
E-Book Series: Iconix Process Roadmaps

Modeling Service-Oriented
Architectures

An Illustrated Example using Sparx Systems

Enterprise Architect

by Doug Rosenberg
Copyright © 2010 Sparx Systems Pty Ltd and ICONIX.

All rights reserved. All trademarks contained herein are the property of their respective owners.

Page 1

E-Book Series: Iconix Process Roadmaps

Chapter 1

A Roadmap for Service-Oriented Architecture
Development using Enterprise Architect
Business and Software Engineering Edition
Trying to make sense of the acronym soup that engulfs important topics like software
architecture, business modeling, and service oriented architectures is a major challenge.
We’re going to take a shot at it in this book by following a single example all the way from
architecture to code. The example is a Service-Oriented Architecture (SOA) car rental system
that’s implemented with a combination of web-services and custom software.

Along the way we’ll illustrate many of the key features of Enterprise Architect Business and
Software Engineering Edition. As with a number of other topics we’ve addressed in our books,
we’re going to use a Process Roadmap to tie everything together in what we hope will be a
clear and understandable manner.

Why a Service-Oriented Architecture Example?
We didn’t have to choose a Service-Oriented Architecture for our example project; SOA is
one of many possible architectures that can be developed using Enterprise Architect’s
Business and Software Engineering Edition. But web services and SOA have become
increasingly important in today’s IT universe. Recent estimates suggest that nearly half the
companies in the world are adopting, piloting, or considering SOA. With those sorts of
numbers, it stands to reason that many readers will be interested in a roadmap and a
cohesive example that brings some clarity to the problem. Hopefully this includes you.

As it turns out, a SOA example also serves to illustrate many of the features of the Sparx
Systems solution, which supports building “executable business processes” that use WSDL
(Web Service Definition Language) to implement their solution. And, since projects don’t live
by web services alone, Enterprise Architect has numerous other useful features for handling
those parts of the application that require custom (non-web service) development. In
particular we’ll spend a significant amount of time in this book exploring a new and unique
capability for behavioral code generation for the enforcement of Business Rules, and tight
integration with IDEs, including Eclipse and Visual Studio. We’ve leveraged the power of
these capabilities into our SOA Roadmap.

Page 2

E-Book Series: Iconix Process Roadmaps

A Quick Introduction to SOA

Service-Oriented Architecture (SOA) is an approach to building complex software systems
from a set of reusable services that obey service-orientation principles. Many people believe
that SOAs can help businesses to be more “agile” -- in other words, enable faster and more
cost-effective responses to changing conditions.

SOA enables construction of applications from fairly large chunks of reusable functionality
that can be built quickly, primarily from existing services. Thus, SOA promotes reuse at a
“macro” level, and, in theory, as an organization publishes more and more business
functionality as services over time, the cost of building applications that use those services
decreases.

A service that obeys the principles of service-orientation is an autonomous, loosely coupled,
and stateless unit of functionality that is made available by a formally defined interface. The
functionality provided by a service is discoverable by applications that use the service. In
other words, services expose their functionality via interfaces that other applications and
services can read to understand how to use them. Development of services can thus be
decoupled from development of the applications that use them. The Universal Description
Discovery and Integration (UDDI) specification defines a mechanism to publish and
discover information about services.

Services are not allowed to call other services, but may communicate with them via
messages. That is, services are loosely coupled, and each service implements a single
action, such as placing an online rental car reservation. Services are also loosely coupled to
underlying operating systems and insulate application code from specific technologies that
are used to implement the services.

Services are designed without knowing who will be using them. In a service-oriented
architecture, applications are built from services which communicate via messages using a
process known as orchestration.

A popular approach to implementing a service-oriented architecture is via web services, which
make services accessible over the Internet independent of platforms and programming
languages. The BPEL language is often used to orchestrate SOA applications. Building
applications from services requires metadata that describes the characteristics of the
services, and the data that is used. Typically, XML is used to describe data, WSDL describes
the services themselves, and SOAP (Simple Object Access Protocol) describes
communication between services.

Two important roles in developing service-oriented applications are that of the service
provider and service requester. Service providers develop their services and publish them to
a broker, while service requesters use the brokers to locate services, bind to them, and then
use them.

Page 3

E-Book Series: Iconix Process Roadmaps

The SOA Roadmap (aka “ICONIX Process for SOA Development”)
1As with all of our ICONIX Process Roadmaps , our SOA roadmap is defined as a set of

activity diagrams. In this case, the roadmap provides a “cookbook” set of steps that can be
followed for building systems that are based around an SOA.

Figure 1-1 shows our top-level roadmap. The chapter outline of this book follows this
roadmap directly. Each of these top-level activities will expand out to a child diagram showing
further detail. Those detailed activities will be discussed in the respective chapters – this
chapter gives you the “big picture” overview.

act SOA Roadmap

Dev elop a Domain Model Identify Business Rules
and other Requirements

Dev elop
"Web-Serv ice-Centric"

Scenarios

Dev elop
"Business-Rule-Centric"

Scenarios

Storyboard Screens

Dev elop "User-centric"
Scenarios

BPMN, BPEL
Behavioral Code Gen
Business Rule Composer

Dev elop Web Serv ice
Interfaces

WSDL

ICONIX Process Roadmap for
Service Oriented Architectures

Visit ICONIX at www.iconixsw.com

http://www.iconixsw.com/Books.html

http://www.iconixsw.com/Books.html

Figure 1-1. ICONIX Process Roadmap for Service-Oriented Architecture Development

1 These now include roadmaps for Embedded Real-Time Systems, Testing (aka Design
Driven Testing), Algorithm Intensive Development, and Business Modeling, in addition to
ICONIX Process for Software (the original “Use Case Driven ICONIX Process”). See
www.iconixsw.com for more details.

Page 4

http://www.iconixsw.com/

E-Book Series: Iconix Process Roadmaps

As you can see, the top-level roadmap includes some “common stuff” like figuring out your
requirements, and modeling the problem domain (we’ll discuss the “common stuff” in Chapter
2), and then provides multiple paths for developing different flavors of business processes, all
the way to code.

The roadmap diagram above reflects the philosophy that when you set out to implement a
system using an SOA, there will effectively be a mix of 3 different kinds of scenarios:

1) Scenarios that use web services (for which we will develop web service interfaces
using WSDL, and orchestrate the use of those web services using BPMN and BPEL.

2) Scenarios that enforce business rules (for which we will use activity diagrams and
the business rule composer)

3) Regular old software use cases (which we won't discuss in this book because
we’ve covered it quite thoroughly in my other books)

Most systems will contain a mix of these different types of scenarios.

In many cases (but not all), the web service scenarios will cross Business To Business (B2B)
boundaries, e.g.: a car rental reservation system talking to a credit card company to run a
payment transaction.

