|

)

e

|
)
18

with Sam Mancarella

OMG
SYSTEMS
MODELING
LANGUAGE

Table of Contents

Prologue

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Back to the Future

An Introduction to SysML and Enterprise
Architect Engineering Edition

Audio Player Requirements

Audio Player Behavior

Audio Player Structure

Audio Player Constraints and Parametrics

Audio Player Hardware Implementation

Audio Player Software Implementation

14

18

27

32

39

54

Copyright © 2010 Sparx Systems Pty Ltd and ICONIX. All rights reserved. All trademarks
contained herein are the property of their respective owners. The OMG SysML logo is a
trademark of the Object Management Group, Inc.

Prologue - Back to the Future

This book represents a departure from what I've been doing at ICONIX over the last 25
years, which has been focused mainly on Software Engineering, but a book on how to
develop real-time embedded systems is actually a “return to my roots” in Electrical
Engineering.

My degree is actually in EE, not Computer Science, and my path to being involved with
Software Engineering had its formative years when | was working as a programmer in
Computer Aided Design for VLSI in the aerospace industry in southern California, and also
up in Silicon Valley. So even though SysML is a new area for me, I'm inherently familiar with
the problems that SysML helps to solve.

My first four jobs out of college (in the early 1980s) were involved with VLSI design. Three of
these (two at TRW and one at Hughes Research Labs) were on a project called VHSIC (Very
High Speed Integrated Circuits), which is what the “V” in VHDL stands for. At TRW my work
involved extending some of the early “design rule checking” software to cover a more
complex fabrication process that allowed us to deliver gigahertz-level speeds, which was
much more of an accomplishment 30 years ago than it is today. | also worked a bit with
SPICE, one of the earliest “circuit simulators” (more about simulation in the “SysML
parametrics” discussion in Chapter 5).

Later, after a short stint up in Silicon Valley working on something called “symbolic layout and
compaction” at a company called Calma, | returned to TRW where | designed and
programmed an application called “Hierarchical Layout Verification” which recursively
decomposed a complete integrated circuit layout into sub-cells (now called “blocks” in
SysML), determined their input and output “ports” (another familiar SysML concept), and
checked both physical design rules and electrical connectivity.

During this time, my boss Jim Peterson at TRW was developing one of the early Hardware
Description Languages, which he called THDL (for TRW Hardware Description Language).
THDL itself was an extension of CIF (Caltech Intermediate Format®) which had been
developed in Carver Mead's research group when Jim was a grad student at Caltech. Since
Jim’s THDL work was funded under the VHSIC contract it's a safe bet that some of the
concepts in VHDL had their roots in THDL.

After my second go-round at TRW, | went to work at Hughes Research Labs in Malibu, CA,
developing the interface from CAD systems (most notably Calma, who owned about 80% of
the market back then) to something called the VHSIC Electron Beam Lithography System.
This was another ambitious project that pushed the state of the art in fabrication technology
far ahead of what it had been previously. We were writing one-tenth-of-a-micron lines on
silicon wafers using electron beams (still not bad today) back in 1984.

When Sparx Systems asked me to write this eBook, | discovered a kindred spirit in Sam
Mancarella, who is largely responsible for a great deal of the implementation of Enterprise
Architect’'s SysML solution. Sam also developed the Audio Player example that this book is
written around, which is such a complete and comprehensive example that it made my writing
task very easy. | want to make it completely clear that Sam deserves ALL of the credit for
developing this example, and that my contribution to this project was simply writing the
manuscript around the example. My electrical engineering background made it obvious to me
how good Sam’s example is, and allowed me to see how the pieces fit together.

! Introduction to VHDL By R.D.M. Hunter, T.T. Johnson, p.17-18

Chapter 1 - An Introduction to SysML and
Enterprise Architect Engineering Edition

A roadmap for embedded system development

It's easy for a book to present a taxonomy of disjointed SysML diagrams and then leave you
to figure out how to combine those diagrams into a meaningful model. In fact, that's what the
majority of SysML books that we've seen appear to do. But with this book, we're going to
introduce you to SysML and the Systems Engineering Edition of Enterprise Architect in a
rather different way.

At ICONIX, we've had pretty good success when we defined an unambiguous development
process, and presented that development process in “roadmap” form. We’ve developed
process roadmaps for use case driven software development, business modeling, design-
driven testing, and algorithm-intensive software design. In this book we’re going to do it
again, this time for embedded systems that involve a combination of hardware and software.
We’'ll explain the roadmap at the high level in this chapter, and then each of the following
chapters will detail one of the high-level activities on the top-level roadmap. Along the way,
we’'ll show you how Enterprise Architect’s System Engineering Edition supports the process
we're describing, while illustrating each step of the process by example.

In addition to providing complete support for all SysML 1.1 diagrams, the Enterprise Architect
Systems Engineering edition combines advanced features such as executable code
generation from UML models (including support for hardware languages such as Verilog and
VHDL), executable SysML Parametric diagrams and advanced scripting. We'll explore this
unigue combination of advanced capabilities in the last half of this book.

Specifically,

e In Chapter 5 we’'ll explore Enterprise Architect’'s SysML Simulation Support, which
provides the capability of simulating SysML 1.1 constraint models with results
graphing capabilities;

e In Chapter 6 we’ll describe support for Hardware Description Languages, including
Verilog, VHDL and SystemC, with support for generating State Machine code; and

e In Chapter 7 we'll illustrate Enterprise Architect’s support for generating functional
source code for State Machines, Interactions and Activities in C, C++, C#, Java and
VBNet .

Each of these capabilities, taken standalone, adds a significant amount of “horsepower” for a
systems engineering effort. We'll show you how to combine these capabilities into a single
process roadmap that's greater than the sum of its parts.

Figure 1 shows the top level roadmap for ICONIX Process for Embedded Systems.

act Roadmap /

System
Concept

Define System
Requirements

Model System Block
Structure

Model System Behavior

Define Constraints and
Parametrics

Simulate

Implement Hardw are Implement Software

Test Hardw are and
Software

Deliver System

Figure 1 — ICONIX Process Roadmap for Embedded Systems Development

As you can see, our roadmap starts off by defining requirements, proceeds through modeling
of system behavior and block structure, and then through definition of constraints and
parametrics, simulation, and then implementation in both hardware and software. We'll take
you through each of these activities at a summary level in this chapter, and then in more
detail, illustrated by a comprehensive Audio Player example, in Chapters 2-7.

Requirements, Structure, Behavior, and Parametrics — the
Four Pillars of SysML

Our Embedded Systems Development Process Roadmap is organized around producing a
SysML model that is generally organized into four sections. These parts of the overall system
model (Requirements, Structure, Behavior, and Parametrics) are sometimes referred to as
“The Four Pillars of SysML”.2

act Define System Requirements /

Define Functional
Requirements

Define Non-Functional
Requirements

Organize Requirements
into Hierarchies

Allocate Requirements to
System Elements

Figure 2 — Roadmap: Define System Requirements

Requirements

Requirements are generally categorized as Functional Requirements, which represent
capabilities of a system, and Non-Functional Requirements, which cover such areas as
Performance and Reliability. You can organize Requirements into hierarchies on requirement
diagrams. Enterprise Architect supports allocation of requirements to other elements using a
simple drag-and-drop, and automatic generation of traceability matrices.

Figure 2 shows the steps for Requirements definition from our process roadmap. Note that
allocation of Requirements to System Elements is really an ongoing process as the model is
developed, and largely occurs within other roadmap activities. We'll explore Requirements
Definition in more detail in Chapter 2.

2 OMG Systems Modeling Language Tutorial, INCOSE 2008

Structure

act Model System Block Structure/

Start Modeling Structure

Model the Problem
Domain

Define Blocks

Allocate Requirements
to Blocks

Define Ports

ActivityFinal

Figure 3 — Roadmap: Model System Block Structure

Blocks can be used to represent hardware, software, or just about anything else. Block
definition diagrams represent system structure. Internal block diagrams describe the internals
of a block such as parts, ports, and connectors. As with UML, Packages are used to organize
the model.

If you think of a Block as an electronic circuit (one of many things that a Block can describe),
the Ports define the input and output signals to/from the circuit. SysML allows you to describe
the input signals and transformations in great detail, and Enterprise Architect contains a built-
in simulator that allows you to plot the output graphically or export to a comma-separated
value file. You'll see how this works in detail in Chapter 5. Defining the Block structure is a
prerequisite for defining parametrics and running simulations.

Here’s how our process roadmap approaches defining system structure. See Chapter 3 for
an expanded discussion on modeling structure.

Behavior
act Model System Behavior /

Start Behavior Modeling

Model Use Cases Model Finite State

Behavior

Allocate Requirements to

Use Cases

Allocate Requirements to
State Machines

- J

Model Interactions for Use

Cases

Complete Behaior Modeling

Figure 4 — Roadmap: Model System Behavior

SysML provides four main constructs to represent different aspects of system behavior; use
cases, activity diagrams, sequence diagrams, and state machines.

Our roadmap shows two parallel branches for modeling system behavior. One branch starts
with use cases?®, which describe scenarios of how users will interact with the system. Use
cases generally consist of a “sunny-day” part which describes a typical success-path for the
scenario, and multiple “rainy-day” parts which describe unusual conditions, exceptions,
failures, etc. Use cases are typically detailed on Interaction (Sequence) Diagrams.

The other branch on the roadmap involves defining event-driven, finite-state behavior of
some part of a system using state machines. As a simple example, there is finite state
behavior associated with the power charging circuitry on our Audio Player. One of Enterprise
Architect’s unique capabilities is the ability to generate functional (algorithmic) code from
state machines. As you'll see, these state machines can be realized in software or in
hardware using Hardware Description Languages (HDLS).

Requirements are allocated to both use cases and states. Chapter 4 explores behavior
modeling in detail.

% See “Use Case Driven Object Modeling with UML: Theory and Practice” by Doug
Rosenberg and Matt Stephens for a lot more information about use cases.

Advanced Features of the Enterprise Architect System
Engineering Edition

act Define Constraints and Parametrics /

Start defining constraints and parametrics

Define Constraint Blocks

Add Scripts to Constraint

Blocks

Define Parametric
Diagrams

Simulate Parametric Models

Figure 5 — Roadmap: Define Constraints and Parametrics

Enterprise Architect Systems Engineering edition contains a number of unique features for
systems and software engineers working on embedded systems. The Systems Engineering
edition combines new features such as executable SysML Parametric diagrams and
advanced scripting with executable code generation from UML models (including support for
hardware languages such as Verilog and VHDL, and bundles licenses for DODAF-MODAF,
SysML, DDS and IDE integration products to provide powerful model-driven construction
tools to tightly bind your code development in Eclipse or Visual Studio with the UML/SysML.
Our process roadmap leverages these unique capabilities into a synergistic development
process.

Parametrics

act Simulate /
Define Constraints and Parametrics
®
4 Configure Simulation)
Assign Inputs to
Parameters
Assign Values to Input
Parameters
Specify Output Value
Classes
Specify Reporting
Options
A /
Run the Simulation

Figure 6 — Roadmap: Simulate

Parametrics allow us to define detailed characteristics, physical laws, and constraints on
system blocks that allow us to simulate how a system will behave, then make engineering
tradeoffs, and re-simulate until our design meets the specified requirements.

Our roadmap provides two high-level activities in this area; the first to define constraint blocks
and parametric diagrams, and the second to configure and execute the simulations.

The ability to configure and execute simulations within Enterprise Architect, eliminating the
need to export the model to external simulation software, is one of the unique capabilities of
the Sparx Systems SysML solution.

Enterprise Architect’s built-in support for scripting and graphical display of simulation results
tightens the feedback loop on making engineering tradeoffs in the model to rapidly ensure
that all system requirements are met. You'll see how this works in detail in Chapter 5.

Implement Hardware
Hardware Description Languages allow the specification of electronic circuits in a software-

like representation. According to Wikipedia®:

In electronics, a hardware description language or HDL is any language from a
class of computer languages and/or programming languages for formal description
of electronic circuits, and more specifically, digital logic. It can describe the circuit's
operation, its design and organization, and tests to verify its operation by means of
simulation.

HDLs are standard text-based expressions of the spatial and temporal structure
and behaviour of electronic systems. Like concurrent programming languages, HDL
syntax and semantics includes explicit notations for expressing concurrency.
However, in contrast to most software programming languages, HDLs also include
an explicit notion of time, which is a primary attribute of hardware. Languages
whose only characteristic is to express circuit connectivity between a hierarchy of
blocks are properly classified as netlist languages used on electric computer-aided
design (CAD).

HDLs are used to write executable specifications of some piece of hardware. A
simulation program, designed to implement the underlying semantics of the
language statements, coupled with simulating the progress of time, provides the
hardware designer with the ability to model a piece of hardware before it is created
physically. It is this executability that gives HDLs the illusion of being programming
languages. Simulators capable of supporting discrete-event (digital) and
continuous-time (analog) modeling exist, and HDLs targeted for each are available.

act Implement Hardware/
/ Generate State Machines \
ot VHDL Generate Verilog [Generate System C]

Figure 7 — Roadmap: Implement Hardware

Enterprise Architect’s long-proven ability to generate code has been extended to support
code generation in VHDL, Verilog, and SystemC in the Systems Engineering Edition. While
code generation is independent of SysML usage, from a process roadmap standpoint, this
means we can drive both hardware and software implementation from our SysML model.
Once code is generated in an HDL, it's possible to “compile to silicon” to realize the hardware
solution on a chip.

We'll explore hardware implementation in Chapter 6.

* http://en.wikipedia.org/wiki/Hardware_description_languages

Implement Software

Software implementations can leverage a variety of powerful capabilities that are included
with the System Engineering Edition of Enterprise Architect. Two of the more important and

unigue capabilities are:

e The ability to generate functional (algorithmic) code from behavioral models (state
machines, activity diagrams, and interaction diagrams)

e The ability to integrate Enterprise Architect models into development environments
such as Eclipse and Visual Studio.

