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Prologue - Back to the Future 
This book represents a departure from what I’ve been doing at ICONIX over the last 25 
years, which has been focused mainly on Software Engineering, but a book on how to 
develop real-time embedded systems is actually a “return to my roots” in Electrical 
Engineering.   

My degree is actually in EE, not Computer Science, and my path to being involved with 
Software Engineering had its formative years when I was working as a programmer in 
Computer Aided Design for VLSI in the aerospace industry in southern California, and also 
up in Silicon Valley.  So even though SysML is a new area for me, I’m inherently familiar with 
the problems that SysML helps to solve. 

My first four jobs out of college (in the early 1980s) were involved with VLSI design.  Three of 
these (two at TRW and one at Hughes Research Labs) were on a project called VHSIC (Very 
High Speed Integrated Circuits), which is what the “V” in VHDL stands for.  At TRW my work 
involved extending some of the early “design rule checking” software to cover a more 
complex fabrication process that allowed us to deliver gigahertz-level speeds, which was 
much more of an accomplishment 30 years ago than it is today.  I also worked a bit with 
SPICE, one of the earliest  “circuit simulators” (more about simulation in the “SysML 
parametrics” discussion in Chapter 5). 

Later, after a short stint up in Silicon Valley working on something called “symbolic layout and 
compaction” at a company called Calma, I returned to TRW where I designed and 
programmed an application called “Hierarchical Layout Verification” which recursively 
decomposed a complete integrated circuit layout into sub-cells (now called “blocks” in 
SysML), determined their input and output “ports” (another familiar SysML concept), and 
checked both physical design rules and electrical connectivity.   

During this time, my boss Jim Peterson at TRW was developing one of the early Hardware 
Description Languages, which he called THDL (for TRW Hardware Description Language). 
THDL itself was an extension of CIF (Caltech Intermediate Format1) which had been 
developed in Carver Mead’s research group when Jim was a grad student at Caltech.  Since 
Jim’s THDL work was funded under the VHSIC contract it’s a safe bet that some of the 
concepts in VHDL had their roots in THDL.   

After my second go-round at TRW, I went to work at Hughes Research Labs in Malibu, CA, 
developing the interface from CAD systems (most notably Calma, who owned about 80% of 
the market back then) to something called the VHSIC Electron Beam Lithography System.  
This was another ambitious project that pushed the state of the art in fabrication technology 
far ahead of what it had been previously.  We were writing one-tenth-of-a-micron lines on 
silicon wafers using electron beams (still not bad today) back in 1984. 

When Sparx Systems asked me to write this eBook, I discovered a kindred spirit in Sam 
Mancarella, who is largely responsible for a great deal of the implementation of Enterprise 
Architect’s SysML solution.  Sam also developed the Audio Player example that this book is 
written around, which is such a complete and comprehensive example that it made my writing 
task very easy.  I want to make it completely clear that Sam deserves ALL of the credit for 
developing this example, and that my contribution to this project was simply writing the 
manuscript around the example. My electrical engineering background made it obvious to me 
how good Sam’s example is, and allowed me to see how the pieces fit together. 

                                                      
1 Introduction to VHDL By R.D.M. Hunter, T.T. Johnson, p.17-18 



Chapter 1 - An Introduction to SysML and 
Enterprise Architect Engineering Edition 
A roadmap for embedded system development 
It’s easy for a book to present a taxonomy of disjointed SysML diagrams and then leave you 
to figure out how to combine those diagrams into a meaningful model. In fact, that’s what the 
majority of SysML books that we’ve seen appear to do. But with this book, we’re going to 
introduce you to SysML and the Systems Engineering Edition of Enterprise Architect in a 
rather different way. 

At ICONIX, we’ve had pretty good success when we defined an unambiguous development 
process, and presented that development process in “roadmap” form. We’ve developed 
process roadmaps for use case driven software development, business modeling, design-
driven testing, and algorithm-intensive software design. In this book we’re going to do it 
again, this time for embedded systems that involve a combination of hardware and software. 
We’ll explain the roadmap at the high level in this chapter, and then each of the following 
chapters will detail one of the high-level activities on the top-level roadmap. Along the way, 
we’ll show you how Enterprise Architect’s System Engineering Edition supports the process 
we’re describing, while illustrating each step of the process by example. 