The business rule scenarios are more likely to be within the boundaries of one business, e.g.
the car rental system enforcing eligibility rules on driver age, credit score, etc. There is little or
no user interface in these business rule scenarios, so they can be completely code generated
from an activity diagram using the business rule composer.

Finally there is the user interface. These would be the screens of the car rental system that
the reservations agent accesses, and which would trigger the business rule checks and B2B
transactions. These parts of the system are best modeled with use cases.

Where a business process can be implemented via web services, we follow the branch on the
left: web service interface definition using WSDL, and orchestration using BPMN and
BPEL. We’ll illustrate this with our Car Rental example in Chapters 2 and 3.

• For processes that are primarily focused on enforcing business rules, we take the
right branch: Behavioral Code Generation from Activity Diagrams using the
Business Rule Composer. We’ll explain how to use the business rule composer and
talk about behavioral code generation in Chapter 4.

• And finally, for those user-centric processes that use a GUI, we model them following
a use case driven approach that’s out of scope for this book, but well documented in
my other books2.

• With all of these branches, we can compile and build using either Eclipse or Visual
Studio, and use the Sparx Systems “MDG Integration” technology to keep models
and code in-synch. We’ll cover this capability in Chapter 5.

2 See “Use Case Driven Object Modeling with UML – Theory and Practice” by Doug
Rosenberg and Matt Stephens, from Apress

Page 5

http://www.iconixsw.com/Books.html

E-Book Series: Iconix Process Roadmaps

SOA, BPEL, WSDL – Publishing Your Services on the Web
In SOA-based systems, it’s possible to implement many business processes by using
previously developed “web services”. The term “orchestration” is often used to describe
implementing a business process by using a number of web services in a collaborative way.
In order to better understand this concept, we need to begin explaining some acronyms. We’ll
give you a brief intro to web services in Chapter 2. For now, we’ll start with these two
definitions:

WSDL (Web Service Definition Language) is an XML-based language that describes web
services and how to access them.

BPEL is actually short for Web Service Business Process Execution Language (WS-BPEL).
BPEL defines business processes that interact with external entities that are defined using
WSDL.

BPEL is an orchestration language that describes messages to and from a business
process. Those messages are defined using WSDL.

Note that it’s possible to draw BPMN (Business Process Modeling Notation) diagrams to
model business processes without generating BPEL (Business Process Execution
Language). And, you can model BPEL using other graphical notations besides BPMN. But
one of the more interesting strategies, which we’ll explore, involves using BPMN to model
BPEL processes3.

Figure 1-2 shows the roadmap basic steps for using BPMN to model BPEL, and generating
WSDL.

3 We found “Using BPMN to model a BPEL Process” by Stephen A. White, IBM Corporation,
to be a very useful article.

Page 6

E-Book Series: Iconix Process Roadmaps

act Draw BPMN Diagrams to ...

Draw BPMN Diagram of
Business Process

Map BPMN Object
Attributes to BPEL
Element Attributes

Generate BPEL Code

Build using Eclipse or
Visual Studio

Figure 1-2. We use BPMN to model BPEL, then generate BPEL code

We’ll develop web service interfaces using WSDL in Chapter 2, and then further illustrate our
roadmap with a BPMN diagram and BPEL/WSDL code for our Car Rental System in Chapter
3.

Business Processes Must Satisfy Business Rules
Even in a service oriented system, not all business processes can be implemented by
orchestrating web services. Some business processes will involve user interfaces, and some
will be focused on enforcing business rules. We won’t discuss GUI-based software use cases
in this book, as that process is well documented elsewhere, but we will spend a fair amount of
time discussing some new ways to implement those processes that are focused on enforcing
business processes.

Page 7

E-Book Series: Iconix Process Roadmaps

In Chapter 4 we’ll introduce you to the unique capabilities of Enterprise Architect’s Business
Rule Composer. Starting from the Domain Model and the requirements that we’ll present in
Chapter 2, we’ll take you through the process of creating Activity Diagrams for Business
Processes, stereotyping Actions as RuleTasks, and finally, linking the business rules to the
rule tasks in preparation for behavioral code generation.

Figure 1-3 shows how it works.
act Develop Business Rule Centric Business Process

Create RuleFlow Activ ity
Diagrams for Business

Processes within Domain
Classes

Make sure RuleFlow
Actions are stereotyped as

RuleTasks

Link Business Rules to
RuleTasks

Generate Behav ioral Code
from Activ ity Diagrams

Build using Eclipse or
Visual Studio

EA's Behavioral Code
Generation also works
for State and
Sequence Diagrams

Start Developing Business Rule
Centric Business Processes

Finish Developing Business Rule
Centric Business Processes

Model the business
rules for each Rule
Task using the business
rule composer.

Figure 1-3. Roadmap for developing “business-rule-centric” scenarios using Enterprise Architect’s Business
Rule Composer

Page 8

E-Book Series: Iconix Process Roadmaps

Once again, we’ll illustrate our roadmap with an example of how to use the Rule Composer
for our Car Rental System.

eneration – A Quantum Leap in Tools

lways believed that processes that only get you halfway to code (or less) are

ral
tivity diagrams, state diagrams and sequence diagrams. Behavioral

siness rules with

Behavioral Code G
Capability
One of the common themes of all of our ICONIX Process Roadmaps, is that they all get you
to code. We’ve a
much better in theory than they are in practice (because in practice, programmers tend to
ignore them). Enterprise Architect, since its early days, has excelled at code engineering
(forward and reverse engineering for a wide range of languages, powered by customizable
code generation templates). But those already strong capabilities have recently taken a
quantum leap in power.

The Business and Systems Engineering Edition of Enterprise Architect supports behavio
code generation from ac
code generation is a major advancement over generation of “class headers” (which has been
the de-facto meaning of “code generation” for more than a decade).

Enterprise Architect uniquely supports generation of complete algorithmic logic, in a variety of
languages. When you’ve used the business rule composer to associate bu
the rule tasks, you can visually trace requirements all the way to code, since the business
rules are propagated into the generated code as comments.

We’ll show examples of automatically generated Java code, and automatically generated C#
code for our Car Rental System.

Page 9

E-Book Series: Iconix Process Roadmaps

Integration with IDEs – Keeping Model and Code
Synchronized

act Build using Eclipse

Attach UML Model to
Project

Link EA Classes to Source
Code

Configure Synchronization
Options

Update Source Code Update UML Model

Figure 1-4. Licenses for MDG Integration for Visual Studio and Eclipse are included in the Enterprise
Architect Business and Software Engineering Edition.

Since well before UML even existed, one of the biggest issues with modeling software has
been keeping the model and the source code synchronized. The typical experience used to
be that UML models were most useful in getting the first release of software completed, but
after the initial release, the code would evolve independently in a development environment,
and the UML model would rapidly grow obsolete.

With the evolution of agile methodologies, this situation often led to projects abandoning UML
modeling entirely, as agile methods specify many frequent releases of the software, and
getting to the first release became a smaller and smaller percentage of solving the overall
problem.