Figure 8 shows a high-level look at the Software Implementation activity from the roadmap.

act Implement Software /

Generate Functional Code Generate Functional Code
from Activity Diagrams from State Machines

Build in Visual Studio Build in Eclipse using
using MDG Integration MDG Integration

Figure 8 — Implement Software

We'll explore these unique capabilities and how they work together in Chapter 7.

Introducing the Audio Player Example

Over the course of this book, we’ll be illustrating the steps in our process by presenting
diagrams from an example project. Our example (developed by Sam Mancarella) will be a
hardware/software system that most everyone is familiar with — an Audio Player.

The top level Package Diagram in Figure 9 shows how the example model is organized.

pkg Requirements Model /

Requirements Model
This package contains the models that define the
requirements of the Portable Audio Player. The model
contains requirement specifications, use cases,
interactions, state machines and constraint blocks.

Specifications Use Cases

+ Durability + Top Level

+ Media Access + Maintain Audio Player

+ Performance + Maintain Playlist

+ User Friendliness

+ Operate Audio Player Constraint Blocks
[—]
ﬂ Specifications ﬂ Use Cases (ORI
Interactions =
State Machines j Constraint Blocks

[z1] + Operate Audio Player

+ DSP Effects
+ Operating States

Il + Maintain Playlist

[Z1] + Maintain Audio Player
=1 + devicelnContext

=1 + listener

+ Playlist Maintenance

ﬂ State Machines

P .
Jtl Interactions

Figure 9 — SysML models are organized into Requirements, Behavior, Structure, Constraints and
Parametrics, and include both Hardware and Software Implementation models.

You'll become intimately familiar with Sam’s audio player example, as we’'ll be using it to
illustrate the various activities on our roadmap throughout the following chapters.

Chapter 2 — Audio Player Requirements

Requirements Roadmap

Requirements are the foundation of a SysML model. The purpose of the system that you're
modeling is to satisfy the requirements. So, as you'd expect, the roadmap begins with
defining requirements (see Figure 1).

act Define System Requirements

R cional [Defne Non-Functional

Requirements Requirements

Organize Requirements
into Hierarchies

Allocate Requirements to
System Elements

Figure 1 — Requirements Definition Roadmap

As you saw in Chapter 1, Requirements are usually classified as Functional (e.g.
Requirements that represent specific system features or capabilities), and Non-Functional
(e.g. Requirements that don't apply to specific features such as ease-of-use). It's important
to organize these Requirements effectively, otherwise the Requirements model can become
Dysfunctional®.

When you think about Requirements in a SysML model, you're considering Hardware
Requirements, Software Requirements, and Requirements that relate to the Environment that
your system will interact with. For example, our Audio Player will interact with its operating
environment, which includes “listening conditions” (noise, weather), and the clothing of the
listener.

® For more on avoiding Dysfunctional Requirements, see Use Case Driven Object Modeling
with UML — Theory and Practice, by Doug Rosenberg and Matt Stephens.

These domain aspects drive downstream requirements which describe items such as shock
resistance, waterproofing etc., because we expect the audio player to operate within the
listeningDomain defined by this internal block diagram (ibd) which describes the
listeningConditions to which the player will be subjected.

The ‘blocks’ shown in Figure 2 will be decomposed into their parts to describe this domain
‘system’.

ibd ListeningDomain /

O

:Listener

listenerClothing

listeningConditions

version="1.0"

description = "Concept to identify top level domain entities"
completeness = "partial. Does not include some external
interfaces"

Figure 2 — SysML Models include Hardware, Software, and the Environment within which a system must
operate.

Modeling Tip — It's easy to import graphics into Enterprise
Architect Models

As you can see from the example in Figure 2, adding some graphics (photos, illustrations,
etc.) to a model can make it far easier to understand. Enterprise Architect makes this easy to
do. There are several ways to do this, but one of the easiest is to copy an image to the
clipboard, then right-click an element on a diagram, select Appearance from the context

menu, and then select Apply Image from Clipboard. It only takes a few seconds, but adds
a lot to the readability of your model.

Audio Player Requirements

SysML defines seven relationships between Requirements. These fall into two categories:
relationships between Requirements, which include containment, derive, and copy; and
relationships between requirements and other model elements, which include satisfy, verify,
refine, and trace.

The “crosshair” notation in the Audio Player Requirements diagram below shows the use of
containment to organize requirements hierarchically into Categories meaning that the
Specifications Package OWNS the requirements, which in turn, own the ‘sub requirements’
beneath.

req Specifications

Specifications

TITY
requireme... L] requireme... L]

Performance Durability

«requireme... [[]
User
Friendliness

requireme... (L]

Media Access

equireme... [equireme... [aequireme. . L] equireme... L]
Keys Layout Fidelity Weather External ports
resistance

equireme... [equireme... (L] equireme. . L] requirements (L]
raphical User Battery Shock Storage

interface longevity Resistance Capacity
«requireme... [[_] «requireme... [[__]

Scroller Noise

Reduction

Figure 3 — Requirements for our Audio Player are organized into Categories such as User Friendliness,
Performance and Durability.

Enterprise Architect has a couple of built-in features that make it easy to define which
requirements are satisfied by which model elements, and to automatically generate a
relationship matrix to show these relationships.

@ Relationship Matiix
£
2 | SoucsSosems Engineeting Mokl [] Tvne: Black = | Link Type: Satisty
2 || Target: [Systems Enginesiing Model [-] Twpe:| Requiement ~ | Diestiors | Source <> Target
é g
g . 2 c 8lz|a g
) 5] A RE
IRHERHEI TR
2|2 E|le|2 (2|5 |5 |5 e|% 8|2
B
4 |a (i |& |62 |=|= |4 |66 |6 |3
Buttons i i il 1
Charging Unit - ADPZ291 T T
Clothing
Codec with Amplifier - TLY32.. i i T
Enwiranment. ' T '
Li-Ton Battery Monioring Sys... | |
ListeningDarnain T
Memary - MT42L52ME4D2KH. ., T
Hoise i
Panasonic Li-lon CGR1B6S0AF |
Portable Audia Player i i T T
PawerSubsystem '
Processing Subsystem i
Processar - TMS320¥CSS07 t
RSZ52 T
Touch-screen - Toppoly TOO.... T
Transpork Subsystem ' '
USE - PL-2528 T
User Interface '
Weather T

Figure 4 — Enterprise Architect’s Relationship Matrix makes it easy to see the allocation of Requirements to
Blocks

Modeling Tip — allocate requirements to model elements
using drag-and-drop

It's trivially easy to specify that a model element (such as a Block or a Use Case) satisfies a
Requirement within an Enterprise Architect model. Simply drag the Requirement from the
Project Browser on to the element which satisfies it. Enterprise Architect automatically
establishes the link within the model.

It's also trivially easy to generate a matrix showing the allocations of Requirements to model
elements using Enterprise Architect’'s Relationship Matrix.

Rielationship Matix

Source: [Systems Engineeiing Model [] Tvpe: | Usetase = | Link Type:| Realization
Target, [Systems Enginesiing Model [.-] Tvpe: Requirement = | Direction: | Source + Target
4
&5

. £ .

= = I

2|5 |, B [|y

52|52 & &%

T 5|5 |8)s 2|83
Adjust Wolume T
Charge Battery T
Connect To Computer T T T T
Copy track from external media i i
Create Playiist T Tt T T 1
Dowrlnad track 1|1 T T
Listen Audio T f Tt T
Maintain fiudio Player i
Maintain Playlist T
Operate Audio Player) T T (1|1 T
Pause T s T
Play i f T T)
Power On T
Record Audia T T|T)
Replace Battery il T T
Replacs Headphones T)
Replace Skin) T T T T
Stop J‘ T T
Top Level
View Existing Playlist T i
Wiews Mew Tracks T i

Figure 5 — Enterprise Architect’s Relationship Matrix makes it easy to see the allocation of Requirements to
Use Cases

Modeling Tip — Use Enterprise Architect’s Relationship Matrix
to show which model elements satisfy which Requirements

Once the allocation relationships have been specified using drag-and-drop, or by using the
“Require” tab on the Specification dialog of all Enterprise Architect elements, you can
generate a cross-reference table of Requirements against any type of model element by
selecting Relationship Matrix from the View menu. Simply specify the scope (desired
Package) of your search using the Source and Target buttons, and the type of elements you
wish to cross-reference, and Enterprise Architect does the rest. The Matrix can be exported
to a Comma Separated Value (CSV) file using the Options button.

In the upcoming chapters, you'll see how the Requirements we've identified here are satisfied
by various aspects of the Audio Player SysML model.

Chapter 3 — Audio Player Behavior

Behavior Modeling Roadmap

Behavior Modeling describes the dynamic behavior of the System as it interacts with users
and with the environment. You'll use interaction diagrams and use cases to model
interactions between users and the system, and state machines to describe event-driven
behavior that's not user-centric. Figure 1 shows the Roadmap activities.

act Model System Behavior /

Start Behavior Modeling

Model Finite State
Behavior

Model Use Cases

Allocate Requirements to
Use Cases

Model Interactions for Use

Cases

Allocate Requirements to
State Machines

Complete Behaior Modeling

Figure 1 — Behavior Modeling Roadmap

As you can see, you approach behavior modeling in two parallel branches, one for use cases
and the other for state machines. Each branch includes allocation of Requirements to model
elements (use cases or states). Use cases are described in natural language at the high
level, and are detailed on interaction (sequence) diagrams.

We'll follow the roadmap through the remainder of this chapter by exploring the dynamic

behavior of our Audio Player example. Then in Chapter 4 we’ll explore the system structure
that supports the desired behavior. We use the terms “static” and “dynamic” to describe the
structural and behavioral parts of the model; structure is static in that it doesn’t change once
it's defined, while behavior is dynamic — changing based on user actions or external events.

Audio Player Behavior Model

Here we can see the two branches of the dynamic model for our Audio Player. User-centric
scenarios, such as Operating the Audio Player, are modeled with use cases, while we can
model the Operating States of the device with state machines. Note that Playlist
Maintenance has a use case description and is also described using a state machine.
Whatever diagrams help to tell the story can be used.

pkg Use Cases /

Use Cases
This package contains use cases that describe the
interactions between the Portable Audio Player, the
listener and other participants.

pkg State Machines /

State Machines
This package contains state machines that model the
Portable Audio Player's various operational states.

Top Level
oo

Maintain Audio Player

Operating States Playlist Maintenance
oo oo

[
A Operating States ﬂ Playlist Maintenance

DSP Effects
oo

ﬂ DSP Effects

oo

ﬂ Top Level

ﬂ Maintain Audio Player

Maintain Playlist
oo

Operate Audio Playe!

Z2] maintain Playlist %] operate Audio Player

Figure 2 — Behavioral models include Use Cases, Interactions, and State Machines

Modeling Tip — Models should tell a story

A model’s primary purpose is to serve as a communication vehicle to promote a shared
understanding about the system being modeled between stakeholders, end-users, analysts,
designers, software and hardware engineers, and quality assurance personnel. Always
optimize models for readability, and make sure you “tell the story” clearly and unambiguously.

Here are the Top Level use cases for the Audio Player. The “eyeglass” icon on the use case
bubbles indicate that a child diagram exists, showing more detail about the use case.

uc Top Level /
PortableAudioPlayer
Operate Audio Playe!
—_—

Maintain Playlist

Listener oo

Maintain Audio

Pl
ayer

Figure 3 — Audio Player Top Level Use Cases

Enterprise Architect makes it easy to “drill down” to a child diagram for composite elements.
Here’s a child use case diagram for audio player maintenance.

uc Maintain Audio Player /

Device Maintenance

Charge Battery |— — — —— Replace Battery

«include»

@)

J— Replace Skin

Listener

Replace Headphones)

ﬂ Maintain Audio Player (Interaction)

Figure 4 — Use cases for maintaining the audio player hardware include charging and replacing the battery,
and replacing the skin and the headphones.

Enterprise Architect supports “diagram references” for hyperlinking one diagram to another.
You can see the reference to the interaction diagram (Figure 5) on the diagram above, and a
link back to the use case view on that diagram.

sd Maintain Audio Player /
ﬂ Maintain Audio Player - Use Case
- Maintain Audio Hlayer- devicelnContext
:Portable Audio
listener :Listener IREV
| T
| |
| |
| |
ref
ChargeBattery
T T
alt | |
- |
[defectivebattery] |
f
it ReplaceBattery |
| |
T T
+ +
alt | |
[wornoutseqn] !
i ReplaceSkin |
T T
| |
T T
L L
alt I I
[faultyheq‘dphones] :
f
= ReplaceHeadphones |
| |
+ +
| |
I I

Figure 5 — The interaction diagram for maintaining the audio player shows 3 alternate courses of action
(defective batteries, worn out skin, and faulty headphones) and one normal course (charging the battery).

Here are the use cases for the basic operations of the Audio Player.
uc Operate Audio Player /
Operations

[operate Audio Player (nteraction)
Power On
-
—~«extend»
-
-
Listen Audio | =77 " Ginclude»

\\ \\\ cncludes™ =~ <
NN
N ~
AN
N «include»
AN \\\
Listener \\ ~
~
N ~
«include» N
N
A Adjust Volume
\
A
AN

A
3
Record Audio b _
«include» T

Figure 6 — Audio Player Use Cases for Listening and Recording

As in the Maintenance use cases, the use case diagram and interaction diagram (Figure 7)
are cross-linked using Enterprise Architect diagram references. This diagram shows that the
Idle, Play, Pause, and Adjust Volume paths can all be performed in parallel.

sd Operate AudioPlayer /

ﬂ Operate Audio Player - Use Case

devicelnContext
:Portable Audio
listener :Listener ARTD
T
| |
i TurnOnDevice |
L L
ar | |
P ! !
alt 'f 2
ref
idie] | Idle |
________ [—
[Playing]—_ J
Play |
........ g N
[Pause] L L
|ref Pause |
T T
! !
| |
............. fmmm e e eeeeeeeeeeeeeeeeceeeecpeeeeaaas
et AdjustVolume |
|

TurnOffDevice

Figure 7 — Audio Player Interaction diagram for Listening/Recording

Use cases describe how a user interacts with the system. In the next section, you'll see how
to describe event-driven behavior using state machines.