In addition to providing complete support for all SysML 1.1 diagrams, the Enterprise Architect 
Systems Engineering edition combines advanced features such as executable code 
generation from UML models (including support for hardware languages such as Verilog and 
VHDL), executable SysML Parametric diagrams and advanced scripting. We’ll explore this 
unique combination of advanced capabilities in the last half of this book. 

Specifically,  

• In Chapter 5 we’ll explore Enterprise Architect’s SysML Simulation Support, which 
provides the capability of simulating SysML 1.1 constraint models with results 
graphing capabilities;  

• In Chapter 6 we’ll describe support for Hardware Description Languages, including 
Verilog, VHDL and SystemC, with support for generating State Machine code; and  

• In Chapter 7 we’ll illustrate Enterprise Architect’s support for generating functional 
source code for State Machines, Interactions and Activities in C, C++, C#, Java and 
VBNet . 

Each of these capabilities, taken standalone, adds a significant amount of “horsepower” for a 
systems engineering effort. We’ll show you how to combine these capabilities into a single 
process roadmap that’s greater than the sum of its parts. 

Figure 1 shows the top level roadmap for ICONIX Process for Embedded Systems. 



 act Roadmap

Define System 
Requirements

Model System Block 
Structure

Model System Behav ior

System
Concept

Define Constraints and 
Parametrics

Simulate

Implement Hardware Implement Software

Deliver System

Test Hardware and 
Software

 
Figure 1 – ICONIX Process Roadmap for Embedded Systems Development 

As you can see, our roadmap starts off by defining requirements, proceeds through modeling 
of system behavior and block structure, and then through definition of constraints and 
parametrics, simulation, and then implementation in both hardware and software. We’ll take 
you through each of these activities at a summary level in this chapter, and then in more 
detail, illustrated by a comprehensive Audio Player example, in Chapters 2-7. 



Requirements, Structure, Behavior, and Parametrics – the 
Four Pillars of SysML 
Our Embedded Systems Development Process Roadmap is organized around producing a 
SysML model that is generally organized into four sections. These parts of the overall system 
model (Requirements, Structure, Behavior, and Parametrics) are sometimes referred to as 
“The Four Pillars of SysML”.2 

act Define System Requirements

Define Functional 
Requirements

Define Non-Functional 
Requirements

Allocate Requirements to 
System Elements

Organize Requirements 
into Hierarchies

 
Figure 2 – Roadmap: Define System Requirements 

Requirements 
Requirements are generally categorized as Functional Requirements, which represent 
capabilities of a system, and Non-Functional Requirements, which cover such areas as 
Performance and Reliability. You can organize Requirements into hierarchies on requirement 
diagrams. Enterprise Architect supports allocation of requirements to other elements using a 
simple drag-and-drop, and automatic generation of traceability matrices. 

Figure 2 shows the steps for Requirements definition from our process roadmap. Note that 
allocation of Requirements to System Elements is really an ongoing process as the model is 
developed, and largely occurs within other roadmap activities. We’ll explore Requirements 
Definition in more detail in Chapter 2. 

 

 

                                                      
2 OMG Systems Modeling Language Tutorial, INCOSE 2008 



Structure 
act Model System Block Structure

Define Blocks

Allocate Requirements 
to Blocks

Define Ports

Start Modeling Structure

Model the Problem 
Domain

ActivityFinal

 
Figure 3 – Roadmap: Model System Block Structure 

Blocks can be used to represent hardware, software, or just about anything else. Block 
definition diagrams represent system structure. Internal block diagrams describe the internals 
of a block such as parts, ports, and connectors. As with UML, Packages are used to organize 
the model.  

If you think of a Block as an electronic circuit (one of many things that a Block can describe), 
the Ports define the input and output signals to/from the circuit. SysML allows you to describe 
the input signals and transformations in great detail, and Enterprise Architect contains a built-
in simulator that allows you to plot the output graphically or export to a comma-separated 
value file. You’ll see how this works in detail in Chapter 5. Defining the Block structure is a 
prerequisite for defining parametrics and running simulations. 