We’ll explain how to beat this problem entirely by using Sparx Systems MDG Integration for
Visual Studio and for Eclipse, both of which are included in the Enterprise Architect Business
and Software Engineering Edition.

Finally, we’ll demonstrate integration with Visual Studio with the C# code for our Car Rental
System, and integration with Eclipse using Car Rental Java code. With that, all the steps in
our roadmap for SOA development will be complete.

Page 10

E-Book Series: Iconix Process Roadmaps

Chapter 2

Getting Organized for SOA
Before undertaking any SOA project (or any other sort of project), it’s a good idea to
understand some basic fundamentals about what you’re planning to build. As Figure 2-1
shows, three major components of this understanding are:

• Modeling the problem domain

• Identifying business rules and other requirements

• Storyboarding the user experience (i.e. screens)

These elements are common to the vast majority of software systems. Once you’ve
developed the foundation of your model, you can choose to develop various operational
scenarios using web services, using normal GUI-based use cases, or to enforce business
rules. In general, the web service and business rule centric scenarios “hang off” of the
software use cases. So the use cases form the glue that holds the model together.

Service-oriented systems will make use of web services. In order to use web services, a
system’s interfaces must be defined using Web Service Definition Language (WSDL). We’ll
walk you through this process later in this chapter.

act SOA Roadmap

Dev elop a Domain Model Identify Business Rules
and other Requirements

Develop
"Web-Serv ice-Centric"

Scenarios

Dev elop
"Business-Rule-Centric"

Scenarios

Storyboard Screens

Dev elop "User-centric"
Scenarios

BPMN, BPEL
Behavioral Code Gen
Business Rule Composer

Develop Web Serv ice
Interfaces

WSDL

ICONIX Process Roadmap for
Service Oriented Architectures

Visit ICONIX at www.iconixsw.com

http://www.iconixsw.com/Books.html

http://www.iconixsw.com/Books.html

Figure 2-1. It’s important to develop an understanding of the problem domain, business rules, and user
experience early in the project.

Page 11

E-Book Series: Iconix Process Roadmaps

Introducing the Car Rental System Example
For the remainder of this book, we’ll be illustrating our SOA Roadmap using an example
project – a Car Rental System. We’ll use this example to illustrate developing a web service-
centric scenario using BPMN/BPEL/WSDL, and we’ll also use it to demonstrate the
capabilities of the Sparx Systems Business Rule Composer for behavioral code generation.

We’ll begin with a simple domain model (also called a fact model), that shows the main
objects in our problem domain. While a complete tutorial on domain modeling is out of the
scope of this book, there’s a full chapter devoted to this topic in Use Case Driven Object
Modeling4. Figure 2-2 shows the domain model for our Car Rental System.

class Car Rental System Domain Model

Application

CarRentalSystem

- Available :boolean
- IsRented :boolean
- Last_Service_Date :date
- Model :string
- RegNumber :string
- type :CarType
- UnderMaintenance :boolean

- Number :int
- Status :string

Customer

- Address :string
- age :int
- BadHistory :Boolean
- BadHistoryLevel :int
- Eligibile :boolean
- LoyaltyPoints :int
- Name :string
- type :string
- ValidLicenceNumber :string

Rent

- No_of_ rent_days :int
- PenaltyFee :double
- RentPayable :double
- RentPerDay :double
- TotalAmountPayable :double

+ CalculateAmountPayable() :void
+ DenyRent() :void
+ Post Error() :void

The Business Domain Model provides the business vocabulary - terms and facts - on which
Business Rules can be modeled. In Enterprise Architect a Domain Model is created as a
conceptual Class diagram.

This diagram shows an example Domain Model, for a Car Rental system.

To enable a class to process the rules, right cl ick on the appropriate class and add "Rule Flow Activity" as a behavior to the class. For
this example, ProcessApplication Rule Flow Activity is added to the Rental System class.

For more information on the Domain Model see the following help topic:

1 1 1..*

1 1

1..*1

Creating A Business Domain Model

+Applied by 1

1..*

1..*

11..*

1..*1

Figure 2-2 Car Rental System Domain (Fact) Model

4 Use Case Driven Object Modeling with UML – Theory and Practice. Doug Rosenberg and
Matt Stephens, Apress.

Page 12

E-Book Series: Iconix Process Roadmaps

As you can see, the domain model establishes the vocabulary we use to describe our system,
and shows relationships between objects in the problem domain. In most cases these
relationships include UML generalization and aggregation relationships (not shown here).

5Business Rules are represented in Enterprise Architect as stereotyped Requirements .

Figure 2-3 shows a Requirement Diagram for our Car Rental System that organizes these
business rules according to different s. We’ll talk more about RuleTask RuleTasks in Chapter
4.

BRM_RuleModel Car Rental Business Rules

Car must not be rented to Customers of age less than
18

Car must not be rented to Customers with Bad History
level 3

Car must not be rented to customers without a valid
licence number«RuleTask»

Eligibility

(from Domain Model)

«RuleTask»
Eligibility

(from Domain Model)

«RuleTask»

Determine Rent Payable

(from Domain Model)

«RuleTask»

Determine Rent Payable

(from Domain Model)

Rent for Small cars is 80 AUD per day

Rent for Luxury cars is 150 AUD per day

Rent for AWD cars is 100 AUD per day

Rent Payable is calculated as the product of
RentPerDay and RentalPeriod in days

«RuleTask»

Determine Penalty

(from Domain Model)

«RuleTask»

Determine Penalty

(from Domain Model)

Penalty of 10 % of rent must be applied for
Customers with Bad History Level 1

Penalty of 20 % of rent must be applied for
Customers with Bad History Level 2

Penalty must not be applied for Customers with
Bad History level 0

«RuleTask»
Determine Total Amount

Payable

(from Domain Model)

«RuleTask»
Determine Total Amount

Payable

(from Domain Model)

Total Amount Payable is calculated as the sum of
Rent Payable and Penalty if any.

Business Rules are defined using the BusinessRule element in the Rule Model toolbox.

Rules for specific purpose are grouped together for the respective Rule Task elements with dependency relationship.

For more information on Rule Modeling see the following help topic:

Business Rule Model

Figure 2-3. Business Rules are one flavor of Requirement, and can be organized by the RuleTask which will

be responsible for enforcing the rule.

5 For a tutorial on how use Enterprise Architect’s relationship matrix for requirements
traceability, see the Enterprise Architect for Power Users CD from ICONIX
(www.iconixsw.com)

Page 13

E-Book Series: Iconix Process Roadmaps

As you’ll see in Chapter 4, each of these RuleTasks will be elaborated on an activity
diagram, and Enterprise Architect’s behavioral code generation capability will allow us to
generate complete algorithmic code for these tasks, with no programming, using the Business
Rule Composer.