Audio Player State Model

For embedded systems, it's often advantageous to describe behavior in terms of operating
states, triggering events and system actions. SysML (identically to UML) uses state charts to
describe these finite state aspects of a system.

stm Operating States /

Off

= N e
(A

stm On /

Playing Paused

Figure 8 — Audio Player Operating States

State charts allow nesting of substates on a single diagram. Figure 8 shows the detailed
behavior of the “On” state of the audio player on the same diagram that shows the “On/Off”
behavior. To allocate Requirements to states, simply drag the Requirement from the
Enterprise Architect Project Browser and drop it onto the state bubble.

State machines relate operating states of a system (or block) to triggering events such as
pressing a button. Figure 9 shows how toggling the “Audio EQ” button causes the system to
cycle between various audio effects.

stm DSP Effects /

[AudioEQ
button

[AudioEQ pressed]

button
pressed]

Equalizer setting for Equalizer setting for
"Disco" effect "Hall" effect

Equalizer setting for
"Studio" effect

[AudioEQ

[AudioEQ button
button pressed]
pressed] Studio

Figure 9 — State Machine for Digital Signal Processing Audio Effects

There’s no absolute rule for choosing when to “tell the story” with use cases and when to use
state diagrams. The best guideline is to simply use whichever diagram that tells the story
best. Sometimes, the best choice is to use both.

Combining Use Cases and State Machines

Here’s an example that shows how use cases, interaction diagrams, and state machines can
all be used to describe different aspects of how our audio player system operates.

uc Maintain Playlist /

Playlist Maintenance

ﬂ Maintain Playlist (Interaction)

Connect To Computer

Copy track from
external media

—
1

Download track

View Existing Playlist

-7

_ = ~dnclude»

Create Playlist

«include»~ \\>

View New Tracks

Figure 10 — Use Case Diagram for Playlist Maintenance

Each diagram provides a different perspective on the system we're modeling. We can use as
many views as necessary to “tell the story” so that there are no misunderstandings as we
progress from defining Requirements through hardware and software development. Figure 11
shows the various scenarios for maintaining playlists, while Figure 12 takes a more event-
driven perspective.

sd Maintain Playlist /

%] Maintain Playlist - Use Case

Q devicelnContext
X :Portable Audio
listener :Listener Player

ref
ConnectToComputer

e CopyTracks

ref
= Dow nloadTracks

ref : - .
View ExistingPlaylists

alt | I
[playlistsExists]

el View New Tracks

|

|

|

[playlistEditable]
1

alt

e ModifyPlaylist

CreatePlaylist

Figure 11 — Scenarios for maintaining playlists

Note that in order to Modify a Playlist, the Playlist must already exist and be editable.
However, tracks may be downloaded and copied independently of those conditions.

The state machine shown in Figure 12 provides a different perspective. The top level state
machine shows how the behavior depends on connecting/disconnecting the audio player
to/from the music server. As you can see, all of the real behavior of maintaining playlists
happens when the device is connected.

An activity diagram is used to detail the behavior of the audio player when it's connected.
Forks and joins (the solid black horizontal lines) on the activity diagram are used to show
parallel paths.

stm Playlist Maintenance /

[disconnect]

[connect]

stm Connected /

[
[loadNewTracks]

Copy Tracks Dow nload Tracks

]
[retrieve]

View Playlists

[modifyplaylist]

[createplaylist]

Create Playlist

View New Tracks

[Modify Playlist]

Figure 12 — State/Event behavior for Playlist maintenance

The combination of use cases, interaction diagrams, state charts, and activity diagrams allow
you to specify the dynamic behavior of the system in great detail. Additionally, you can
allocate Requirements to use cases, states, activities, and other model elements.

This wraps up our discussion of Behavior Modeling, as we’'ve completed all the steps in the
Roadmap. In the next chapter we'll explore the Roadmap for defining system structure using
blocks.

Chapter 4
Audio Player Structure

Now that you've looked at Requirements and Behavior Modeling, it's time to explore how you
can use SysML and Enterprise Architect to describe the Structure of a system. As usual,
we'll illustrate by describing the structure of our Audio Player example.

Roadmap: Define Structure
Figure 1 shows our Roadmap for modeling Structure.

act Model System Block Structure/

. Start Modeling Structure

Model the Problem

Domain

Define Blocks

Allocate Requirements
to Blocks

Define Ports

ActivityFinal

Figure 1: Roadmap - Model Structure

In SysML, the Block is the primary unit used to describe Structure. Blocks can represent
hardware or software elements. Blocks can have Ports, which represent the inputs to, and
outputs from, the Block.

Modeling the Problem Domain

Our Structural modeling roadmap starts with a familiar step to anyone who has seen ICONIX
Process for Software- or Business-Domain Modeling. When you build a domain model, you
define a set of abstractions based upon things in the real world. Figure 2 shows a domain
model for our Audio Player. As you can see, the domain model can include real-world
elements that are external to our system, such as Clothing and the surrounding Environment.

The purpose of the Problem Domain model is to describe the ‘System’ in which our Audio
Player will operate under. It's a ‘system’ model used to describe the ‘context’ of our device
design — from Requirements through to implementation. Figure 2 shows which systems will
interact together with our audio player in a concept known as a ‘System of Systems’ design.

bdd Listening Domain /

«block»

! ! . The SysML block which
ListeningDomain

describes the operating
- -----.__] context of the Portable
S Audio Player
Double-click on it to view
’ the Internal Block
Diagram

«block» «block» «block»
O Portable Audio Clothing Environment
Player

OO

Listener

The SysML block which
describes the design of

the Portable Audio

Player «block» «block»
Double-clickon it to Environment: Environment::
view the Internal Block Noise Weather
Diagram

Figure 2 — Audio Player Domain Model

The “black/filled diamond” association in Figure 2 represents a composition relationship,
indicating (for example) that the Environment is “composed of” Noise and Weather.

There are two levels of Block diagramming in SysML: Block Definition Diagrams (BDDs), and
Internal Block Diagrams (IBDs). We'll explore these in order in the next few sections of this
chapter.

Modeling Block Structure (Block Definition Diagrams)

Figure 3 shows the “child” block definition diagram that details the high-level structure of our
Audio Player. The purpose of the BDD is to describe the composition of a block by relating
nested blocks to each other using the composition relationship.

As you can see, the Audio Player is composed of four main subsystems; Power, Processing,
User Interface, and Transport. Each of these is modeled as a block and further decomposed
into sub-blocks.

bdd Design /

))

bat chrg cpu codec tser btn

«block»
Portable Audio
Player
3=
pwr proc ui tr
«block» «block» «block» «block»
IPow erSubsysten Processing User Interface Transport
Subsystem Subsystem

rstr utr

«block» «block» «block» «block» «block» «block» «block» «block»
Panasonic Li-lon Charging Unit - Processor - Codec with Touch-screen - Buttons RS232 USB - PL-2528
CGR18650AF ADP2291 TMS320VC5507 Amplifier - TDO35STEEL
TLV320AIC3107
pmon
mem
«block»

Li-lon Battery «block»

Monitoring Memory -

System - AD7230 MT42L.32M64D2KH-25

Figure 3 — Audio Player Block Structure

Figure 4 shows the details of the Power Subsystem. It's composed of a Lithium-lon Battery,
a Charging Unit, and a Monitoring System. Each of these blocks has a port which represents

the electric current that operates the Audio Player.

bdd Energy Flow Definition /

«block»
PowerSubsystem

+chrg +pmon +bat
«block» «block» «block»
Charging Unit - ADP2291] Li-lon Battery Monitoring Panasonic Li-lon
System - AD7230 CGR18650AF
ey ey
B— {3} {3}
«flowPort» charger : «flowPort» chargeMonitor : «flowPort» chargelndicator :
FS_ChargeFlow FS_ChargeFlow FS_ChargeFlow

«flowSpecification»
FS_ChargeFlow

«flowProperties»
+ outenergyLevel: Energy
+ outtemplLevel: Temp
+ in energySupply: Energy

Figure 4 — Audio Player Power Subsystem

Modeling Block Internals (Internal Block Diagrams)

Figure 5 shows a simple Internal Block Diagram (IBD) for the Power Subsystem. The
purpose of the IBD is to describe in detail how each of the block ‘parts’ are connected
together to form the subsystem in question. The IBD describes the ‘what and how’ of the
block composition. Each of the Parts represents a composition relationship in the
corresponding BDD in the previous section.

ibd Power SubSystem /

bat : Panasonic bat-charg chrg : Charging
Li-lon Unit - ADP2291
CGR18650AF
pmon-bat
pmon-chrg

pmon : Li-lon
Battery Monitoring
System - AD7230

Figure 5 — Power Subsystem IBD

The Internal Block Diagram specifies the connection of Parts within a Block. As you can see
in Figure 6, it's possible to show multiple levels of nesting on a single IBD.

ibd Portable Audio Player /

bat-proc cpu : Processor - cpu-mem mem : Memory -
TMS320VC5507 T42L32M64D2KH-2p
codeg-mem

proc : Processing Subsystem

cpu-codec codec : quec with
Amplifier -
TLV320AIC3107
prog-ui

ui-pwr

bat : Ranasonic bat-charg chr}g : Charging
Li-lon Unit - ADP2291 tscr : Touch-screen - btn : Buttons
CGR18650AF TDO35STEEL n : Buttons
pmop-bat pwr : PowerSubsystem L ui : User Interface

pmon : Li-lon
Battery Monitori

System - AD7230

tr: Transport Subsystem

pwr-tr

Figure 6 — Multi-level IBD showing interconnection of parts for the Audio Player

Figure 7 shows the internals of the Processing Subsystem. As you can see, the CPU
connects to a Memory Unit and a Codec/Amplifier.

ibd Processing Subsystem /
cpu : Processor - cpu-mem mem : Memory -
TMS320VC5507 MT42L.32M64D2KH-2p
codec-mem
cpu-codec codec : ngec with
Amplifier -
TLV320AIC3107

Figure 7 — Audio Player Processing Subsytem Block Internals

Define Ports

The final step in our Roadmap for Modeling Structure is to define the Ports. Figure 8
illustrates data flow between the User Interface, Processing Subsystem, Transport
Subsystem, and the USB and RS-232 connectors on the Audio Player.

ibd Data Flow Definition /

rstr : RS232 utr: USB - PL-2528

Iy

T
«flowPort» sData : «flowPort»
FS_RS232 uData :FS_USB

tr: Transport Subsystem

[z]
«flowPort»
inst :FS_Data

«flowPort»
data :FS_Data

K3
proc : Processing Subsystem

«flowPort»
inst :FS_Data
|L84]
ui : User Interface

Figure 8 — Audio Player Dataflow between Subsystems

Figure 8 illustrates a type of Port called a flowPort. The SysML flowPort is typed by a
FlowSpecification which describes the properties and behavior associated with the port.

A flowPort describes also the directionality of the items flowing through it (infout/conjugate)
SysML also includes standardPorts, which can either provide an interface or require an
interface. ItemFlows on the connectors (the arrows) describes what is flowing across the
connections and through the ports. In the example above, it is Data which flows through
these connections.

Audio Player Hardware Components
Finally, Figure 9 shows the hardware components of our Audio Player.

bdd Components /

«block» «block» «block»
Codec with Li-lon Battery Memory -
Amplifier - Monitoring MT42L32M64D2KH-25

TLV320AIC3107 System - AD7230
«block» «block» «block»
USB - PL-2528 Panasonic Li-lon Processor -
CGR18650AF TMS320VC5507
«block» «block»
RS232 Touch-screen -
TDO35STEE1

Figure 9 — Hardware Components are modeled as Blocks

Modeling the hardware components as blocks makes it possible to allocate requirements to
hardware. Enterprise Architect makes it easy to allocate requirements to any of the model
elements discussed in this chapter.

This concludes our discussion of Blocks, Parts, and Ports. We’ve built the foundation for our
SysML model over the last 3 chapters where we covered Requirements, Behavior Modeling,
and Structural Modeling. The last 3 chapters of the book introduce more advanced aspects
of SysML and powerful capabilities of Enterprise Architect System Engineering Edition. In
the next chapter we'll introduce Constraints and Parametrics, and then proceed to hardware
and software implementation.

Chapter 5
Audio Player Constraints and Parametrics

One of the biggest differences between SysML and UML is the ability to simulate portions of
a SysML model, based on mathematical and physical laws that describe key aspects of the
system. One of the biggest differences between Enterprise Architect Systems Engineering
Edition and other SysML modeling tools is Enterprise Architect’s ability to do that simulation
within the modeling tool, as opposed to simply interfacing to external simulators. We’'ll
explore these capabilities in this chapter, starting, as usual, with our process roadmap.

Constraints and Parametrics Roadmap

Our constraints and parametrics roadmap has two sections. The first step, detailed in Figure
1, is to define the Constraints and Parametrics. The second step, shown in Figure 2, is to
configure and run the Simulation. This entire process can be done completely within the
Enterprise Architect Systems Engineering Edition — speeding convergence towards an
engineering solution that meets the Requirements. We'll spend the remainder of this chapter
following the steps in our roadmap for the Audio Player.

act Define Constraints and Parametrics /

Start defining constraints and parametrics

Define Constraint Blocks

Add Scripts to Constraint
Blocks

Define Parametric
Diagrams

Simulate Parametric Models

Figure 1 — Roadmap: Define Constraints and Parametrics

SysML parametric models support the engineering analysis of critical system parameters,
including the evaluation of key metrics such as performance, reliability and other physical
characteristics. They unite requirements models with system design models by capturing
executable constraints based on complex mathematical relationships. In SysML, parametric

models can also be used to describe the actual requirements themselves (e.g. “The internal
combustion engine shall deliver its torque in accordance with the ‘attached’ parametric
characteristics.” The parametric can describe the ‘graph’ used to describe the torque curve
for the engine).