Here’s how our process roadmap approaches defining system structure. See Chapter 3 for 
an expanded discussion on modeling structure. 



Behavior 
act Model System Behav ior

Model Use Cases

Allocate Requirements to 
Use Cases

Model Interactions for Use 
Cases

Model Finite State 
Behav ior

Start Behavior Modeling

Allocate Requirements to 
State Machines

Complete Behaior Modeling

 
Figure 4 – Roadmap: Model System Behavior 
SysML provides four main constructs to represent different aspects of system behavior; use 
cases, activity diagrams, sequence diagrams, and state machines.  

Our roadmap shows two parallel branches for modeling system behavior. One branch starts 
with use cases3, which describe scenarios of how users will interact with the system. Use 
cases generally consist of a “sunny-day” part which describes a typical success-path for the 
scenario, and multiple “rainy-day” parts which describe unusual conditions, exceptions, 
failures, etc. Use cases are typically detailed on Interaction (Sequence) Diagrams. 

The other branch on the roadmap involves defining event-driven, finite-state behavior of 
some part of a system using state machines. As a simple example, there is finite state 
behavior associated with the power charging circuitry on our Audio Player. One of Enterprise 
Architect’s unique capabilities is the ability to generate functional (algorithmic) code from 
state machines. As you’ll see, these state machines can be realized in software or in 
hardware using Hardware Description Languages (HDLs). 

Requirements are allocated to both use cases and states. Chapter 4 explores behavior 
modeling in detail. 

                                                      
3 See “Use Case Driven Object Modeling with UML: Theory and Practice” by Doug 
Rosenberg and Matt Stephens for a lot more information about use cases. 



Advanced Features of the Enterprise Architect System 
Engineering Edition  

act Define Constraints and Parametrics

Define Constraint Blocks

Define Parametric 
Diagrams

Add Scripts to Constraint 
Blocks

Start defining constraints and parametrics

Simulate Parametric Models

 
Figure 5 – Roadmap: Define Constraints and Parametrics 

Enterprise Architect Systems Engineering edition contains a number of unique features for 
systems and software engineers working on embedded systems. The Systems Engineering 
edition combines new features such as executable SysML Parametric diagrams and 
advanced scripting with executable code generation from UML models (including support for 
hardware languages such as Verilog and VHDL, and bundles licenses for DoDAF-MODAF, 
SysML, DDS and IDE integration products to provide powerful model-driven construction 
tools to tightly bind your code development in Eclipse or Visual Studio with the UML/SysML. 
Our process roadmap leverages these unique capabilities into a synergistic development 
process. 



Parametrics 
act Simulate

Configure Simulation

Assign Inputs to 
Parameters

Assign Values to Input 
Parameters

Specify Output Value 
Classes

Specify Reporting 
Options

Run the Simulation

Define Constraints and Parametrics

 
Figure 6 – Roadmap: Simulate 

Parametrics allow us to define detailed characteristics, physical laws, and constraints on 
system blocks that allow us to simulate how a system will behave, then make engineering 
tradeoffs, and re-simulate until our design meets the specified requirements. 

Our roadmap provides two high-level activities in this area; the first to define constraint blocks 
and parametric diagrams, and the second to configure and execute the simulations. 

The ability to configure and execute simulations within Enterprise Architect, eliminating the 
need to export the model to external simulation software, is one of the unique capabilities of 
the Sparx Systems SysML solution. 

Enterprise Architect’s built-in support for scripting and graphical display of simulation results 
tightens the feedback loop on making engineering tradeoffs in the model to rapidly ensure 
that all system requirements are met. You’ll see how this works in detail in Chapter 5. 

Implement Hardware 
Hardware Description Languages allow the specification of electronic circuits in a software-



4like representation. According to Wikipedia : 

In electronics, a hardware description language or HDL is any language from a 
class of computer languages and/or programming languages for formal description 
of electronic circuits, and more specifically, digital logic. It can describe the circuit's 
operation, its design and organization, and tests to verify its operation by means of 
simulation. 

