer.de)

Fraunhofer Fokus, the Institute for Open Communication Systems is situated in Berlin of
the Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. (FhG). FhG
is a link between science and industry, that is between the research and the application
of its results. It was founded in Munich in 1949 as a non-profit registered association.
The organization takes its name from Joseph von Fraunhofer (1787-1826), the successful
Munich researcher, inventor and entrepreneur.

The Fraunhofer-Gesellschaft is an autonomous organization with a decentralized
organizational structure, which currently maintains 58 research institutes and a patent office
in locations throughout Germany. Whilst the administrative headquarters are in Munich, the
legally non independent research institutes operate from different locations in 15 of the
German Länder, where they carry out their respective work in close partnership with
industry. A staff of approximately 13.000, the majority of whom are qualified scientists and
engineers, work with an annual research budget of about one billion Euro.

FOKUS develops a seamless communication infrastructure upon which globally distributed,
environment-aware application components can interact according to users’ demands.
The work of FOKUS covers design, specification, implementation and consulting in the
following key areas: model driven development and testing of distributed communication
systems, distributed object technology, platforms and services, global heterogeneous
networking and internet technologies. FOKUS has gained considerable experience in these
areas, for example in EURESCOM projects, TINA auxiliary projects, RACE/ACTS/IST
projects, as well as in joint projects with industry partners.

FOKUS has years of experience in the design, specification, and development of open
distributed systems. Currently FOKUS is very much engaged in the emerging arena of
Model Driven Engineering (MDE) of distributed systems. A new MDE business unit was
founded in the beginning of 2003. FOKUS has announced the development of MDA
(Model Driven Architecture) related modelling front-ends, code generators and target
middleware infrastructures.

MDA and the related supporting software components from FOKUS will be applied in
several national and international projects with a telecommunication background and
adapted to new application domains like e-government, public safety or air traffic
management systems. Together with its industry partner NTT Data Corporation (Japan)
FOKUS won the 2003 OMG’s Object Application Award for application of MDA concepts
in the egovernment domain. FOKUS contributes significantly to OMG standards in the
MDE area and subsequently publishes papers for scientific conferences and workshops.

http://www.fokus.fraunhofer.de/

Applying MDA to the Development of Air Traffic Management Systems

About Sparx Systems

Sparx Systems (www.sparxsystems.com) specializes in high performance and scalable
visual modeling tools for planning, designing and constructing software intensive systems.

With customers in industries ranging from aerospace and automotive engineering to finance,
defense, government, entertainment and telecommunications, Sparx Systems is a leading
vendor of innovative solutions based on the Unified Modeling Language (UML) and its
related specifications. A Contributing Member of the Object Management Group (OMG),
Sparx Systems is committed to realizing the potential of model-driven development based
on open standards.

The company’s flagship product, Enterprise Architect, has received numerous accolades
since its commercial release in August, 2000. Now at version 7.1, Enterprise Architect is the
design tool of choice for over 150,000 registered users in more than 60 countries world wide.

Project Profile (Other partners & consortium overview)

The AD4 Consortium included research as well as industrial partners committed to the
acquisition and development of the advanced technological know-how required to address
the project objectives and to the exploitation of the results achieved through a specific ATM
infrastructure and a definite demonstrator. Final users and testers of the targeted ATM field
were also key contributors to the project development and assessment: They produced
specifications of real operational needs within their business cases and co-ordinated the
final phase of testing and validation of the prototype. Finally, SMEs were well represented in
the consortium which was made up of the following companies: NEXT Ingegneria dei
Sistemi S.p.A. (Project Co-ordinator), ENAV S.p.A., VITROCISET SpA, MIDDLESEX
UNIVERSITY, Space Applications, Digital Video, SICTA (Sistemi Innovativi per il Controllo
del Traffico Aereo), Fraunhofer FOKUS, European Software Institute and ObjectSecurity.

http://www.sparxsystems.com/