As you can see in Figure 1, defining parametric models using Enterprise Architect’'s System
Engineering Edition involves defining Constraint Blocks, Adding Scripts to the Constraint
Blocks, and Defining Parametric Diagrams. Once the parametric models are defined, they
can be simulated, as shown in Figure 2.

act Simulate /

Define Constraintsand Parametrics

Configure Simulation

Assign Inputs to
Parameters
Assign Values to Input
Parameters
Specify Output Value
Classes
Specify Reporting
Options

L Run the Simulation

Figure 2 — Roadmap: Configure and Run Simulation

Simulating a SysML parametric model is simply a matter of configuring the simulation, and
then running it. Having the ability to do all of this within Enterprise Architect makes it much
faster and easier to make engineering tradeoffs in the model without having to break away
from Enterprise Architect into another tool, and tightens the engineering feedback loop,
making it much faster to converge on a solution that meets your project’'s Requirements.

Define Constraint Blocks

To build a parametric model, you create a collection of SysML Constraint Blocks that formally
describe the function of a constraint in a simulation model. Each Constraint Block contains
properties that describe its input and output parameters, as well as a Script that describes the
constraint’s executable component. Figure 3 shows constraint blocks for some of the
underlying mathematical functions that make our Audio Player work.

bdd Constraint Blocks /
Audio Player Constraint Blocks

Thisdiagram describes the various Constraint Blocks for the Audio Player model, and their associated behavior.

For a more detailed description of each constraint block, please consult the corresponding notes for each element. To view the behavior for a particular
Constraint Block, right clickon it and select SysML | Edit Element Script from the context menu.

A working example of the Constraint Blockimplementations can be found in the EchoDSP Parametric Modeling Example diagram.

See Also: ﬂ EchoDSP Parametric Modeling Example

«constraintBlock» «constraintBlock» «constraintBlock»
Mult Add2 Add3

Real Real
Real

«constraintBlock» «constraintBlock» «constraintBlock»
SineWav e Delay Buffer

f: Real t: Real Jputs:
Real output: input output :
g Real Real Real
T delay :
a: Real output : y
Real Real

i

Figure 3 — Constraint Blocks for Audio Player functions

Next, create a SysML Constraint Block to contain the Parametric model you wish to simulate.
In Figure 4 we're going to simulate the Echo Digital Signal Processing (DSP) function.

bdd Constraint Blocks /
Constraints Model

This package contains the constraint blocks that define expected characteristics of the Portable Audio Player. Each of these
blocks contain simulatable parametric diagrams.

See Also: ﬂ EchoDSP Parametric Diagram

ﬂ Constraint Blocks

«constraintBlock»
EchoDSP

t: Time original : Real

amplitude : Sound outEchoOnly : Real

f: Frequency output : Real

Figure 4 — Constraint Block for the Echo DSP function

As you can see in Figure 4, our Echo function takes an original signal which is a sine wave
amplitude and frequency, and delays that signal by some amount of time to produce an echo,
then can output either the echo signal only, or a composite signal that adds the echo to the
original signal. To do this, we’'ll make use of the “primitive” constraint blocks shown in Figure
3 for Sinewave, Delay, Add, etc.

Add Scripts to Constraint Blocks

Once your constraint blocks have been created, it's time to add Scripts. This is where you
express the relationship / behavior of the constraint block as an executable script. In
Enterprise Architect, right-click on each of the Constraint Blocks and select the SysML | Add
Element Script context menu option to add a script to the constraint block.

Figure 5 shows a script for the SineWave constraint block. Similar scripts exist for the Buffer,
Delay, Add, and other constraint blocks.

var w = £¥Z*Math=s.PI1;
output = 3 ¥ Maths.sin(w*t);

Figure 5 — Script for the SineWave Constraint Block

Attaching scripts to constraint blocks provides the underlying mathematical foundation for
running simulations. The precise behavior of each block is specified in equation form, using
the inputs and outputs by name where appropriate, thus allowing the simulation to take place.

Modeling Tip: Enterprise Architect supports scripting in
several languages

Scripts can be written in either JavaScript, Jscript or VBScript, and the user can use any
other assemblies, components, or APIs in their constraint block script.

Note that simulating a constraint block requires the script across all constraint blocks to be
written in the same language.

Define Parametric Diagrams

The Parametric model contains properties and occurrences of constraint blocks as Constraint
Property elements, connected in a Parametric Diagram.

par EchoDSP J
EchoDSP Parametric Modeling Example

This parametric diagram describes the 'Echo’ audio effect used by the DSP.

1. The original sound source is created by the Constraint Block instance of :SineWave.

2. The echo signal isthen generated by scaling the original signal through :Mult and offsetting it by a prescribed amount of time stepsin :Delay.
3. Both the original signal and the echo signal are combined in :Add2 to create the actual output signal.

Formore i ion on parti i inputs or outputs, please consult their coresponding element notes.

To simulate this parametric model right-click on the diagram and select the SysML | Simulate Diagram... command

Example input parameter values:

amplitude: 5 (eg 5 decibels)

f: 0.5 (eg 2 cycles per second = 2 hertz)

t:0-10[0.05] (eg Simulate from 0 - 10 seconds calculating every 0.05 seconds)

att: 0.5 (eg echo signal will be half of the volume of the original signal)

offset: 1 (eg use the original signal value from 1 timestep ago to calculate the echo signal).

See Also: Constraint Block Definitions

| a: Real |
f: Real A\

: SineWave [Coutput : TAPUT: | : Buffer| OUtPUT:
Real Real Real Real
N —e)

att : Real

H

,

N
a: Real
g OUTpUt
El Jiddz Real output : Real
N J

I

I

I

I

I

I

I

L

I

I

I

I

I

I

I

I

I

! Real

I elay - Noei output nput= | . gyffer| OUtPUL: outEchoOnly
offset : Real : Real s PEIEY Real Real Real : Real

I

I

I

I

I

I

I

I

I

I

!

|

!

Figure 6 — Parametric Diagram for Echo DSP

The parametric diagram connects instances of primitive constraint blocks together to
transform a set of inputs into a set of outputs. In Figure 6, we're taking an input SineWave,
delaying and attenuating it, then adding that signal to the original input SineWave to produce
an Echo effect. You can adjust parameters like attenuation and offset, and simulate, until
you've produced the desired effect.

This brings us to the second portion of our roadmap, Configuring and Executing the
Simulation.

Configure Simulation

Now that your constraint blocks, scripts, and parametrics have been defined, you're ready to
simulate, so let’s right-click within a Parametric Diagram and select the SysML | Simulate
Diagram... context menu option. The Simulation Configuration dialog displays (see Figure 7).

- SysML Parametrics

See Also: | IT] Constraint Block Definitions

. . . . = = Constraint Proper!
& Simulation Configuration , '
[t B [N L Argument
Inputs Outputs
Parameters: Inputs: = SysML Parametri...
ariginal amplitude .
[] T T — 3t = Objective Function
Sound output fff . L Measure of Effect
offsel |
3 = sysML Block Inter...

59 GEH] Froperty

f: Real
. SineWiave [Input Values For outEchoCnly T
O Real
(Range From: Tan

Connector Proper!
Distributed Proper
Flow Property

Participant Proper

1 @06 DD

Skep: SysML Block Inter...

ERECINT
Output Walues = Common
att: Real [¥]Parameters BB A
= &) —
[variables =
EdBB
[¥]Plot to Graph 1 i
a

B Axisi t v
I: E Title: EchaDSP Output over Time
offset : Real : Real
t [CJoutput to File

<
q Start Page L Compasite Structure: L Partable A [o][Sance] [iice] b

|
|
|
|
|
I
|
|
]
I
|
|
I Output Farmat
|
|
|
|
|
|
1
I
|
I
I
I

BEHEABRE & - a5 mn |8 e aql kE _

Figure 7 — Configuring the Simulation

Fill out the Simulation Configuration dialog as follows:

e Assign Inputs. The Parameters panel lists all of the parameters that can be
assigned input. Select each of the required parameters and click on the right arrow
button to assign them as input. Parameters designated as input parameters are listed
in the Inputs panel on the right. There must be at least one input parameter assigned
for the simulation to execute.

e Assign aset of values for each of the designated input parameters. For each
input parameter, in the Input Values panel select one of the two possible value kinds:
Discrete or Range.

e Specify the classes of output value: Parameters or Variables.

e Specify how the simulation results are to be reported. The Output Format panel
enables you to choose how the simulation outputs the simulation data. Depending on
your configuration selections, the simulation's results are either written to a comma-
separated CSV file or graphed in a 2-dimensional plot.

Once you've completed configuring your simulation, you're just about done.

Run the Simulation
To simulate your SysML model, click on the OK button to execute.

ﬁ par [SystL Parametric] EchoDSP [EchaDSPL created: 2/26/2009 modified: 7/25/2009 5:07:48 PM 100% 791 21134

S Alse % Simulation Results E]E]

75 Mean: 0.002 Min: -2.500 Maw 2.500

- [VT RE

a0
f:F
B amplitude

f

ariginal :
Real

offset
att
| outE cholnly
= original

values
=
=

Q]
] 0005091.413242833384347525762667176818539038539

i put: outEchoOnly
offz] t 2 al : Real

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
: B output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

s

Figure 8 — Simulation results can be displayed directly within Enterprise Architect.

While there is an option to export the simulation results to a CSV file, the ability to display
simulation results directly within Enterprise Architect is one of the features that sets it apart
from other SysML modeling tools. Having everything in a single tool makes it quick and easy
to tweak design parameters so that your system meets its required performance targets.

In the next two chapters, we'll explore how Enterprise Architect helps to transform a SysML
model into both hardware and software solutions.

Chapter 6

Audio Player Hardware Implementation

We discussed Behavioral Modeling with State Machines in Chapter 3. In this Chapter, we’ll
demonstrate how to generate Hardware Description Language (HDL) code for State
Machines, using our Audio Player Example. Then in Chapter 7 we’ll explore software
implementation.

Hardware Implementation Roadmap

Our Roadmap for implementing hardware via generating HDL code provides three parallel
paths: implementation via VHDL, Verilog, and System-C. In all three cases, you'll leverage
Enterprise Architect’s unique ability to generate code from State Machines, and its powerful
code-generation template capability.

act Implement Hardware/
/ Generate State Machines \
CenerEONRE Generate Verilog Generate System C

Figure 1 — Hardware Implementation Roadmap with support for three popular Hardware Description
Langauges

Audio Player Hardware Implementation

As usual, we'll illustrate our Roadmap using the Audio Player example. In this case, we'll
explore the “Playback” operation and illustrate its implementation in VHDL, Verilog, and
SystemC.

Figure 2 shows the top level package organization of the “Implementation” part of our Audio
Player Model. We'll explore the software package in the next chapter. For the remainder of
this chapter, we’ll discuss code generation for State Machines, and present three flavors of
generated HDL code for Playback.

pkg Implementation Model /

Implementation Model

The "Implementation Model" demonstrates how UML can be employed to design both the
hardware and software aspects of an embedded system.

The "Portable Audio Player" is constructed using computational logic circuits and firmware.

This model contains a collection of Classes containing properties and behaviors. The behaviors
are described using State Machines, Activities and Interactions (Sequences).

Software Hardware |
i e =] + SystemC

+ CH+ + Verilog

+ Java + VHDL

+ VBNet

(Double Click the Packages to view their contents)

Figure 2 — Top Level Implementation Package

Let's explore the Hardware package in more detail.

pkg Hardware

Behavioral Modeling - Hardware
The models contained in these packages illustrate effective usage of various

behavioral modeling constructs to design hardware components of an embedded
system.

In this example, state machine constructs like history state, entry/ exit points,
transition between submachine states are employed to model the "PlayBack" unit.

For more information on "Behavioral Modeling" refer to:

Behavioral Modeling

SystemC | VHDL Verilog

E + bool E + PlayBack E-T? + PlayBack
E + PlayBack E + Request E-T? + Request
=] + Request [=] + std_logic =] + wire

=t =1 =t

Figure 3 — Enterprise Architect can generate HDL code for several languages.

As you'll see, all three of our State Machine implementations use a common design pattern.
In each case, the Playback class contains a state machine with On and Off states. The On
state contains a child diagram (sub-state-machine) that contains the actual design.

There are three steps in building an HDL State Machine model:
1. Designate Driving Triggers
2. Establish Port—Trigger Mapping
3. Define Active State Logic

Let's look at each of these in turn.

1. Designate Driving Triggers

The top level State Machine diagram should be used to model the different modes of a
hardware component, and the associated triggers that drive them, as shown in Figure 4.

stm Controller /

This diagram shows how a hardware component is expected to be modeled.
1. The "Off" state represents the reset state of the system

2. The "On" state represents the active state of the system, and the actual State Machine modeling for HDL
logic is expected to be here

For more information on State Machine
modeling for Hardware languages, refer to

o off
/K -
N

\
\

A "change" trigger is deemed as an asynchronous

trigger if the following two conditions are satisfied:
The trigger to drive the actual system (leypress off 1. There isa transition from the actual Submachine
clock) is of type "time" and is associated |- - -~ - - - { state (which encapsulates the actual logic) triggered by]|
with the transition from the reset state(Off it.
in this case) to the Submachine State 2. and the target state of that transition has a self

transition triggered by the same trigger.