HDLs are standard text-based expressions of the spatial and temporal structure 
and behaviour of electronic systems. Like concurrent programming languages, HDL 
syntax and semantics includes explicit notations for expressing concurrency. 
However, in contrast to most software programming languages, HDLs also include 
an explicit notion of time, which is a primary attribute of hardware. Languages 
whose only characteristic is to express circuit connectivity between a hierarchy of 
blocks are properly classified as netlist languages used on electric computer-aided 
design (CAD). 

HDLs are used to write executable specifications of some piece of hardware. A 
simulation program, designed to implement the underlying semantics of the 
language statements, coupled with simulating the progress of time, provides the 
hardware designer with the ability to model a piece of hardware before it is created 
physically. It is this executability that gives HDLs the illusion of being programming 
languages. Simulators capable of supporting discrete-event (digital) and 
continuous-time (analog) modeling exist, and HDLs targeted for each are available. 

 

act Implement Hardware

Generate State Machines

Generate VHDL Generate Verilog Generate System C

 
Figure 7 – Roadmap: Implement Hardware 

Enterprise Architect’s long-proven ability to generate code has been extended to support 
code generation in VHDL, Verilog, and SystemC in the Systems Engineering Edition. While 
code generation is independent of SysML usage, from a process roadmap standpoint, this 
means we can drive both hardware and software implementation from our SysML model. 
Once code is generated in an HDL, it’s possible to “compile to silicon” to realize the hardware 
solution on a chip. 

We’ll explore hardware implementation in Chapter 6. 

 
                                                      
4 http://en.wikipedia.org/wiki/Hardware_description_languages 



Implement Software 
Software implementations can leverage a variety of powerful capabilities that are included 
with the System Engineering Edition of Enterprise Architect. Two of the more important and 
unique capabilities are: 

• The ability to generate functional (algorithmic) code from behavioral models (state 
machines, activity diagrams,  and interaction diagrams) 

• The ability to integrate Enterprise Architect models into development environments 
such as Eclipse and Visual Studio. 

Figure 8 shows a high-level look at the Software Implementation activity from the roadmap. 

act Implement Software

Generate Functional Code 
from Activ ity Diagrams

Generate Functional Code 
from State Machines

Build in Visual Studio 
using MDG Integration

Build in Eclipse using 
MDG Integration

 
Figure 8 – Implement Software 

We’ll explore these unique capabilities and how they work together in Chapter 7. 



Introducing the Audio Player Example 
Over the course of this book, we’ll be illustrating the steps in our process by presenting 
diagrams from an example project. Our example (developed by Sam Mancarella) will be a 
hardware/software system that most everyone is familiar with – an Audio Player. 

The top level Package Diagram in Figure 9 shows how the example model is organized. 

pkg Requirements Model     

Specifications

+ Durability
+ Media Access
+ Performance
+ User Friendliness

Specifications Use Cases

Interactions

State Machines

State Machines

+ DSP Effects
+ Operating States
+ Playlist  Maintenance

Constraint Blocks

+ EchoDSP

Interactions

+ Operate Audio Player
+ Maintain Playlist
+ Maintain Audio Player
+ deviceInContext
+ listener

Constraint Blocks

Use Cases

+ Top Level
+ Maintain Audio Player
+ Maintain Playlist
+ Operate Audio Player

                         Requirements Model
This package contains the models that define the 
requirements of the Portable Audio Player. The model 
contains requirement specifications, use cases, 
interactions, state machines and constraint blocks.

 
Figure 9 – SysML models are organized into Requirements, Behavior, Structure, Constraints and 
Parametrics, and include both Hardware and Software Implementation models. 

You’ll become intimately familiar with Sam’s audio player example, as we’ll be using it to 
illustrate the various activities on our roadmap throughout the following chapters. 

 

 

 

 

 

 

 

 

 

 

 



Chapter 2 – Audio Player Requirements 
Requirements Roadmap 
Requirements are the foundation of a SysML model.  The purpose of the system that you’re 
modeling is to satisfy the requirements.  So, as you’d expect, the roadmap begins with 
defining requirements (see Figure 1). 