Before we get to the Business Rule Composer, though, we’re going to take a trip through
“acronym city” in Chapter 3 and explain how to develop web service-centric scenarios using
BPMN, BPEL, and WSDL. As a precursor to that discussion, here’s a short intro to web
services and WSDL, and how to define them using Enterprise Architect.

A Short Intro to Web Services and WSDL

Suppose you wrote an interesting application (maybe a program that automatically generated
a horoscope based on your birthday and today’s date), and you wanted to publish your
application to the Internet so anybody in the world could purchase their horoscope from you.
How would you do that? Most likely, you’d do it with a web service.

Web services support distributed, platform-independent development. Using web services,
you can publish any application you choose to build over the web. A web service can be
written in any language and hosted on any computer that’s connected to the Internet.

The concept behind web services isn’t new; previously developed similar approaches include
OMG CORBA, Microsoft DCOM, and Java/RMI. You can think of a web service as something
like an Internet-enabled API.

You’d describe your horoscope web service using Web Service Description Language
(WSDL), an XML-based language that describes the public interface to the web service.
WSDL tells you only how you can interact with the web service; it says nothing about how the
web service works internally.

The internal details of the web service are specified using a “binding”. There’s a Java binding,
which allows you to define local Java implementations that implement web services, and
there’s also SOAP (Simple Object Access Protocol) which is an XML protocol that operates
over standard HTTP to communicate with web services which are on the Internet.

Using SOAP/HTTP, programs connecting to a web service can read the WSDL to determine
what operations are available on the server. Any special data types used are embedded in
the WSDL file as XML Schema. The program then uses SOAP to call the operations listed in
the WSDL.

WSDL defines Services as collections of Network Endpoints, or Ports; a collection of Ports
defines a Service. A Port associates a network address with a reusable binding, and a
Message is an abstract description of the data that is being exchanged. A WSDL file has an
abstract section that describes Ports and Messages, and a concrete section that describes
specific instances of their usage.

Page 14

E-Book Series: Iconix Process Roadmaps

) 6Figure 2-4. WSDL file structure showing Abstract and Concrete sections (from Wikipedia

Developing Web Service Interfaces (WSDL) with Enterprise
Architect

Before you can use BPMN and BPEL to orchestrate a collaborating group of web services,
you first need to be able to define the web services themselves. The Business and Software
Engineering Edition of Enterprise Architect includes a WSDL toolbox, precisely for this
purpose. As you can see from Figure 2-5, the elements on this toolbox correspond to the
sections in Figure 2-4.

Figure 2-5. Enterprise Architect’s Business and Software Engineering Edition supports WSDL development

WSDL Packages in Enterprise Architect are organized into Types, Messages, Ports,
Bindings, and Services as shown in Figure 2-6.

6 http://en.wikipedia.org/wiki/Web_Services_Description_Language

Page 15

E-Book Series: Iconix Process Roadmaps

Figure 2-6. Organization of a WSDL Package in Enterprise Architect

WSDL documents are represented in Enterprise Architect by UML components stereotyped
as WSDL. These components are modeled as direct child elements of the top-level WSDL
namespace package. You can create multiple WSDL documents for a single namespace,
thus enabling the services for that namespace to be reused and exposed as required across
multiple WSDLs.

Figure 2-7 shows a WSDL component, along with the contents of Message, Port, Bindings,
and Services Packages, and XSD Schema classes.

class Ov erv iew

«WSDL»
CarRental_WSDLBookRentalCar_Service

To generate WSDL, either :

1. right-click on this element -> Generate WSDL (or)

2. select this element and use the following menu
option : Project -> Web Services -> Generate WSDL

«XSDschema»
Types

+ address
+ carType
+ costDetails
+ customerDetails
+ faultInfo
+ rentalDetails

Messages

+ RentalFault
+ RentalRequestDetails
+ RentalResponseDetails

PortTypes

+ CarRental_PortType

Bindings

+ CarRental_binding

Serv ices

+ BookRentalCar_Service

Figure 2-7. WSDL Component for CarRental, exposing the BookRentalCar Service

Page 16

E-Book Series: Iconix Process Roadmaps

WSDL Bindings are represented in Enterprise Architect by UML classes stereotyped as
WSDLbinding. Bindings should be defined under the Bindings package in the WSDL
namespace structure. Each WSDLbinding class implements the operations specified by a
particular WSDL portType interface. Therefore, WSDL Port Types should be defined before
creating WSDL bindings.

WSDL Port Types are represented in Enterprise Architect by UML interfaces stereotyped as
WSDLportType. PortTypes should be defined under the PortTypes packages in the WSDL
namespace structure. WSDL portType operations are represented in Enterprise Architect by
operations defined as part of a interface. WSDLportType

WSDL Services are represented in Enterprise Architect by UML interfaces, stereotyped as
WSDLservice. Services should be defined under the Services packages in the WSDL
namespace structure.

WSDL Messages are represented in Enterprise Architect by UML classes stereotyped as
WSDLmessage. Messages should be defined under the Messages package in the WSDL
namespace structure. WSDL message parts are represented in Enterprise Architect by UML
attributes defined as part of a class. WSDLmessage

Generating WSDL
Once we’ve defined our Bindings, Port Types, Messages, and Services, it’s time to generate
WSDL by right-clicking on our WSDL component and choosing Generate WSDL from the
context menu. Figure 2-8 shows the WSDL generation in progress.

Figure 2-8. Enterprise Architect generates WSDL automatically

Page 17

E-Book Series: Iconix Process Roadmaps

The result of WSDL generation for our Car Rental component can be seen in Figure 2-9.

Figure 2-9. We’ve successfully generated WSDL for the Car Rental component

We’re Ready to Go…
Okay, at this point we’ve modeled the problem domain, identified our business rules,
storyboarded our screens, and defined the interfaces to our Web Services using WSDL. In
Chapter 3 we’ll walk through the process of orchestrating the web services to do something
useful, and in Chapter 4 we’ll introduce behavioral code generation and the Business Rule
Composer.

Page 18

E-Book Series: Iconix Process Roadmaps

Chapter 3

Orchestrating Web Services with BPMN and
BPEL
In this chapter, we’ll illustrate a “cookbook” process for developing business processes that
use a group of web services collaborating to accomplish their requirements. We’ll use the
BPEL language to accomplish this. BPEL is an orchestration language that describes
messages to and from a business process. Those messages are defined using WSDL.

act Dev elop Web Serv ice Business Process

Draw BPMN Diagram of
Business Process

Map BPMN Object
Attributes to BPEL
Element Attributes

Generate BPEL Code

Build using Eclipse or
Visual Studio

Start Developing Web Service Business Process

Finish Developing Web Service Business Process

Figure 3-1. Roadmap for developing web-service centric business processes.

Page 19

E-Book Series: Iconix Process Roadmaps

We’ll be using the BPMN modeling notation to define our BPEL for the Car Rental system,
although other notations could have been used. Let’s start with an overview of BPEL.