On

oo

contain the actual design

The Submachine state, that isintended to B‘

Figure 4 — The top level state machine is used to designate operating modes and driving triggers

There are several type of triggers.

Asynchronous Triggers
Asynchronous triggers should be modeled according to the following pattern:

e The trigger should be of type Change (specification: true / false).
e The active state (Submachine State) should have a transition trigger by it.

e The target state of the triggered transition should have a self transition with the same
trigger.

Clock

A trigger of type time, which triggers the transitions to the active state (Submachine State) is
deemed as the Clock. The specification of this trigger should be specific to the target
language.

Trigger |Language [Specification
Type
Positive Edge [Negative Edge
Triggered Triggered
VHDL rising_edge falling_edge
Time Verilog posedge negedge
SystemC positive negative

Figure 5 - Clock Trigger Specifications

2. Establish Port — Trigger Mapping

After successfully modeling the different operating modes of the component, and the triggers
associated with them, you must associate the triggers with the component's ports as shown
in Figure 6.

class HDL
ActiveClass
------------------------ razet ————————[]
rgsat
A dependency relationship is [
used to represent association [T TTTTTT Cear FS T TT T
between ports and their triggers. clear
clpck
———————————————————————— clock - —————
fata)

Figure 6 — Dependency relationships are used to map ports to triggers

3. Define Active State Logic

The first two aspects, above, put in place the preliminaries required for efficient interpretation
of the hardware components. The actual State Machine logic is now modeled within the
Active (Submachine) state.

stm StateMachine

Active

The Submachine state, that iz intended to
contain the actual design

Figure 7 — Active logic is specified on the child submachine for the Active state

We'll explore Step 3 in some detail for VHDL, Verilog, and SystemC.

Implementation in VHDL

Figure 8 shows a class diagram for Playback, with input and output ports designated. The
design of the Playback functionality is contained in a multi-level state machine that’'s nested
within the PlayBack class.

class VHDL /

The "Playback’ class models a hardware
component to control audio playback of the player

PlayBack Supporting Elements

selection: Request
repeat: boolean

foundMedia: boolean
off @ D& — — — — — —] [:l std_logic
Classifier used to set
. «|nput» the Port's "type"
\ off

A dependency relationship is
used to represent association
between ports and their triggers.

«enumeratio...
Request

. Rec
«|nput» Append
keypress e —— — ———— press Play
E] Pause
o0 Idle

The State machine in this example illustrates modeling timed triggers
(clock) and asynchronous triggers(reset), transitions to history states, entry
/ exit points, transitions between SubMachineStates, etc.

To visualize the expected pattern to model a hardware system, refer to:

ﬂ Hardware System - Expected pattern

Figure 8 — VHDL code will be generated from substates nested within the Playback class

stm On /

For more information on state machine diagrams, refer to:
State Machine Diagrams

/selection =

Idle X
[selection ==
Play]

PlayBack /

Play /

LoadPlaylist
® =1 + entry/ retrievePlayList SearchLocalDrive SearchOpticalDrive
.ﬁ /IDo Retrieve Play
® = List
+ do / sortPlayList

/IDo Sort Play List

[foundMedia]

[repeatTrack] “ [foundMedia]

Stream SearchExternalMedia

[foundMedia]

+ do/decodeTrack

[selection ==
| _Play’

[selection == Pause]

Figure 9 — State Machine for Playback

The State Machine shown in Figure 9 is essentially the same for the Verilog and SystemC
implementations. The differences are so minor that we won't repeat the diagram in the
upcoming sections on those HDLs.

VHDL Code Generation and Reverse Engineering

An Overview of VHDL

Here's a brief summary of VHDL that we extracted from Wikipedia.®

VHDL (VHSIC (Very High Speed Integrated Circuits) hardware description language) is
commonly used as a design-entry language for field-programmable gate arrays and
application-specific integrated circuits in electronic design automation of digital circuits.

VHDL was originally developed at the behest of the US Department of Defense in order to
document the behavior of the ASICs that supplier companies were including in equipment.
That is to say, VHDL was developed as an alternative to huge, complex manuals which were
subject to implementation-specific details.

The idea of being able to simulate this documentation was so obviously attractive that logic
simulators were developed that could read the VHDL files. The next step was the
development of logic synthesis tools that read the VHDL, and output a definition of the
physical implementation of the circuit. Modern synthesis tools can extract RAM, counter, and
arithmetic blocks out of the code, and implement them according to what the user specifies.
Thus, the same VHDL code could be synthesized differently for lowest area, lowest power
consumption, highest clock speed, or other requirements.

VHDL is a fairly general-purpose language, and it doesn't require a simulator on which to run
the code. There are many VHDL compilers, which build executable binaries. It can read and
write files on the host computer, so a VHDL program can be written that generates another
VHDL program to be incorporated in the design being developed. Because of this general-
purpose nature, it is possible to use VHDL to write a testbench that verifies the functionality of
the design using files on the host computer to define stimuli, interacts with the user, and
compares results with those expected.

The key advantage of VHDL when used for systems design is that it allows the behavior of
the required system to be described (modeled) and verified (simulated) before synthesis tools
translate the design into real hardware (gates and wires).

Another benefit is that VHDL allows the description of a concurrent system (many parts, each
with its own sub-behavior, working together at the same time). VHDL is a Dataflow language,
unlike procedural computing languages such as BASIC, C, and assembly code, which all run
sequentially, one instruction at a time.

A final point is that when a VHDL model is translated into the "gates and wires" that are
mapped onto a programmable logic device such as a CPLD or FPGA, then it is the actual
hardware being configured, rather than the VHDL code being "executed" as if on some form
of a processor chip.

® http://en.wikipedia.org/wiki/VHDL

Enterprise Architect supports round-trip engineering of VHDL, using the following Stereotypes

and Tagged Values.

Stereotypes
Stereotype Applies To |Corresponds To
architecture |Class An architecture
asynchronous |Method An asynchronous process
configuration|Method A configuration
enumeration |Inner An enum type
Class
entity Interface |[An entity
part Attribute |A component instantiation
port Attribute |A port
signal Attribute |A signal declaration
struct Inner A record definition
Class
synchronous |Method A synchronous process
typedef Inner A type or subtype definition
Class

Figure 10 — VHDL Stereotypes used by Enterprise Architect

Tagged Values

Tag Applies To Corresponds To

isGeneric Attribute The port declaration in a generic
(port) interface

isSubType Inner Class |A subtype definition
(typedef)

kind Attribute The signal kind (e.g. register, bus)
(signal)

mode Attribute The port mode (in, out, inout, buffer,
(port) linkage)

ortma Attribute The generic / port map of the

p p (part) component instantiated

R Method The sensitivity list of a synchronous

sensitivity
(synchronous) [process

type Inner Class |The type indication of a type
(typedeT) declaration

typeNameSpace|Attribute The type namespace of the instantiated
(part) component

Figure 11 — VHDL Tagged Values used by Enterprise Architect

Figures 12 and 13 show a portion of the generated code produced by Enterprise Architect.

PlayB ack.vhdl

e =architecture= Controller 1
= —0 «entitys PlayBack z | == PlayBack.vhdl
sport» keypress 3 | -- Implementation of the Class PlayBack
eports off 4 Created on: 11-Rug-2008 6:29:06 PH

5 | == ©Original author: mnizam
&
7 library IEEE;
5 wuse IEEE.std logic 1164.all;
S wuse IEEE.std logie arith.all:
10 wuse IEEE.std logic cextio.all:
11 wuse 5TD.textio.all:
1z entity PlayBack is
13 Port
14 i
15 off : in std logic;
16 keypress foin std_logic
17 1:
18 end PlayBack:
12 architecture Controller of PlayBack is
20 signal selection 1 Request:
21 signal foundMedia : boolean:
22 gignal repeat : boolean;
23
24 type StateType is
25 {
26 Controller Off,
27 Controller On,
28 Controller Om PlayBack,
a9 Controller On PlayBack Pause,
30 Controller Cm PlayBack Flay,
=1 fantrallar fm PlauRack Plas hecads

Figure 12 — Enterprise Architect generates VHDL code from a state machine

Note that the VHDL code generated is extremely detailed and robust.

PlavBack.vhdl b3
#- & architecture> Contraller 74 end process CLOCK DIVZ: Yy
= =@ wentitys PlayBack 75 -

o =port» keypress 76 CLOCKE_DI¥4 : process(clockDivZ , off)
<porte off 77 hegin
TE if(off = '1') then
=] clockDivd <= '1';
g0 elsif (rising =dge (clockDiva)) then
g1 clockDivd <= not clockDiv4;
82 end if;
83 end process CLOCK_DIV4:
54
85 TRANSITION _LOGIC: process(curritate , off)
86 rariable bFlag : boolean: hegin
g7 currTransition <= TT _NOTRANSITION:
(=151 if (off = '1') then
2=l nextitate <= Controller OLf:
=l currTransition <= TT_NOTRANIITICH:
91 else
9z case currdtate is
23 when Controller Off =>
o4 bFlay := false;
95 nextitate <= Controller On Idle:
ELS transcend <= '1';
a7 Controller_history <= curritate;
98 when Controller On =>
== nexticate <= controller On Tdle;
100 currTransition <= Controller On_PlayBack to_Controller Om_Idle
101 transcend <= '1';
10z Controller On_PlayBack history <= curritate;
103 when Controller On PlayBack =>
1na nevrSrare ¢= fantraller (n Tdle: bt

Figure 13 — Enterprise Architect’s state-machine code generator, combined with SysML parts and ports, and
VHDL stereotypes and tagged values, produces a very complete implementation.

Implementation in Verilog

class Verilog /

A dependency relationship is
used to represent association
between ports and their triggers.

off = e ————— []

The "Playback’ class models a hardware

component to control audio playback of the player

PlayBack

- selection: reg [0..3] {ordered}
- repeatTrack reg
- foundMedia: reg

«[nput»
off

<_____

P
A

nput»

—Feypress
oo

Supporting Elements

wire

Classifier used to set

- -| the Port's "type"

ﬂ Hardware System - Expected pattern

«enumeratio...
Request

Rec=0
Append =1
Play =2
Pause =3
Idle =4

The State machine in this example illustrates modeling timed triggers
(clock) and asynchronous triggers(reset), transitions to history states, entry
/ exit points, transitions between SubMachineStates, etc.

To visualize the expected pattern to model a hardware system, refer to:

Figure 14 — Playback class diagram for Verilog implementation

An Overview of Verilog

We consulted Wikipedia again’ for an overview of Verilog.

In the semiconductor and electronic design industry, Verilog is a hardware description
language (HDL) used to model electronic systems. Verilog HDL, not to be confused with
VHDL, is most commonly used in the design, verification, and implementation of digital logic
chips at the Register transfer level (RTL) level of abstraction. It is also used in the verification

of analog and mixed-signal circuits.

Hardware descr iption languages, such as Verilog, differ from software programming
languages because they include ways of describing the propagation of time and signal
dependencies (sensitivity). There are two assignment operators, a blocking assignment (=),
and a non-blocking (<=) assignment. The non-blocking assignment allows designers to
describe a state-machine update without needing to declare and use temporary storage
variables. Since these concepts are part of the Verilog's language semantics, designers could

" http://en.wikipedia.org/wiki/Verilog

quickly write descriptions of large circuits, in a relatively compact and concise form. At the
time of Verilog's introduction (1984), Verilog represented a tremendous productivity
improvement for circuit designers who were already using graphical schematic-capture, and
specially-written software programs to document and simulate electronic circuits.

A Verilog design consists of a hierarchy of modules. Modules encapsulate design hierarchy,
and communicate with other modules through a set of declared input, output, and
bidirectional ports. Internally, a module can contain any combination of the following:
net/variable declarations (wire, reg, integer, etc.), concurrent and sequential statement blocks
and instances of other modules (sub-hierarchies). Sequential statements are placed inside a
begin/end block and executed in sequential order within the block. But the blocks themselves
are executed concurrently, qualifying Verilog as a Dataflow language.

Verilog's concept of 'wire' consists of both signal values (4-state: "1, 0, floating, undefined"),
and strengths (strong, weak, etc.) This system allows abstract modeling of shared signal-
lines, where multiple sources drive a common net. When a wire has multiple drivers, the
wire's (readable) value is resolved by a function of the source drivers and their strengths.

A subset of statements in the Verilog language is synthesizable. Verilog modules that
conform to a synthsizeable coding-style, known as RTL (register transfer level), can be
physically realized by synthesis software. Synthesis-software algorithmically transforms the
(abstract) Verilog source into a netlist, a logically-equivalent description consisting only of
elementary logic primitives (AND, OR, NOT, flipflops, etc.) that are available in a specific
VLSI technology. Further manipulations to the netlist ultimately lead to a circuit fabrication
blueprint (such as a photo mask-set for an ASIC, or a bitstream-file for an FPGA).

Enterprise Architect supports round-trip engineering of Verilog code, using the following
Stereotypes and Tagged Values.