 

act Define System Requirements

Define Functional 
Requirements

Define Non-Functional 
Requirements

Allocate Requirements to 
System Elements

Organize Requirements 
into Hierarchies

 
Figure 1 – Requirements Definition Roadmap 

As you saw in Chapter 1, Requirements are usually classified as Functional (e.g. 
Requirements that represent specific system features or capabilities), and Non-Functional 
(e.g. Requirements that don’t apply to specific features such as ease-of-use).  It’s important 
to organize these Requirements effectively, otherwise the Requirements model can become 
Dysfunctional5. 

When you think about Requirements in a SysML model, you’re considering Hardware 
Requirements, Software Requirements, and Requirements that relate to the Environment that  
your system will interact with.  For example, our Audio Player will interact with its operating 
environment, which includes “listening conditions” (noise, weather), and the clothing of the 
listener. 

                                                      
5 For more on avoiding Dysfunctional Requirements, see Use Case Driven Object Modeling 
with UML – Theory and Practice, by Doug Rosenberg and Matt Stephens. 



 

These domain aspects drive downstream requirements which describe items such as shock 
resistance, waterproofing etc., because we expect the audio player to operate within the 
listeningDomain defined by this internal block diagram (ibd) which describes the 
listeningConditions to which the player will be subjected. 

The ‘blocks’ shown in Figure 2 will be decomposed into their parts to describe this domain 
‘system’. 

ibd ListeningDomain     

portableAudioPlayer

listeningConditions

listenerClothing

:Listener

version="1.0"
description = "Concept to identify top level domain entities"
completeness = "partial. Does not include some external 
interfaces"

externalNoise

weather

 
Figure 2 – SysML Models include Hardware, Software, and the Environment within which a system must 
operate. 

Modeling Tip – It’s easy to import graphics into Enterprise 
Architect Models 

As you can see from the example in Figure 2, adding some graphics (photos, illustrations, 
etc.) to a model can make it far easier to understand.  Enterprise Architect makes this easy to 
do.  There are several ways to do this, but one of the easiest is to copy an image to the 
clipboard, then right-click an element on a diagram, select Appearance from the context 
menu, and then select Apply Image from Clipboard.  It only takes a few seconds, but adds 
a lot to the readability of your model. 



Audio Player Requirements 
SysML defines seven relationships between Requirements.  These fall into two categories:  
relationships between Requirements, which include containment, derive, and copy; and 
relationships between requirements and other model elements, which include satisfy, verify, 
refine, and trace.   

The “crosshair” notation in the Audio Player Requirements diagram below shows the use of 
containment to organize requirements hierarchically into Categories meaning that the 
Specifications Package OWNS the requirements, which in turn, own the ‘sub requirements’ 
beneath.   

req Specifications     

«requireme...
User 

Friendliness

«requireme...
Performance

«requireme...
Durability

«requireme...
Media Access

«requireme...
Fidelity

«requireme...
Noise 

Reduction

«requireme...
Graphical User 

interface

«requireme...
Keys Layout

«requireme...
Scroller

«requireme...
Battery 

longev ity

«requireme...
Weather 

resistance

«requireme...
Shock 

Resistance

«requirement»
Storage 
Capacity

«requireme...
External ports

Specifications

 
Figure 3 – Requirements for our Audio Player are organized into Categories such as User Friendliness, 
Performance and Durability. 

Enterprise Architect has a couple of built-in features that make it easy to define which 
requirements are satisfied by which model elements, and to automatically generate a 
relationship matrix to show these relationships.   

 

Figure 4 – Enterprise Architect’s Relationship Matrix makes it easy to see the allocation of Requirements to 
Blocks 



Modeling Tip – allocate requirements to model elements 
using drag-and-drop 

It’s trivially easy to specify that a model element (such as a Block or a Use Case) satisfies a 
Requirement within an Enterprise Architect model.  Simply drag the Requirement from the 
Project Browser on to the element which satisfies it.  Enterprise Architect automatically 
establishes the link within the model. 