A Quick Overview of BPEL

BPEL is short for WS-BPEL, which is short for Web Services Business Process Execution
Language. You can use BPEL to build web services, to write programs that call web services,
and to describe high-level business processes that make use of web services.

BPEL business processes are often used to implement business-to-business (B2B)
transactions where one business provides a web service and another business uses it. Our
car rental example in this book is an example of this sort of B2B transaction.

As more and more businesses publish functionality to the Internet in the form of web services,
the richness of BPEL applications, and therefore the overall importance of BPEL as a
development language, will continue to increase.

BPEL is an XML-based programming language. In addition to the logic, which is described in
BPEL, data types are defined using XML Schema Definitions (XSD) and input/output is
described using WSDL.

BPEL is sometimes referred to as an orchestration language because it supports complex
orchestrations (sequences of messages being exchanged) of multiple service applications.
Orchestration refers to the central control of the behavior of a distributed system as opposed
to choreography, which refers to a distributed system that operates without centralized
control. BPEL’s orchestration concepts are used by both the external (abstract) and internal
(executable) views of a business process.

There is (intentionally) no standard graphical notation for BPEL, and as a result, some
vendors have invented their own notations. However, many people use BPMN (Business
Process Modeling Notation) as a graphical front-end to capture BPEL process descriptions.
We’ll be using BPMN to model BPEL in this book with our Car Rental example.

It has been said that BPEL is more popular among web service developers while BPMN is
more popular in the business community. Some concepts in BPMN (for example, loops) were
left out of BPEL to make the language easier to implement. On the other hand, BPMN only
specifies the notation and lacks a complete set of semantics to specify unambiguous code
generation. Thus there are some issues in round-trip engineering between BPMN and BPEL.

BPEL in Enterprise Architect
Enterprise Architect currently supports generating BPEL from executable processes. With the
help of the BPMN version 1.1 Profile, Enterprise Architect enables you to develop BPEL
diagrams quickly and simply. The BPEL facilities are provided in the form of:

• A BPEL Model Template in the Select Models dialog

• A BPEL diagram type, accessed through the New Diagram dialog

• A BPEL Process element in the BPMN 1.1 Core Toolbox pages, which acts as a
container from which BPEL can be generated

• Custom dialogs for BPMN elements, highlighting the BPMN Tagged Values relevant
to BPEL generation

You can create a BPEL model from the Project Browser, using the Select Model(s) (Model
Wizard) dialog.

Page 20

E-Book Series: Iconix Process Roadmaps

Enterprise Architect creates a standard package structure for BPEL models, which is shown
in Figure 3-2. The standard structure contains the BPEL Process itself and the supporting
components (SupportingElements and Participant Pools).

Figure 3-2. Enterprise Architect’s standard BPEL Package Structure

Modeling a BPEL Process
The BPEL Process in Enterprise Architect represents the top-level container for the BPEL
elements, from which BPEL can be generated. Conceptually it maps to the BPEL process
element. BPEL Processes are created using the BPMN 1.1 Toolbox.

The BPEL Process element is a stereotyped Activity that, when created, has a child diagram.
That diagram will contain further elements from the BPMN 1.1 Toolbox; specifically: Start
Events, End Events, Intermediate Events, Gateways, Activities, Pools, and Notes.

Figure 3-3 shows the BPMN 1.1 Core Toolbox, and we’ll discuss each of these elements in
our BPMN tutorial, later in this chapter.

Page 21

E-Book Series: Iconix Process Roadmaps

Similar to Activity Diagrams, there are 4 main categories of elements on Business Process
Diagrams (BPDs): Flow Objects such as Events and Activities, Connecting Objects such as
Messages and Associations, Swimlanes, and other Artifacts such as Annotations.

Figure 3-3. Enterprise Architect’s BPMN 1.1 Core Toolbox

Note that Pools, Lanes, Data Objects, Groups, and Text Annotations are not mappable to
BPEL.

Page 22

E-Book Series: Iconix Process Roadmaps

Roadmap: Draw BPMN Diagram of Business Process
Figure 4 shows a BPMN diagram for our BPEL Car Rental Process. The process begins with
a Start Event: a Request is received from the Customer. If the customer is of legal age to rent
the vehicle, a B2B web service is used to check the Customer’s credit card. If the card is
valid, another web service is used to rent the vehicle, and a “Success” message is sent. If
either the age or credit card checks fail, a “No” message is sent back to the customer.

BPEL Handle Rental Request BPMN/ BPEL

«Pool» Customer

«Pool» Rental_Serv ice

receiveRequest

CheckAge

AssignNo

CheckCreditCard

RentVehicle

«Pool» CC_Verification_Serv ice

IsCardValid

replyResult

bpel:getVariableData('rentalRequestMessage',
'age')>=18

bpel:getVariableData('checkResponseMessage',
'cardStatus')>='valid'

Figure 3-4. Orchestrating web services for Car Rental

Page 23

E-Book Series: Iconix Process Roadmaps

Everything You Want to Know About BPMN But Were Afraid
to Ask

BPMN (Business Process Modeling Notation) provides a graphical notation similar to UML
activity diagrams for specifying business processes. BPMN provides a simple, standard
notation that is readily understandable by analysts, developers, managers, and end-users.

BPMN is maintained by the OMG, and we’ll be referring repeatedly to the “OMG BPMN 1.1
Specification” (aka “the spec”) in the next couple of pages.

Start Events and End Events
A Start Event indicates where a particular Process begins. Every BPEL Process must begin
with a Start Event. A Process can start in several ways, depending on the Trigger Type. The
spec defines six types of Trigger (None, Message, Timer, Conditional, Signal, and Multiple).
Four of these Trigger types (Message, Timer, Conditional, Multiple) can be mapped to BPEL.

An End Event indicates where a particular Process ends. A Process can start in many ways,
depending on the Trigger Type, but every BPEL Process must terminate with an End Event.
The spec defines eight types of End Event (or Result), which determine the consequence of
reaching the End Event. These are: None, Message, Error, Cancel, Compensation, Signal,
Terminate, and Multiple. Five of these Result types (Message, Error, Compensation,
Terminate, Multiple) can be mapped to BPEL.

Gateways
Gateways control the way in which Sequence Flows converge and diverge within a Process.
They provide a gating mechanism that either allows or blocks a Sequence Flow.
The BPMN 1.1 Spec describes four types of Gateways: Exclusive (XOR), Inclusive (OR),
Complex, and Parallel (AND). Three of these Gateway types (XOR, OR, and AND) can be
mapped to BPEL

An Exclusive Gateway represents a 'fork in the road'; that is, there can be two or more
alternative paths but only one can be taken. Therefore, each path is mutually exclusive
(XOR). Exclusive Gateways can be either Data-Based or Event-Based .

Data-Based Exclusive Gateway is the most common type of Exclusive Gateway, where a
boolean expression is evaluated to determine the flow path.