Stereotypes
Stereotype |[Applies To |Corresponds To
asynchronous|Method A concurrent process
enumeration |lnner An enum type

Class
initializer [Method An initializer process
module Class A module
part Attribute |A component instantiation
port Attribute |A port
synchronous |Method A sequential process

Figure 15 — Verilog Stereotypes used by Enterprise Architect

Tagged Values

Tag Applies To |Corresponds To
kind Attribute |The signal kind (such as register,
(signal) bus)
mode Attribute |The port mode (in, out, inout)
(port)
Portmap Attribute |The generic / port map of the
(part) component instantiated
sensitivity |Method The sensitivity list of a sequential
process
type Attribute |The range or type value of an
attribute

Figure 16 — Verilog Tagged Values used by Enterprise Architect

PlayBack.v

= smodules PlayBack

&

3
4

£

«enumerations BehaviorType
«enumetation: StateType
«enumetations TransitionType

Controller_On_PlayBack_Play_F
Controller_On_PlayBack_history
Controller _On_history

Controller_history

» SIZE

clockDivz

ClockDivd

currBehavior

currdtate

» currTransition

Foundriedia

» nextState

» repeatTrack

» selection

» kranscend

“ports keypress

=ports of f

» ssynchronouss CLOCK_DIV2()

» ssynchronouss CLOCK_DIV4()

#synchronouss QUTPUT_LOGIC
» «synchronouss SEQUENTIAL_C
» esynchronouss SEQUENTIAL_T
» esynchronouss TRAMSITION L

3 le

o
== I IS (- SR T BT SRS S

B T T R o T
= = = T N A R R L R R

FEEEEEEEETETELE SRR R SRR SEAER
/¢ PlayBack.v

/¢ Implementation of the Class PlayBack

/4 Created on: 11-Auyg-2009 &:32:44 PM

/¢ Original author: mnizsm

SELEEEEEETE TSR TSRS RIS

module PlayBack
{

keypress,

off
)
parameter SIZE = 4;
input wire keypress:
input wire off;

parameter /*{3tateType}*/
Controller Off = 0O,
Controller On = 1,
Controller On PlayBack = Z,
Controller On PlayBack Pause = 3,
Controller On PlayBack Play = 4,
Controller On PlayBack Play Searchlocallrive = 5,
Controller On PlayBack Play LoadPlaylist = 6,
Controller On PlayBack Play Decode = 7,
Controller On PlayBack FPlay SearchExternalMedia = §,
Controller On PlayBack Play SearchOpticalDrive = 9,
Controller On PlayBack Play Stream = 10,
Controller On Idle = 11,
ST MASTITFE = 17«

Figure 17 — Verilog code generated by Enterprise Architect

Implementation in SystemC

class SystemC /

The "Playback' class models a hardware
component to control audio playback of the player

«sc_module» Supporting Elements
PlayBack
- selection: Request
- bRepeat: bool bool
off Nez — —___ [j bFoundMedia: bool | eI
the Port's "type"
«|nput»
“ off
«enumeratio...
A dependency relationship is Request
used to represent association
between ports and their triggers. Rec
= Append
' Play
«[nput» Pause
keypress H<T ——— —— Elﬂpr%@ oo Idle

ﬂ PlayBack

The State machine in thisexample illustrates modeling timed triggers
(clock) and asynchronous triggers(reset), transitions to history states, entry
/ exit points, transitions between SubMachineStates, etc.

To visualize the expected pattern to model a hardware system, refer to:

ﬂ Hardware System - Expected pattern

Figure 18 — Playback class diagram for SystemC implementation

An Overview of SystemC

We've consulted Wikipedia one final time® for our overview of SystemC.

SystemC is a set of C++ classes and macros which provide an event-driven simulation kernel
in C++ (see also discrete event simulation). SystemC makes it possible to simulate
concurrent processes, each described using plain C++ syntax. SystemC processes can
communicate in a simulated real-time environment, using signals of all the datatypes offered
by C++, some additional ones offered by the SystemC library, as well as user defined. In
certain respects, SystemC deliberately mimics the hardware description languages VHDL
and Verilog, but is more aptly described as a system- level modeling language.

SystemC is used for system-level modeling, architectural exploration, performance modeling,
software development, functional verification, and high-level synthesis. SystemC is often
associated with Electronic system level (ESL) design, and with Transaction-level modeling
(TLM).

8 http://en.wikipedia.org/wiki/System_C

SystemC is defined and promoted by OSCI, the Open SystemC Initiative. OSCI also provide
an open-source proof-of-concept simulator (sometimes incorrectly referred to as the
reference simulator), which can be downloaded from the OSCI website®.

SystemC has semantic similarities to VHDL and Verilog, but may be said to have a
syntactical overhead compared to these when used as a hardware description language. On
the other hand, greater freedom of expressiveness is offered in return, like object oriented
design partitioning and template classes. Although strictly a C++ class library, SystemC is
sometimes viewed as being a language in its own right. Source code can be compiled with
the SystemC library (which includes a simulation kernel) to give an executable. The
performance of the OSCI open-source implementation is typically less optimal than
commercial VHDL/Verilog simulators when used for register transfer level simulation.

SystemC version 1 included common hardware description language features such as
structural hierarchy and connectivity, clock cycle accuracy, delta cycles, 4-state logic (0, 1, X,
Z), and bus resolution functions. From version 2 onward, the focus of SystemC has moved to
communication abstraction, transaction-level modeling, and virtual platform modeling.
SystemC version 2 added abstract ports, dynamic processes, and timed event notifications.

Enterprise Architect supports round-trip engineering of SystemC code, using the following
Stereotypes and Tagged Values.

Stereotypes
Stereotype |Applies To |Corresponds To
delegate Method A delegate.
enumeration |Inner An enum type.
Class
friend Method A friend method.
property Method A property definition.
sc_ctor Method A SystemC constructor.
sc_module Class A SystemC module.
sc_port Attribute |A port.
sc_signal Attribute |A signal
struct Inner A struct or union.
Class

Figure 19 — SystemC stereotypes used by Enterprise Architect

® http:/Aww.systemc.org/home/

Tagged Values

Tag Applies To |Corresponds To

kind Attribute |Port kind (clocked, fifo, master,
(Port) slave, resolved, vector).

mode Attribute |Port mode (in, out, inout).
(Port)

overrides Method

The Inheritance list of a method
declaration.

throw Method

The exception specification of a
method.

Figure 20 — SystemC tagged values used by Enterprise Architect

PlayBack. s

i
=] E)

#sc_moduler PlayBack A
«enumerations CammandTy
Q senumerations StateType
swenumeratiores TransitionTy

» Controller_On_PlayBack_Plz
» Controller_On_PlayBack_his
Controller_On_history

» Controller_history

» bFoundMedia

bRepeat

Curtstate

currTransition

kevpress

¢ nextstate

» off

selection

» transcend

» StatesProc(StateType, Com
TransitionsProciTransitionTy
» contraller _OFF{CommandTyp
» contraller _On{CommandTyp
» contraller_On_Idle{Comman
» contraller_On_PlayBack{Cor
» contraller _On_PlayBack_Pau
» contraller _On_PlayBack_Pla
» contraller_On_PlayBack_Pla
» contraller _On_PlayBack_Pla
» contraller _On_PlayBack_Pla
» contraller_On_PlayBack_Pla
» contraller _On_PlayBack_Pla
» contraller _On_PlayBack_Pla

» runstateiachine()
© w5 CTAD BlauRackdy

O R R S R R N NSRS E
z /¢ PlayBack.se

3 // Implementation of the Class FPlayBack

4 /f/ Created on: 11-Aug-2009 5:31:52 PHM

5 // oOriginal author: mwnizam

I N NN NSRS
7

& #include "systemc.h"

o SC MODULE (PlayBack)

104

11 Eequest selection:

1z hool hERepeat;

13 bool bFoundfedia;

14

15 sc_in elk keypress;

15 se_in <hool> off;

17 | 7 == Begin - Code rendered by EAL for the underlying Eehavioral HModel
158

13 enun StateType

20 {

21 Controller On,

22 Controller On_ FlayBack,

Z3 Controller oOn_PlayBack Pause,

4 Controller ©n_FlayBack_Play,

25 Controller ©n_FlayBack_Play_Searchlocallrive,
26 Controller ©n_PlayBack_Play_ SearchExternalledia,
27 Controller On PlayBack Play SearchOpticalDrive,
=] Controller On FlayBack Play Decode,

9 Controller oOn_ PlayBack Play_LoadPlaylist,

30 Controller ©n_FlayBack_Play_ Stream,

21 fantraller fm Tdle

Figure 21 — SystemC code generated by Enterprise Architect

Chapter 7
Audio Player Software Implementation

Enterprise Architect contains numerous features to help with code generation and reverse
engineering, and also integrates closely with the Visual Studio and Eclipse development
environments via its MDG Integration technology. Many of Enterprise Architect's code
engineering capabilities, including forward and reverse engineering, and Enterprise
Architect’s powerful code template framework, are described in detail in the Enterprise
Architect for Power Users multimedia tutorial.*® This chapter will focus in on Sparx Systems
unique capability for Behavioral Code Generation, and on the MDG Integration capability.
Figure 1 shows our Roadmap for Software Implementation.

Software Implementation Roadmap

act Implement Software /
Generate Functional Code Generate Functional Code
from Activ ity Diagrams from State Machines
Build in Visual Studio Build in Eclipse using
using MDG Integration MDG Integration

Figure 1 — Roadmap for Software Implementation

Behavioral Models can be code generated

Enterprise Architect enables you to define an element’s behavior through the element’s
operations and parameters. You can also define the behavior of more specific behavioral
elements such as Activities, Interactions, Actions and Interaction Occurrences.

In this chapter, we'll explore how to transform behavior models of the type that you saw in
Chapter 3 into executable source code in C#, C++, Java, and Visual Basic. Figure 2 shows
the top level package diagram from our audio player example, which we’ll use to illustrate
behavioral code generation.

19 Enterprise Architect for Power Users multimedia tutorial:
www.iconixsw.com/EA/PowerUsers.html

http://iconixsw.com/EA/PowerUsers.html
http://iconixsw.com/EA/PowerUsers.html

pkg Software /

Behavioral Modeling - Software

Models in this package illustrates usage of various commonly used behavioral constructs.
States' behaviors to invoke another behavior, Activity diagram constructs like call actions,
patterns to model control statements, loops and Sequence diagram constructs like
synchronous messages, return messages, combined fragments, etc are employed to create
the model.

For more information on "Behavioral Modeling" refer to:

Behavioral Modeling

c# | CH+ | Java | VBNet
[5] + DataProcessor +10 +10 +10
E + StreamWriter

Double click packagesto view their contents

Figure 2 — Audio Player example organization for behavioral code generation

In addition to its long-standing ability to generate code for software classes, Enterprise
Architect supports generation of code from three UML behavioral modeling behavioral
paradigms:

e State Machine diagrams
e Interaction diagrams
e Activity diagrams

We'll explore behavioral code generation in considerable detail in this chapter, and it should
be an interesting ride to some places you’ve probably never been to before, so fasten your
seat belts. We’'ll start off with a look at generating C# code from state machines and activity
diagrams, for the DataProcessor class from our audio player.

Figure 3 shows a class diagram for the DataProcessor class, which contains a nested state
machine for Searching External Media, and a nested Activity Diagram for Appending to
a Buffer. Figure 4 shows the nesting of behaviors on a Composite Structure Diagram.

Data Processor: C# code gen from State and Activity
Diagrams

class C# /

The DataProcessor class reads data from
external inputs, and processesit.

DataProcessor

- bPoll: bool Supporting Elements
- bDataRead: bool

- iBytesReceived: int
- bVvalid: bool StreamWriter
- sw: StreamWriter

Placeholder for C#
----- System.|O.StreamWriter class

doReadUSB() : void
doReadSerialPort() : void
readNextByte() : void
interruptListener() : void oo

+ + + +

ﬂ DataProcessor

The State machine in thisexample illustrates modeling transitions to
history states, entry / exit points, transitions between
SubMachineStates, etc.

The Activity diagrams shows modeling multithreaded applications using
fork/ join, invoking other behaviorsusing Call actions, etc.

Figure 3 — DataProcessor Class Diagram

composite structure DataProcessor/

For more information on Code Generation from State Machine Diagrams refer to:

Code Generation - State Machine Diagrams

For more information on Code Generation from Activity Diagrams refer to:

Code Generation - Activity Diagrams

For more information on Code Generation from Sequence Diagrams refer to:

Code Generation - Sequence Diagrams

Elements in this Class - Double click the elements or use the hyperlinks
to navigate to the underlying model

State Machines Activities DataProcessor::USBDevice

CLEAR_FEATURE() : void
GET_STATUS() : void
SET_ADDRESS(double) : void
SET_FEATURE(int) : void
GET_CONFIGURATION(int) : string
GET_DESCRIPTOR(int) : string
SET_CONFIGURATION(long) : void
SET_DESCRIPTOR(long) : void
RESET() : void

SearchExternalMedia doAppendToBuffer

oo oo

o F o+ F o+ o+

ﬂ SearchExternalMedia ﬂ doAppendToBuffer

Figure 4 — Composite Structure Diagram illustrating the nested behaviors of DataProcessor

Behavioral code generation in Enterprise Architect requires the behavioral diagrams to be
nested within the “Active Class” (the class that gets generated). Figure 5 shows the
organization in Enterprise Architect’s project browser.

S WE -
Chce
< |

= [E DataProcessor
{5 DataProcessor
#- & USBDevice
- @ doAppendToBuffer
3 @ bal
{3 ¢ bDataRead
1 ¢ Byteskersived
8 o bvald
Besw
5 doRsad 15B()
4 doReadserisPork()
o readiextByte()
s interruptListener()
= @ searchExternalMedia
[5) SearchExternalMedia
w- @0
D 1dle
& @ ProcessingUnit

[streamwriter v

Figure 5 — Behaviors to be code generated are nested within a parent class

Behavioral Code Generation from State Machines

A State Machine that's nested within a Class generates the following constructs to enable
effective execution of the States’ do, entry and exit behaviors and also to code the
appropriate transition’s effect when necessary.

Enumerations

StateType — comprises an enumeration for each of the States contained within the State
Machine

TransitionType — comprises an enumeration for each transition that has a valid effect
associated with it, e.g. ProcessOrder_Delivered_to_ProcessOrder_Closed

CommandType — comprises an enumeration for each of the behavior types that a State can
contain (Do, Entry, Exit).

Attributes
currState:StateType — a variable to hold the current State's information

nextState:StateType — a variable to hold the next State's information, set by each State's
transitions accordingly

currTransition:TransitionType — a variable to hold the current transition information; this is
set if the transition has a valid effect associated with it

transcend:Boolean — a flag used to advise if a transition is involved in transcending between
different State Machines (or Submachine states)

xx_history:StateType — a history variable for each State Machine/Submachine State, to hold
information about the last State from which the transition took place.