It’s also trivially easy to generate a matrix showing the allocations of Requirements to model 
elements using Enterprise Architect’s Relationship Matrix. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5  – Enterprise Architect’s Relationship Matrix makes it easy to see the allocation of Requirements to 
Use Cases 

 

Modeling Tip – Use Enterprise Architect’s Relationship Matrix 
to show which model elements satisfy which Requirements 

Once the allocation relationships have been specified using drag-and-drop, or by using the 
“Require” tab on the Specification dialog of all Enterprise Architect elements, you can 
generate a cross-reference table of Requirements against any type of model element by 
selecting Relationship Matrix from the View menu.  Simply specify the scope (desired 
Package) of your search using the Source and Target buttons, and the type of elements you 
wish to cross-reference, and Enterprise Architect does the rest.  The Matrix can be exported 
to a Comma Separated Value (CSV) file using the Options button. 

In the upcoming chapters, you’ll see how the Requirements we’ve identified here are satisfied 
by various aspects of the Audio Player SysML model. 

 



Chapter 3 – Audio Player Behavior 
Behavior Modeling Roadmap 
Behavior Modeling describes the dynamic behavior of the System as it interacts with users 
and with the environment.  You’ll use interaction diagrams and use cases to model 
interactions between users and the system, and state machines to describe event-driven 
behavior that’s not user-centric.  Figure 1 shows the Roadmap activities. 

act Model System Behav ior

Model Use Cases

Allocate Requirements to 
Use Cases

Model Interactions for Use 
Cases

Model Finite State 
Behav ior

Start Behavior Modeling

Allocate Requirements to 
State Machines

Complete Behaior Modeling

 
Figure 1 – Behavior Modeling Roadmap 

As you can see, you approach behavior modeling in two parallel branches, one for use cases 
and the other for state machines.  Each branch includes allocation of Requirements to model 
elements (use cases or states).  Use cases are described in natural language at the high 
level, and are detailed on interaction (sequence) diagrams. 

We’ll follow the roadmap through the remainder of this chapter by exploring the dynamic 
behavior of our Audio Player example.  Then in Chapter 4 we’ll explore the system structure 
that supports the desired behavior.  We use the terms “static” and “dynamic” to describe the 
structural and behavioral parts of the model; structure is static in that it doesn’t change once 
it’s defined, while behavior is dynamic – changing based on user actions or external events. 



Audio Player Behavior Model  
Here we can see the two branches of the dynamic model for our Audio Player.  User-centric 
scenarios, such as Operating the Audio Player, are modeled with use cases, while we can 
model the Operating States of the device with state machines.  Note that Playlist 
Maintenance has a use case description and is also described using a state machine.  
Whatever diagrams help to tell the story can be used. 

 pkg Use Cases     

                         Use Cases 
This package contains use cases that describe the 
interactions between the Portable Audio Player, the 
listener and other participants.

Top Level Maintain Audio Player

Maintain Playlist Operate Audio Player

Top Lev el Maintain Audio Player

Maintain Playlist Operate Audio Player

 pkg State Machines     

Operating States Playlist  Maintenance

                         State Machines 
This package contains state machines that model the 
Portable Audio Player's various operational states.

Operating States Playlist  Maintenance

DSP Effects

DSP Effects

 
Figure 2 – Behavioral models include Use Cases, Interactions, and State Machines 

Modeling Tip – Models should tell a story 

A model’s primary purpose is to serve as a communication vehicle to promote a shared 
understanding about the system being modeled between stakeholders, end-users, analysts, 
designers, software and hardware engineers, and quality assurance personnel.  Always 
optimize models for readability, and make sure you “tell the story” clearly and unambiguously. 

Here are the Top Level use cases for the Audio Player.  The “eyeglass” icon on the use case 
bubbles indicate that a child diagram exists, showing more detail about the use case. 
 

uc Top Lev el     

PortableAudioPlayer

Operate Audio Player

Maintain Playlist

Maintain Audio 
Player

Listener

 
Figure 3 – Audio Player Top Level Use Cases 



Enterprise Architect makes it easy to “drill down” to a child diagram for composite elements.  
Here’s a child use case diagram for audio player maintenance. 

uc Maintain Audio Player     

Device Maintenance

Replace BatteryCharge Battery

Replace Skin

Replace Headphones

Listener

Maintain Audio Player (Interaction)

«include»

 
Figure 4 – Use cases for maintaining the audio player hardware  include charging and replacing the battery, 
and replacing the skin and the headphones. 