With Event-Based Exclusive Gateways, the branching is based on the events (such as
receiving a message) that occur at that point in the Process, rather than the evaluation of an
expression. As an example, when a company receives a response from a customer, they
perform one set of activities if the customer responds Yes and another set of activities if the
customer responds No. The customer’s response determines which path is taken. This
Gateway maps to a BPEL Pick element.

With inclusive gateways, all the outgoing Sequence Flows with a condition that evaluates to
true are taken.

The parallel gateway provides a mechanism to create parallel flows.

Pools
A Pool represents a Participant in a Process and does not map to any specific BPEL
element. Enterprise Architect uses Pools to represent external Participants, with which the
BPEL Process communicates. These are 'black box' pools; that is, they are abstract and do
not expose any details (they do not contain any BPMN elements inside them).

Page 24

E-Book Series: Iconix Process Roadmaps

Activities
An Activity represents work that is performed within a Process. An Activity can be modeled
as a Sub-Process (a compound Activity that is defined as a flow of other BPMN elements) or
as a Task (an atomic Activity that cannot be broken down into a smaller unit).

Activities - both Tasks and Sub-Processes - can also act as Looping constructs. There are
two types of Looping constructs, Standard (while or until) and Multi-Instance (for each). A
Standard Loop has a boolean Condition that is evaluated after each cycle of the loop. If the
evaluation is True, then the loop continues. If Test Time is set to After, the loop is equivalent
to a while loop. If Test Time is set to Before, the loop is equivalent to an until loop. A Multi-
Instance Loop is equivalent to a for each loop and has a numeric expression as a Condition
that is evaluated only once before the Activity is performed. The result of the evaluation
specifies the number of times the loop is repeated.

The BPMN Specification defines three types of Sub-Process: Embedded, References, and
Reusable. Embedded and References Sub-Process types can be mapped to BPEL.

Assignments
A BPMN Assignment element enables data to be copied between messages, and new data
to be inserted, using expressions within a BPEL Process. A BPMN Assignment element maps
to a BPEL assign activity and copies the specified value from the source to the target.

In Enterprise Architect, Assignment elements should be created in the Assignments package
in SupportingElements. If they are created elsewhere, they cannot be enacted correctly.

Page 25

E-Book Series: Iconix Process Roadmaps

Roadmap: Map BPMN Object Attributes to BPEL Element
Attributes
Once we’ve defined our activities, gateways, and events on our BPMN diagram, we can
specify additional BPEL details as attributes on our BPMN elements. In Figure 3-5, we’re
defining that the CheckCreditCard activity will be implemented as a web service, and will take
a message and generate a response. request result

Figure 3-5. Defining Messages to and from the CheckCreditCard Web Service

Page 26

E-Book Series: Iconix Process Roadmaps

In Figure 3-6, you can see that the belongs to the checkRequestMessage
 web service, and has attributes of and , and the creditCardChecker name cc_details

 has an attribute of . checkResponseMessage cardStatus

Figure 3-6. Messages are created inside the Web Service in the Project Browser

BPEL Model Validation

You can use Enterprise Architect’s Model Validation facility to check the validity of the BPEL
model (see Figure 3-7). You can validate an entire BPEL Process or a single BPMN element.
Note that Enterprise Architect checks for both the UML and the BPEL rules by default. To
enable only BPEL rule validation, select only the BPEL Rules checkbox in the Model
Validation Configuration dialog.

Figure 3-7. Enterprise Architect validates BPEL Rules

Page 27

E-Book Series: Iconix Process Roadmaps

Modeling Restrictions
Following these rules will help your BPEL modeling effort with Enterprise Architect to be more
successful:

• Use the elements from the BPMN 1.1 Toolbox pages for BPEL modeling.

• Every BPEL Process and Sub-Process should start with a StartEvent and end with
an . EndEvent

 or an • A StartEvent EndEvent should not be attached to the boundary of a Sub-
Process.

• SequenceFlow Looping is not supported - only Activity looping is supported. All
s should flow downstream and not upstream. SequenceFlow

 with multiple triggers to BPEL is not supported. • Mapping of an IntermediateEvent

 loops to BPEL is not supported. • Mapping of multi-instance parallel While

• Mapping of Independent sub-processes to BPEL is not supported.

Generate BPEL Code
Finally, after you’ve specified your BPEL Process and validated the model, Enterprise
Architect will generate the BPEL code to accomplish the business process (see Figure 3-8).

Figure 3-8. Enterprise Architect generates BPEL code from BPMN models

Once the code is generated, you’re ready to move into Eclipse or Visual Studio and use the
MDG Integration capability of Enterprise Architect to keep your model and the source code
tightly linked together. But first, let’s take a look at the Business Rule Composer and learn
about behavioral code generation.

Page 28

E-Book Series: Iconix Process Roadmaps

Chapter 4

Behavioral Code Generation for Business Rules
In this chapter we’ll introduce you to some unique capabilities of Enterprise Architect’s
Business and Software Engineering Edition that provide an entirely new approach to the
enforcement of business rules. Continuing our Car Rental System example, we’ll show how to
use Activity Diagrams to drive behavioral code generation for custom software using the
Sparx Systems Business Rule Composer. Figure 4-1 shows our roadmap for “business rule
centric” processes.

act Develop Business Rule Centric Business Process

Create RuleFlow Activ ity
Diagrams for Business

Processes within Domain
Classes

Make sure RuleFlow
Actions are stereotyped as

RuleTasks

Link Business Rules to
RuleTasks

Generate Behav ioral Code
from Activ ity Diagrams

Build using Eclipse or
Visual Studio

EA's Behavioral Code
Generation also works
for State and
Sequence Diagrams

Start Developing Business Rule
Centric Business Processes

Finish Developing Business Rule
Centric Business Processes

Model the business
rules for each Rule
Task using the business
rule composer.

Figure 4-1. Use Activity Diagrams to model “business-rule centric” processes.

Page 29

E-Book Series: Iconix Process Roadmaps

Behavioral Code Generation Includes Logic, Not Just Class
Headers
For more than 20 years now, modeling tools have “generated code” from graphical models.
Traditionally, this form of code generation has involved taking class definitions and generating
headers, with UML attributes and operations turned into data members and function
members. With the introduction of Behavioral Code Generation (which works from Activity,
State, and Sequence diagrams), Sparx Systems has opened a new chapter on this
technology. It’s now possible to generate complete algorithmic logic from the model.

While Enterprise Architect’s behavioral code generator works with State and Sequence
diagrams, the example in this chapter focuses on generating code from Activity Diagrams,
specifically to implement business rules. The code generation shown in this chapter does not
involve a scenario that includes a GUI – it’s “pure” algorithmic code.

Roadmap: Create Activity Diagrams for Business Processes,
within Domain Classes; Stereotype Actions as Rule Tasks
Let’s look at how to process an application for our Car Rental System. The first thing to do is
create a RuleFlow diagram – in this case ProcessApplication. We’ll create this diagram
inside of a class in the Domain Model, just as if we were creating an Operation on that class,
since that is, in effect, what we’re doing (see Figure 4-2).