Operations

StatesProc — a States procedure, containing a map between a State's enumeration and its
operation; it de-references the current State's information to invoke the respective State's
function

TransitionsProc — a Transitions procedure, containing a map between the Transition's
enumeration and its effect; it invokes the respective effect

<<State>> — an operation for each of the States contained within the State Machine; this
renders a State's behaviors based on the input CommandType, and also executes its
transitions

initializeStateMachine — a function that initializes all the framework-related attributes

runStateMachine — a function that iterates through each State, and executes their behaviors
and transitions accordingly.

Figure 6 shows the state machine for SearchExternalMedia, and you can see a bit of the
automatically generated code for the Do, Entry, and Exit states in Figure 7. The complete
behavior of the state machine is generated automatically.

stm SearchExternalMedia /

Idle For more information on Code Generation from State
Machine Diagrams refer to:

. ‘ Code Generation - State Machine Diagrams

/[ReadSerialPorts \

. + do /Do Read SerialPort
doReadSerialPort() O
H

ReadUSBPorts

+ do /Do Read USB
doReadUSB()

[bDataRead==true] [bDataRead==true]

ProcessingUnit /

PolllnputPorts

+ do/ DoPollinputPorts
/[Poll Input Ports

[bPoll==true]

AppendToBuffer /[DecodeCommand \

[bValid == true]

+ do/DoAppendToBuffer| /iBytesReceived + do / DoDecodeCommand
doAppendToBuffer() =0 /IDecode Command

Use States' behaviorsto invoke the
necessary behavior (operation ,
activity , interaction)

Figure 6 — State Machine for Searching External Media

The ProcessingUnit Polls its Input Ports, Appends to a Buffer, and Decodes Commands.
We'll see the nested activity diagram and generated code for AppendToBuffer in Figures 8
and 9. But first, Figure 7 shows generated code for the state machine shown in Figure 6.

DataProcessorcs

¢~ 155

v 156 4% Begin - EA generaced code for ScateMachine #/

v 157

v 158

’ 159 private enum StateType @ int

v 160 {

’ 161 SearchExternalMedia,

v 162 FearchExternalMedia Processinglnit,

v 163 FearchExternalMedia ProcessingUnit_FPollInputPorts,
’ 164 SearchExternalMedia ProcessingUnit_AppendToBuffer,
: 165 SearchExternalMedia ProcessinglUnit DecodeCommwand,
9 166 SearchExternalledia IO,

v 187 FearchExternalMedia IO ReadUSEPorcs,

’ 168 FearchExternalMedia IO Read3erialPorts,

o 1869 SearchExternalledia_ Idle,

v 170 ST_NO3STATE

v 171 3

v 172 private emunm TransitionType @ int

v 173 {

v 174 FearchExternalledia ProcessingUnit_AppendToBuffer to_SearchExternalllh
¢ 175 TT_NOTRANSITION

v 176 i

’ 177 privatce enum CormandType @ int

Y 178 [

q 179 Do,

4 180 Entry,

: 181 Exit

o isz H

N 183 privace StateType CcurrItate;

Figure 7 — Enterprise Architect generates Behavioral Code for State Machines

Behavioral Code Generation from Activity Diagrams

Enterprise Architect uses a system engineering graph optimizer to analyze an activity
diagram and render it into various code-generatable constructs. The constructs are also
transformed into one of the various action types (if appropriate), similar to Interaction diagram
constructs.

Conditional Statements

To model a conditional statement, you use Decision/Merge nodes. Alternatively, you can
imply Decisions/Merges internally. The graph optimizer expects an associated Merge node
for each Decision node, to facilitate efficient tracking of various branches and analysis of the
code constructs within them.

Invocation Actions (Call Operation Action, Call Behavior Action)

Call Actions are handled more efficiently. Each action has arguments relating to the
parameters of the associated behavior (use the Synchronize button of the Arguments dialog
to synchronize arguments and parameters).

Atomic Actions

Atomic actions contain implementation-specific statements that are rendered ‘in line’ as a
sequence of code statements in a procedure.

Loops

Enterprise Architect's system engineering graph optimizer is also capable of analyzing and
identifying loops. An identified loop is internally rendered as an Action Loop, which is
translated by the EASL code generation macros to generate the required code.

Figure 8 shows an activity diagram for AppendToBuffer, and Figure 9 shows a snip of the
resulting C# code.

act doAppendToBuffer J

For more information on Code Generation from Activity Diagrams refer to:

Code Generation - Activity Diagrams

Initialize Buffer
if(sw == null) sw = System.|O.File.CreateText("c:\\temp\dump.txt")

— Use Fork/Join to model parallel executlo!ﬁ

New Byte
string sNextByte =

CallReadNextByte
(DataProcessor::read

Callinterri
(DataProcessor:

Write To Buffer
sw.WriteLine(sNextByte)

Sleep
System.Threading.Thread.Sleep(1000)

Decrement

[iBytesReceived > 0] iBytesReceived-

Sleep
System.Threading.Thread.Sleep(1000)

Figure 8 — Activity Diagram for AppendToBuffer

DataProcessor.cs

= DataProcessor ~ 112
#- B UsBDevice 113 3
#- [E =enumerations CommandTy 114
#- 5 senumerstions StateType 115 /% Begin - EA generated code for Acrivities and Interactions #/
% B «enumerations TransitionTy 116
» SearchExternaltedia_LO_hi 117 public void dolppendToBuffer ()
4 SearchExternalMedia_Procs PRpS ’
4 SearchExternalMedia_histor
R 119 /4 behavior iz a Activity
: Pl 1z0 if(sy == null) sw = System.IO.File.CreateText("c:}\tenpl’dump. tx
- bivaid 121 System.Threading. Thread thread0 = new System. Threading. Thread|
) anstate 122 new System. Threading. ThreadStart (
4 curtTransition 123 delegate ()
» Byteskeceived 124 B {
nextstate 125 interruptListener ().
J s 126 System. Threading. Thread. Sleep (1000) ;
4 transcend 127 :
4 DataPracessor() 128 1
» Disposel) 129 threadl.Starc () ;
4 StatesProc() 130
¢ TransitionsProc() 131 System.Threading. Thread thresdl = new System. Threading. Thread(
» doAppendToBuffer() 132 new System. Threading. ThreadStart |
» doReadserialPort() . aelogane ()
5 doReadUISB{) 13am)
InitializeStateMachinet
’ 0 135 string sMextByte = "7
4 interruptListener()
136 readNextByte () :
4 readiextBytel) !
5 runstateMachine() 137 sw.WritelLine (sNextByte)
5 searchExtermalMedia_10() 138 iByresReceived--;
o searchExternalMedia_o_Re 139 System. Threading. Thread. Sleep (1000) ;
3 searchExternaMedia_I0_Re ¥ 140 while (iBytesReceived > 0

Figure 9 — Generated C# code for AppendToBuffer

Once again, the full detail of the behavior detailed on the diagram is automatically
generated into code.

IO — Code generation in C++, Java, and VB.Net

In this section, we'll look inside the 10 class and explore behavioral code generation in C++,
Java, and VB.Net. Figure 10 shows the class diagram for the C++ branch of the model;
similar diagrams (not shown here) appear in the Java and VB packages.

class C++ /

The 10 class polls different ports for availability of data
and input them accordingly

10

- selection: Request
- bDataRead: bool

- iBytesReceived: int
- bvalid: bool

+ SetLastError(int) : void
+ SetNoOfBytesReceived(int) : void

oo

The simple state machine in thismodel explainsthe usage of states'
behaviors(do/entry/exit) to invoke another behavior(activity, operation ,
interaction, etc).

The Activity diagram explains, invoking other behaviors using Call actions,
modeling conditional statements, loops, etc.

The Sequence diagram explains usage of synchronous messages, return
messages, using combined fragments to model loops, breaks, conditional
statements, using interaction occurrence to invoke another sequence, their
argument-parameter mapping, etc.

Figure 10 — 1O class diagram

As with the DataProcessor example, all behaviors which we’d like to code generate are
nested within the 10 class.

composite structure 10 /

For more information on Code Generation from State Machine Diagrams refer to

Code Generation - State Machine Diagrams

For more information on Code Generation from Activity Diagrams refer to:

Code Generation - Activity Diagrams

For more ir ion on Code G from Diagrams refer to:

Code Generation - Sequence Diagrams

Elements in this Class - Double click the elements or use the hyperlinks
to navigate to the underlying model

State Machines Activities Interactions 10::USBDevice

doReadSerialPort int setupUSB(Boolean)

CLEAR_FEATURE() : void
GET_STATUS() : void
SET_ADDRESS(double) : void
SET_FEATURE(int) : void
GET_CONFIGURATION(int) : unsigned char
GET_DESCRIPTOR(int) : unsigned char
SET_CONFIGURATION(unsigned long) : voi
SET_DESCRIPTOR(unsigned long) : void
RESET() : void

SearchExternalMedia

createPort int doReadUSB

ok F ot o+ o+ o+

SearchExtemalMedia sFileName :
ring

readPort ﬂ doReadUSB

ﬂ setupUSB

iNoOfBytes :Integer

ﬂ doReadParallelPort
ﬂ createPort

ﬂ readPort

Figure 11 — Nested Behaviors of 10

In this section we'll explore code generation from Interaction, State, and Activity Diagrams.
Figure 12 shows the sequence diagram for Setting up the USB port, and Figure 13 shows
how to Read the USB port. Figure 14 shows a fragment of the automatically generated C++
code.

Code Generation from Sequence Diagrams

Code generation from sequence diagrams that are nested within a Class uses Enterprise
Architect's system engineering graph optimizer to transform the diagram into code.
Messages and Fragments are identified as one of the several action types based on their
functionality, and the EASL code generation templates are used to render their behavior
accordingly. For example:

A Message that invokes an operation is identified as an Action Call and is rendered
accordingly

Combined Fragments are identified by their types and conditions; for instance, an Alt
fragment is identified as an Action If, and a loop fragment is identified as an Action Loop.

sd setupUSB

For more information on Code Generation from Sequence Diagrams refer to:

Code Generation - Sequence Diagrams

:10 pUSBDevice
:USBDevice

T
|
| RESET() =L:J
GET_DESCRIPTOR(1) :unsigned char - !
SetNoOfBytesReceived(iBytesReceived++) :
L |
|
L
loop / I
I
[iBytesRecgived < 8] |
break / :
[iByftdsReceived >=8]
GET_DESCRIPTOR(1) :unsigned char. !
SetNoOfBytesReceived(iBytesReceived++) |
e i
SET_ADDRESS(11) o :
T
GET_DESCRIPTOR(18) :unsigned char+
GET_CONFIGURATION(9) :unsigned char
SET_CONFIGURATION(255)
>
I~ = 7 7 bvalidDevice = true()

y
TR s S u S

[—

Figure 12 — Sequence diagram for setup USB showing a loop fragment

sd doReadUSB

For more information on Code Generation from Sequence Diagrams refer to:

Code Generation - Sequence Diagrams

...... EPT- "~} bDataRead = false()

10 pUSBDevic
:USBDevice
T T
| |
| |
: ref
|
i setupUSB(arg_bValidDevice: bValidDevice)
alt
[bValid]
| readPort(255)
<_ —_—
L

ey S

Figure 13 — Reading the USB Port

10.h
= Bwo
+ B UsBDevice
[wenumerations CommandType
#- (5 «enumeration: StateType
#- & =enumerations TransitionType

» SearchExternalMedia_history
» bDataRead

4 balid

J cunState

4 cunTransition

4 Bytesheceived

J nextstate

» selection

4 transcend

3 100

4 SetLastError(int)

4 SetNoOfBytesReceived(int)

, TransitionsProc{TransitionType;
5 createPort{string)

» doReadserialPort)

» doReadUSBO)

5 initializestateMachine()

5 readPort(int)

J runstateMachine)

s searchExternalMedia_Readseri
5 searchExternalMedia_ReadUse
4 setupUSB(bool)

s 100

73

¥:
enum
4

¥
privatce:

TT_NOTRANSITION

ContandType

Do,
Entry,
Exit

StateType curricate;
StaceType nextitate;
TransitionType currTransition;

bool

transcend;

StateType SearchExternalMedia history:

woid

woid
woid
woid
woid
woid

gearchExternallMedia_ ReadSerialPorts (CommandType command) :

searchExternalledia ReadUSBPores [CommandType command) ;
StatesProc (StateType currState, ComwandType command);
TransitionsProc (TransitionType transition):
initializeStateMachine(];

runstateMachine () ;

/% End — EA generated code for StateMachine */

bi

#endif //

'defined(EA_7S0ESSEQ_BEDS_4c3d BOES_3OCOOFEGEAEZ INCLUDED)

Figure 14 — Generated C++ code for 10

Generating VB.Net and Java from State and Activity Diagrams

Hopefully by now you’re getting the idea that Enterprise Architect can generate behavioral
code in just about any language from state, activity, and sequence diagrams. We'll illustrate
this first by showing VB.Net code (Figure 16) for the Search External Media state machine
(Figure 15).

stm SearchExternalMedia /

For more information on Code Generation from State
Machine Diagrams refer to:

Code Generation - State Machine Diagrams

/[ReadSerialPorts \

+ do /Do Read SerialPort
doReadSerialPort()

[bDataRead == false]
Use States' behaviorsto invoke the
necessary behavior (operation ,
activity , interaction)

[bDataRead == false]

ReadUSBPorts

+ do /Do Read USB
doReadUSB()

Final

Figure 15 — State Machine for Searching External Media

10.vb
1 B 160
+ USEDevice 161 TT_MOTRANSITICN
+ «enumeration: CommandType 162 End Enum
+ «enumerations StateType 163 Private Enum CommandType
+ senumeration: Tral.ﬂsitio.nType 164 EehDo
’ gearchExtzrnaIMedla_hlstory 165 BehEntry
’ b\[:aleaRea 186 BehExit
¢ oval 167 End Enum
o bvalidPort .
168 private curr3tate As StateType
/ currstate K
& curTransition 189 private next3tate Ls StateType
" Bytesheceived 170 private currTransition Ais TransitionType
nextstate 171 private transcend =a= Boolean
’ transcend 17z private SearchExternalMEdia_hist,Dry Lz StateType
» IncrementMoOfEytesRecsived! 173 Frivate sub searchExternalMedis ReadSerialPorts (ByVal comma
» StatesProc(StateType, Commar 174 Zelect Case command
» TransitionsProci TransitionType,; 175 case CommandType.BehDo
» createPork(String) 176 'Do Behawviors..
» doReadZerialPart() 177 doReadSerialPort ()
» doReadlSE() 175 'State's Transitions
» initializeStakeMachine() 179 Dim bFlag a5 Boolean
» readPartiInteger) 180 If [bDataRead = false] Then
» runskateMachined) 181 pFlag = trus
. 1g8z nextitate = SJtateType.ZearchExternalledia R
» searchExternalMedia_ReadUsB -
1583 End If
» setuplSB(Boolean)
154 If [bFlag = False | Then
185 nextitate = StateType.3T _NOSTATE'Final Stcat
186 End If
157 End Zelect
188 End 3ub

Figure 16 — VB.Net behavioral code, automatically generated from the state machine above

Finally, we’'ll wrap up this section by showing the activity diagram and generated Java code
for Read Serial Port in Figures 17 and 18.

act doReadSerialPort /

For more information on Code Generation from Activity Diagrams refer to:

. Code Generation - Activity Diagrams

CallSetLastError
Behavior Calls shall be used to -===----- - (IO:SetLastError)

invoke another behavior.