Enterprise Architect supports “diagram references” for hyperlinking one diagram to another.  
You can see the reference to the interaction diagram (Figure 5) on the diagram above, and a 
link back to the use case view on that diagram. 

sd Maintain Audio Player

deviceInContext
:Portable Audio

Playerlistener :Listener

ref
ChargeBattery

ref
ReplaceSkin

ref
ReplaceHeadphones

ref
ReplaceBattery

alt 

[defectivebattery]

alt 

[wornoutskin]

alt 

[faultyheadphones]

Maintain Audio Player - Use Case

 
Figure 5 – The interaction diagram for maintaining the audio player shows 3 alternate courses of action 
(defective batteries, worn out skin, and faulty headphones) and one normal course (charging the battery). 



 

Here are the use cases for the basic operations of the Audio Player. 
uc Operate Audio Player     

Operations

Listener

Listen Audio

Power On

Play

Stop

Pause

Record Audio

Adjust Volume

Operate Audio Player (Interaction)

«include»

«include»

«include»

«include»

«extend»

«include»

 
Figure 6 – Audio Player Use Cases for Listening and Recording 

As in the Maintenance use cases, the use case diagram and interaction diagram (Figure 7) 
are cross-linked using Enterprise Architect diagram references.  This diagram shows that the 
Idle, Play, Pause, and Adjust Volume paths can all be performed in parallel. 

sd Operate AudioPlayer

l istener :Listener

deviceInContext
:Portable Audio

Player

par 

ref TurnOnDev ice

ref Idle

ref Play

ref Pause

ref AdjustVolume

ref TurnOffDev ice

alt 

[Idle]

[Playing]

[Pause]

Operate Audio Player - Use Case

 
Figure 7 – Audio Player Interaction diagram for Listening/Recording 

Use cases describe how a user interacts with the system.  In the next section, you’ll see how 
to describe event-driven behavior using state machines. 



 

Audio Player State Model 
For embedded systems, it’s often advantageous to describe behavior in terms of operating 
states, triggering events and system actions. SysML (identically to UML) uses state charts to 
describe these finite state aspects of a system. 

 
stm Operating States     

Off

stm On

Idle

Playing Paused

[play]

[Pause]

[stopped]

[play]

[On] [Off]

 
Figure 8 – Audio Player Operating States 

State charts allow nesting of substates on a single diagram.  Figure 8 shows the detailed 
behavior of the “On” state of the audio player on the same diagram that shows the “On/Off” 
behavior.  To allocate Requirements to states, simply drag the Requirement from the 
Enterprise Architect Project Browser and drop it onto the state bubble. 

State machines relate operating states of a system (or block) to triggering events such as 
pressing a button.  Figure 9 shows how toggling the “Audio EQ” button causes the system to 
cycle between various audio effects. 

 



 stm DSP Effects     

Dsp Off

Hall

Studio

Disco

Equalizer setting for 
"Disco" effect

Equalizer setting for 
"Studio" effect

Equalizer setting for 
"Hall" effect

[AudioEQ
button
pressed]

[AudioEQ
button
pressed]

[AudioEQ
button
pressed]

[AudioEQ
button
pressed]

 
Figure 9 – State Machine for Digital Signal Processing Audio Effects 

There’s no absolute rule for choosing when to “tell the story” with use cases and when to use 
state diagrams.  The best guideline is to simply use whichever diagram that tells the story 
best.  Sometimes, the best choice is to use both. 