Figure 4-2. RuleFlow diagrams are created inside Domain Model Classes.

Page 30

E-Book Series: Iconix Process Roadmaps

Once we’ve created the RuleFlow diagram, we’ll populate it with Actions, Decisions, etc. We’ll
stereotype these Actions as <RuleTask>s. If you recall from Chapter 2, we organized our
Business Rules by RuleTask. Figure 4-3 shows the result.

BRM_RuleFlow RuleFlow

«Start»
RuleFlowStart

«RuleTask»
Determine Penalty

«RuleTask»
Determine Penalty

«RuleTask»
Eligibility

«RuleTask»
Eligibility

Is Customer
Eligible?

«RuleTask»
Determine Rent Payable

«RuleTask»
Determine Rent Payable

«RuleTask»

Determine Total
Amount Payable

«RuleTask»

Determine Total
Amount Payable

«End»
RuleFlowEnd

The Rule Flow diagram models the sequence in which a series of Rule Tasks are executed. To view the Rule
Composer right click on the Rule Task and select "Rule Composer" option. The conceptual level of business rules
are modeled in the Rule Composer to a logical level of detail.

For more information on Rule Flow model and Rule Composer see the following help topics:

Rule Flow Model

Rule Composer

Note that any Decision node has a Merge node.

Also note that the Rule Task elements are inside
the respective RuleFlow Activity element in the
project browser for successful code generation.

«RuleTask»

Return
 return m_application.Status

«RuleTask»

Return
 return m_application.Status

[Customer.Eligible == true]

[CustomerBadHistoryLevel > 0]

Figure 4-3. RuleFlow diagrams contain Actions stereotyped as RuleTask.

Our algorithm first determines whether the is Customer Eligible to rent the vehicle, then
determines the price, including any possible penalties due to the Customer’s history, and
returns, presenting a pass/fail application status.

Page 31

E-Book Series: Iconix Process Roadmaps

Roadmap: Link Business Rules to RuleTasks
Next, we should specify the conditional logic for each of these RuleTasks, while associating
each RuleTask with the specific Business Rules that we’re enforcing. As you might have
guessed by now, that’s where the Business Rule Composer comes into play. Once we’ve
completely specified each RuleTask, we’d like Enterprise Architect to generate 100%
complete code for the entire RuleFlow (Activity Diagram). Using Behavioral Code Generation,
that’s exactly what we’ll do.

Figure 4-4 shows the Business Rule Composer for the RuleTask. Eligibility

Figure 4-4. Business Rule Composer showing Rules and Logic for Eligibility.

There are 2 sections on the Rule Composer screen. The top panel shows the Business Rules
(from Chapter 2) that we’re satisfying within this Eligibility RuleTask; the lower section (in
this case a Decision Table) has 3 parts: a Condition section to model condition variables, an
Action section to model action variables, and a Rule Bind section to link the rule in the rule
table.

Modeling Condition Variables
To model condition variables, we’ll make use of attributes of classes that are defined in the
Domain Model. We can drag and drop the required attributes from the Project Browser onto
the Condition Variable column. In Figure 4-4 above, we’ve dragged the , age

, and attributes from the BadHistoryLevel ValidLicenceNumber Customer class into the
“Action Variable” column.

Next, we’ll define a range of accepted values for each attribute (such as allowable
 values being between greater than 18). A new constraint, Customer.age AllowableValues,

is created for the attribute. You can check this constraint by opening the Properties dialog for
the attribute and selecting the Constraints tab. If the condition variable references an
enumeration, the enum literals are not editable in the Edit Allowable Values dialog.

Page 32

E-Book Series: Iconix Process Roadmaps

Modeling Action Variables
In the Action Variable section, when a specific value of a condition variable calls an operation
or decision attribute you assign the operation or attribute as an action.

To model action variables, drag and drop the required attribute or operation from a Domain
Model Class in the Project Browser onto the Action Variable field. For an attribute, right click
on the Allowable Values field and type the range of values in the text box (e.g. Accept, Reject
for Application.Status in Figure 4-4). Select the appropriate response in the Value column
fields. If the dropped action variable is of type enum, the Allowable Values fields are
automatically set with the enum literals. For an operation, a checkbox displays in each of the
Value column fields.

Binding Business Rules to Conditions
The Rule Bind section lies on top of the Condition section. It binds the condition variable and
action variable values to the appropriate rule in the Rule Table.

To bind a rule, follow the steps below.
• Select the rule number in the Rule field over one of the Value columns
• Ensure that the values set in the Value<n> field for the condition variables and action

variables, underneath the rule number, all satisfy the rule
• Click the Save button

In Figure 4-4, Rule 1 specifies that a Car must not be rented to Customers of age less
than 18:

• Select 1 in the Rule field over the Value1 column
 in the Value1 column in the Condition table • Select < 18 against Customer.age

 in the Value1 column in the Action table • Select No against Customer.Eligible
• Select Reject against in the Value1 column in the Action table Application.Status
• Select the checkbox against Rent.PostError in the Value1 column in the Action

table.
Figure 4-5 shows the rules and logic for determining penalties based on the Customer’s
history.

Figure 4-5. Rule Composer being used to specify the “Determine Penalty” RuleTask.

Page 33

E-Book Series: Iconix Process Roadmaps

Modeling Computational Rules
The Computational Rule table enables you to model rules involving computations. The table
has three following columns: Rule Variable Expression, Rule, and Rule Dependency.

To define a computational rule, follow these steps:

1. Drag and drop the appropriate attribute from a Class in the Domain Model into the
Variable field

2. Type the expression to be evaluated

3. Type the rule number from the Rule table of the rule being modeled, to link the table
data to the rule

Figure 4-6 shows an example of using the Computational Rule Table.

Figure 4-6. Computational Rule Table for determining Total Amount Payable.

Combining Decision Tables and Computational Rules
It’s possible to use the Decision Table and Computational Rule Table together, as shown in
Figures 4-7 and 4-8.

If the rule depends on another rule being satisfied first, type the number of that rule in the
Rule Dependency field. If the computation rule is also a conditional rule, add the condition
variable in the Decision table and bind the appropriate rule in the Rule Bind section.

Page 34

E-Book Series: Iconix Process Roadmaps

Figure 4-7. Decision Table for Determining Rent Payable.

Figure 4-8. Computational Rule Table for Determining Rent Payable.

Once we’ve completed specifying the logic for all RuleTasks on our RuleFlow Activity
Diagram, we’re ready to generate code.

Page 35

E-Book Series: Iconix Process Roadmaps

Roadmap: Generate Behavioral Code from Activity Diagrams
Code generation turns out to be very simple (and yields astonishing results) once all the
preliminary work has been done. Simply right-click on the Domain Model Class in the Project
Browser and select “Generate Code”… and… Voila! No programming required!