Behavior Calls

The arguments shall be one-to-one
N mapped with the associated behaviors
L i parameter. For more information refer:

H Behavior Call Arguments

CallCreatePort :
createPort I+I

arg_caption :
sFileName

[bValid ==
true]

arg_iNoOfBytes :iNoOfBytes
CallReadPort :
readPort

DataReadFail
bDataRead = false

DataReadSuccess
bDataRead = true

[bDataRead == false]

ReadComplete
/IReadComplete

Figure 17 — Activity Diagram for Reading the Serial Port

10.java

jisl 123 J] public void createPort (String sFilelName)
+ E| USBDevice 124 [{
* wenumerations CommandType 125 /¢ behavior is a hetivity
x wenumerations StateType 126 /f/Create a handle to port;
* «enumetations TransitionType 127 }

» SearchExternalMedia_hiskory 128

: E\?:‘:Rﬁad 129 public void doReadSerialPorti()

4 byalidPart 106 { i i L

s curstate 131 /¢ behavior is a ketivity

& currTransition 13z SetLastError (0)

5 iBytesReceived 133 createPort ("LPT1") ;

4 nextstate 134 if (bValidPort)

transcend 1356 1

5 100 136 readPort (1)

» SetLastError(ing) 137 hDataRead = true:

» SethoOfBytesReceived(int) 138 while (hDataRead == false)

» StatesProc(StateType, CommandT 139 5 i

» TransitionsProc{TransitionType) 140 readPort (1) :

» createPort(String) 141 bhDataRead = true;

’ 142 H

» doReadUSEQ) 143 3

 finalize() _ 144 else

y iitislizStatearhine) las o .

 readPort(int) 145 bDataRead = false:

4 runStateMachine()

s searchExternalMedia_ReadSerialPc a7 '

» searchExternalMedia_ReadsBPor 14d ¢/ BeadComp Lete:

» setupUsBiboolean) 149 }

150
151 public void setupU3E (boolean bValidDevice)

Figure 18 — Behaviorally generated Java code for Read Serial Port

Customizing The Code Generator

Enterprise Architect uses a template-driven approach to code generation, and provides an
editor for tailoring the code templates.

Enterprise Architect’'s code templates specify the transformation from UML elements to the
various parts of a given programming language. The templates are written as plain text with a
syntax that shares some aspects of both mark-up languages and scripting languages.

Figure 19 shows the Code Template Editor being used to tailor how C# code is generated.
— e

DPke Ek Vew Prokct Chgam Oemerk Took Addlns Settings Window el
R HT 0 R DR WO Wi T M ML L) 2 @eie R E woo i lw i5a
L Ho cunent dagram
@ || Langyage Template
Bl (o ~ 8 WEE Findexs=""% & Ebrvmlmqlnw
b rpem— | 5 findex = mo" % 5] Busimss Domain Model
3 Tewheiex [L,ﬂi 10 sendlfs + 3] Requremerts Model
= | Hame Modled | 11 ® - L] System Mol
| | Opsraton Declwatoningl Ho 1z %if $lia 5] A Model
£ | | Operation Body Hao 13 §lisc = & "Eubket iona®) & # (&l Progect Model
8 Opsetafion Body bmol Ho 19 wenAILE S] Sysberrs: Eragrmericey Moxlel
Parameter Ho i Tap Portable Audo Player
Pasameted Ingl Ho - (] Listaring D
Fiude Tk, Ho 16 §count - WEASL_GET("Count™, § % Jnm""‘“
Flust Ho 17 3if fcountesc= =1 IOV
Pude Condiion Ho 18 SendTemplates - e
Fiude fcton Ho 1 trplemedtion Heel
Corrgbe Fudel Ho L i 2 " 3 &P Lmglemesritation Mesdel
Compuis fucliors o 0 SCOMMENT = "Ger the ind guarded child accion B racdvare
frten No 21 dguardediction = WEASL L At”, flist, §index)s < - (00 Sohware
Arten Assigrment Mo D Software
Ackon Besch :“’ 23 dkind = ¥EASL_GET["Propecrty”, jguardedAction, ~Kind")% Shce
Action Col o 24 %6f fkind '= Guarded™s Wer
Ackon Cieste Ho o]
Action Deitroy Ho 25 fkindyn\n ® [Dasrocesson
Action IF Ho 26 wendTemplate Il stresmtwrier
fuction Loog No .7 1 G+ b
:“‘;"E“’L" :““ 0 Sguard = SEASL_GET(" rry”, fguardedisticn, =Guard”i T Proact trowesr | SgRecouces | T Madel e
Siker FaioaEvesi o 19 Sexpression = YEA Propecty”, Sguard, "Expression™y T
Action Faisef wcophon Ho 30 v findex == “0" ¥
Arnon Swich Ho 31 4f (fexpression)in h T L
Behavior Ho 32 welself fexpcession = == Gensenl Sentings
Behwrr Doy Ko 31 else 12 (Sexpressioniin
Behavior Declsion Ho = 3
] Mo bt s
Cabagament Mo 35 elasin
Gusd Ho 36 wendIfh
Properly Ho
Prgamly e atan My te
gty M Ha G
sme Mo e 3% AEASLListerAiction* Oseparator="in” findente-\t= fovner=iguardediction fooll
) P > 0 1}
a1
eraciyps Oemde: 43 $COMMENT = "Ger the newt indexed guarded child aetiond]
Clas Feshae Modfed 43 dindex = AMATH_ADD (findex, “1%)4 ¥ Project
44 Wif $index 's Scountd 5 Advanced
45 in
46 SendIfs
47 wAcTionlf(§GUID, §lime, §index)t
-
1]
Get Doloh Tompioo | [Save | [Rotore Hee
b Breees | Eecoarties | pun s 2ocm
o
& ¥ Xp N i -

Figure 19 — Actionlf Code template for C#

Code Templates are written as plain text. The template syntax centers on three basic
constructs:

e Literal Text
e Macros
e Variables

Templates can contain any or all of these constructs.

Integrating Models and Code in your favorite IDE

Since the beginning of modeling time, the gap (sometimes a chasm) between models and
code has always been problematic. Models, the argument goes, don’t represent reality...
only the code represents reality... therefore the model must be worthless, and we should just
skip modeling and jump straight to code.

Those who have used this argument to avoid modeling probably felt quite safe in doing so
because nobody has ever managed to make “reverse engineering” or “round-trip
engineering” a seamless process... until now. But that's exactly the problem that the MDG
Integration technology (available for both Visual Studio and Eclipse) from Sparx Systems
solves.

So... here’s the six million dollar question: how do we keep the model and the code
synchronized over the lifetime of the project? You can see the answer in Figure 20.

[RudioPtayer - Microsoft Visual Studio = |
Ble Edt Yow Befactor Projct Buld [ebug Dgta ook Tegt Widew Help
oo Gl e (o o b s 7 ey U = |8 metshed R e e PN R R ERETIEN |
Ly Chass Viems * 3 X DataProcessorss| St g % g
e oo 4 || % dosspendrotsten)] |2
L coaarch> = F1 =
= (8] MusdioPlayer
% () dusdcblaper wdl :
3w 1) Aoty Sroperts Al
3 = %5 DatsProcessor public

21 (0 Dase Types i
i DataProcessorn USECuvice

3 Dt aProxmsson. CommardTypm E CxeareText {"e: || temp | dump. £xe®) ;
E atsTyis Syscem. Threading. Thre chreadd = nev Syscem. Threading. Thread(
3 9 DataProxisce. TramtionTypn rew System. Themading. The '
= = r;\gleﬂa:e 0
4% ~ssTomson) interzuprliscenee () ;
DR System. Threading, Thread, S leep (1000) ;
@ Disponnl)
@ ddgpeneTiBulten) A
@ deltraSerialot{) e .
+ deland 500 cheeadd. Stare ()
4% rsszessteMschne)
% barrutlsterert) System, Theeading. Thecnd theeadl = new Syatem, Theeading, The
% readextDytel) nev System. Threading. Tt rart
4% nnStatebachined) delegate (]
4% saarchExtemanteds deDatsrod [
4% saanchiatematieds I0Datavoce Atring sNexthyte = "°
4% saarchiatematieds 10 Readiens readiexsByzel) ;
4% seachEstenatieds 0 Read e av.VriteLine (sHextbyte)
% mmih st renabies_Procmtid 1BytesReceived--;
oY sawchBrtenallecty Protetiingied System, Threading, Thread, Sleep (1000) :
i m while [iByresReceived » 0
% nlblerk_Tri s ¢
4% StatesProciDtaPicessor ATy seadiestByte () :
> TranstioeaPrec(DdtaProcesvor. Tro] av.riceline (sNextDyte) :
% bostshsad P N
A e
$ iaki System. Threading. Thread. Sleep (1000) ;
* cursate .
o curTransticn]
] i
o nexcSme threadl.Stare();

¥ SearchExtemaieda ety
T T 1
¥ SeardExteralleds_Procesiengn

o
anzend
< » PEivace emum StateTves © duk el
T 4 3
&2 1o st i o | § e 3 £)
Fisady n 113 21 i s

Figure 20 — Generated C# code for DataProcessor in Microsoft Visual Studio 2008

Here’s how it works:
1) Connect your UML model to a Visual Studio or Eclipse Project
2) Link a package in your model to the project in your IDE
3) Browse the source code by clicking on operations on the classes
4) Edit the source code in your IDE

MDG Integration keeps the model and code in-synch for you. Problem solved.

Wrapping up

That concludes our roadmap for embedded systems development using SysML and the
Enterprise Architect System Engineering Edition. Our roadmap has taken us through
Requirements definition, allocation, and traceability, hardware and software design,
constraints and parametrics, and through implementation using behavioral code generation
for software and for hardware using hardware-description languages.

We hope you've found this eBook useful. You can contact ICONIX with comments or
guestions at SysMLTraining@iconixsw.com, or explore our "SysML JumpStart Training" on
our website.

We wish you success in your development efforts!

mailto:%20SysMLTraining@iconixsw.com
http://www.iconixsw.com/sysmljumpstart.html

	finalone
	PDFer FINAL
	Table of Contents
	 Back to the Future
	3
	 An Introduction to SysML and Enterprise Architect Engineering Edition
	4
	 Audio Player Requirements
	14
	 Audio Player Behavior
	18
	 Audio Player Structure
	27
	32
	 Audio Player Hardware Implementation
	39
	 Audio Player Software Implementation
	54
	A roadmap for embedded system development
	Requirements, Structure, Behavior, and Parametrics – the Four Pillars of SysML
	Requirements
	Structure
	Behavior

	Advanced Features of the Enterprise Architect System Engineering Edition
	Parametrics

	Implement Hardware
	Implement Software
	Introducing the Audio Player Example
	Requirements Roadmap
	Behavior Modeling Roadmap
	Audio Player Behavior Model
	Audio Player State Model
	Combining Use Cases and State Machines
	Roadmap: Define Structure
	Modeling the Problem Domain
	Modeling Block Structure (Block Definition Diagrams)
	Modeling Block Internals (Internal Block Diagrams)
	Define Ports
	Audio Player Hardware Components
	Constraints and Parametrics Roadmap
	Define Constraint Blocks
	Add Scripts to Constraint Blocks
	Define Parametric Diagrams
	Configure Simulation
	Run the Simulation
	Hardware Implementation Roadmap
	Audio Player Hardware Implementation
	1. Designate Driving Triggers
	Asynchronous Triggers
	Clock

	2. Establish Port – Trigger Mapping
	3. Define Active State Logic
	Implementation in VHDL
	VHDL Code Generation and Reverse Engineering
	Stereotypes
	Tagged Values
	Stereotypes
	Tagged Values

	Implementation in SystemC
	Stereotypes
	Tagged Values

	Software Implementation Roadmap
	Behavioral Models can be code generated
	Data Processor: C# code gen from State and Activity Diagrams
	IO – Code generation in C++, Java, and VB.Net
	Generating VB.Net and Java from State and Activity Diagrams
	Customizing The Code Generator
	Integrating Models and Code in your favorite IDE
	Wrapping up