Figure 4-9. 100% complete logic, with Business Rules appearing as comments within the code!

It’s worth examining the code shown in Figure 4-9 quite carefully. Here are a few points worth
noting:

• The entire RuleFlow diagram is code generated as if it were a single class
Operation on the DomainModel Class

• Each RuleTask is expanded in turn

• Within each RuleTask, the Business Rules are automatically propagated
forward into the code as comments

• Attribute and Operation names are taken directly from the Rule Composer

• No manual programming intervention is required

It doesn’t take a whole lot of imagination to see that this capability can be a real “game-
changer”. Many organizations have thousands of business rules to implement, and “errors in
translation” between Subject Matter Experts, Business Analysts, and Programmers are the
norm, not the exception. Many of those errors can be eliminated using Behavioral Code
Generation and the Business Rule Composer.

There’s one more step in our Roadmap for “business-rule centric” processes, and that’s the
process of building the system in either Eclipse or Visual Studio. That’s the subject of the next
chapter.

Page 36

E-Book Series: Iconix Process Roadmaps

Chapter 5

Integrating Models and Code
Enterprise Architect contains numerous features to help with code generation and reverse
engineering, and also integrates closely with the Visual Studio and Eclipse development
environments via its MDG Integration technology. Many of Enterprise Architect’s code
engineering capabilities, including forward and reverse engineering, and Enterprise
Architect’s powerful code template framework, are described in detail in the Enterprise

7Architect for Power Users multimedia tutorial. This chapter will focus in on the MDG
Integration capability.

Mind the Reality Gap
Since the beginning of modeling time, the gap (sometimes a chasm) between models and
code has always been problematic. Models, the argument goes, don’t represent reality… only
the code represents reality… therefore the model must be worthless, and we should just skip
modeling and jump straight to code. Those who have used this argument to avoid modeling
probably felt quite safe in doing so because nobody has ever managed to make “reverse
engineering” or “round-trip engineering” a very seamless process… until now. The
innocuously named “MDG Integration” product changes the whole equation.

Bringing UML to the IDE
You can lead some programmers to UML, but you can’t always make them embrace
modeling. The ever-present gap between models and code is one of the reasons for this.
Modeling introduces another environment, another tools interface, another user interface to
learn, and forces the programmer to leave the familiar confines of his or her coding
environment, where he has all the comforts of home.

Figure 5-1. Bringing the UML model inside the IDE (in this case, Visual Studio) has many benefits.

7 See: http://iconixsw.com/EA/PowerUsers.html

Page 37

http://iconixsw.com/EA/PowerUsers.html
http://iconixsw.com/EA/PowerUsers.html
http://iconixsw.com/EA/PowerUsers.html

E-Book Series: Iconix Process Roadmaps

But what would happen if the UML model was brought inside of the programming
environment? (See Figure 5-1). Let’s say if you could open your project, right click a menu,
and say something like “Attach UML Model”. So you can browse your use cases, sequence
diagrams, classes, etc from within Visual Studio or Eclipse.

Then let’s suppose you could hot link a package of classes from the UML window to the
source code. Nice, but not compelling yet? How’s this? You can double-click an operation on
a class in the UML window and instantly browse to the source code for that method, and you
can edit the code as you normally would in Visual Studio or Eclipse and update the UML
model by right-clicking on the class and choosing Synchronize.

Suddenly, the UML model is actually helping you to navigate through your code, you can click
to see the use cases and sequence diagrams that are using the classes you’re building, and
you can re-synch the models effortlessly. Suddenly your UML model is the asset that it was
supposed to be all along.

But… here’s the six million dollar question: how do you keep the model and the code
synchronized over the lifetime of the project?

Four Simple Steps to Modeling Nirvana – Without Chanting
OMMMMM
A few years ago, Matt Stephens and I wrote a whole chapter in Agile Development with
ICONIX Process8 about how to synchronize models and code, and the reasons why it’s
important. Synchronizing models and code is still just as important, but the folks at Sparx
Systems have obsoleted the “how-to” guidance from that chapter. Now it’s absurdly simple.
So simple that an old tool-builder like me wonders “why the heck didn’t I think of that?”

Here’s how it works:

1. Connect your UML model to a Visual Studio or Eclipse project

2. Link a package in the model to classes within the IDE

3. Browse the source code by clicking on operations on classes

4. Edit the source code in your IDE

Enterprise Architect keeps your model and code synchronized, automatically, or you can
force synchronization at any time by selecting Synchronize from Code from the Code
Services menu as shown in Figure 5-2.

8 See http://www.iconixsw.com/Books.html for more on the Agile/ICONIX process.

Page 38

http://www.iconixsw.com/Books.html

E-Book Series: Iconix Process Roadmaps

Page 39

Figure 5-2. Java code and UML model for our Car Rental example shown in Eclipse

Wrapping Up
That completes our roadmap for developing Service Oriented Architecture projects using the
Enterprise Architect Business and Software Engineering Edition. Our roadmap has taken us
from Requirements definition, through implementation of web-service centric scenarios using
BPMN, BPEL, and WSDL, business-rule centric scenarios using Behavioral Code Generation
and the Business Rule Composer, and finally covered how to effortlessly synchronize UML
models and source code over the lifetime of your projects.

ICONIX is available to help with a variety of training and consulting services for your SOA
projects. If you think we might be able to help, please contact us at
SOATraining@iconixsw.com.

We wish you success in your development efforts!

mailto:SOATraining@iconixsw.com

	Why a Service-Oriented Architecture Example?
	The SOA Roadmap (aka “ICONIX Process for SOA Development”)

	SOA, BPEL, WSDL – Publishing Your Services on the Web
	Business Processes Must Satisfy Business Rules
	Behavioral Code Generation – A Quantum Leap in Tools Capability
	Integration with IDEs – Keeping Model and Code Synchronized
	Introducing the Car Rental System Example
	Figure 2-4. WSDL file structure showing Abstract and Concrete sections (from Wikipedia)
	Developing Web Service Interfaces (WSDL) with Enterprise Architect
	Generating WSDL
	We’re Ready to Go…
	BPEL in Enterprise Architect
	Modeling a BPEL Process

	Roadmap: Map BPMN Object Attributes to BPEL Element Attributes
	Modeling Restrictions

	Generate BPEL Code
	Behavioral Code Generation Includes Logic, Not Just Class Headers
	Roadmap: Create Activity Diagrams for Business Processes, within Domain Classes; Stereotype Actions as Rule Tasks
	Roadmap: Link Business Rules to RuleTasks

	Modeling Condition Variables
	Modeling Action Variables
	Binding Business Rules to Conditions
	Modeling Computational Rules
	Combining Decision Tables and Computational Rules
	Roadmap: Generate Behavioral Code from Activity Diagrams
	Mind the Reality Gap
	Bringing UML to the IDE
	Four Simple Steps to Modeling Nirvana – Without Chanting OMMMMM
	Wrapping Up