Combining Use Cases and State Machines 
Here’s an example that shows how use cases, interaction diagrams, and state machines can 
all be used to describe different aspects of how our audio player system operates. 

uc Maintain Playlist     

Playlist Maintenance

Listener

Connect To Computer

Create Playlist

Copy track from 
external media

Download track

View Existing Playlist

View New Tracks

Maintain Playlist (Interaction)

«include»

«include»

 
Figure 10 – Use Case Diagram for Playlist Maintenance 



Each diagram provides a different perspective on the system we’re modeling.  We can use as 
many views as necessary to “tell the story” so that there are no misunderstandings as we 
progress from defining Requirements through hardware and software development. Figure 11 
shows the various scenarios for maintaining playlists, while Figure 12 takes a more event-
driven perspective. 

sd Maintain Playlist

deviceInContext
:Portable Audio

Playerlistener :Listener

ref
ConnectToComputer

ref
CopyTracks

ref
DownloadTracks

ref
CreatePlaylist

alt 

[playlistsExists]

ref
ViewNewTracks

ref
ViewExistingPlaylists

alt 

[playlistEditable]

ref
ModifyPlaylist

Maintain Playlist - Use Case

 
Figure 11 – Scenarios for maintaining playlists 

Note that in order to Modify a Playlist, the Playlist must already exist and be editable.  
However, tracks may be downloaded and copied independently of those conditions. 

The state machine shown in Figure 12 provides a different perspective.  The top level state 
machine shows how the behavior depends on connecting/disconnecting the audio player 
to/from the music server.  As you can see, all of the real behavior of maintaining playlists 
happens when the device is connected. 

An activity diagram is used to detail the behavior of the audio player when it’s connected.  
Forks and joins (the solid black horizontal lines) on the activity diagram are used to show 
parallel paths. 



stm Playlist  Maintenance     

Idle

stm Connected

Copy Tracks Download Tracks

View Playlists

Create Playlist

View NewTracks

Modify Playlist

[loadNewTracks]

[retrieve]

[modifyplaylist]

[createplaylist]

[connect] [disconnect]

 
Figure 12 – State/Event behavior for Playlist maintenance 

The combination of use cases, interaction diagrams, state charts, and activity diagrams allow 
you to specify the dynamic behavior of the system in great detail.  Additionally, you can 
allocate Requirements to use cases, states, activities, and other model elements.   

This wraps up our discussion of Behavior Modeling, as we’ve completed all the steps in the 
Roadmap.  In the next chapter we’ll explore the Roadmap for defining system structure using 
blocks.  

 

 

 

 

 



Chapter 4 

Audio Player Structure  
Now that you’ve looked at Requirements and Behavior Modeling, it’s time to explore how you 
can use SysML and Enterprise Architect to describe the Structure of a system.  As usual, 
we’ll illustrate by describing the structure of our Audio Player example. 

Roadmap: Define Structure 
Figure 1 shows our Roadmap for modeling Structure.   

act Model System Block Structure

Define Blocks

Allocate Requirements 
to Blocks

Define Ports

Start Modeling Structure

Model the Problem 
Domain

ActivityFinal

 
Figure 1: Roadmap - Model Structure 

In SysML, the Block is the primary unit used to describe Structure.  Blocks can represent 
hardware or software elements.  Blocks can have Ports, which represent the inputs to, and 
outputs from, the Block.   



Modeling the Problem Domain 
Our Structural modeling roadmap starts with a familiar step to anyone who has seen ICONIX 
Process for Software- or Business-Domain Modeling.  When you build a domain model, you 
define a set of abstractions based upon things in the real world.  Figure 2 shows a domain 
model for our Audio Player.  As you can see, the domain model can include real-world 
elements that are external to our system, such as Clothing and the surrounding Environment. 

The purpose of the Problem Domain model is to describe the ‘System’ in which our Audio 
Player will operate under.  It’s a ‘system’ model used to describe the ‘context’ of our device 
design – from Requirements through to implementation. Figure 2 shows  which systems will 
interact together with our audio player in a concept known as a ‘System of Systems’ design. 

 

bdd Listening Domain     

«block»
Portable Audio 

Player

«block»
Env ironment::

Noise

«block»
Env ironment::

Weather

«block»
Env ironment

«block»
Clothing

Listener

«block»
ListeningDomain

The SysML block which 
describes the operating 
context of the Portable 
Audio Player
Double-click on it to view 
the Internal Block 
Diagram

The SysML block which
describes the design of 
the Portable Audio 
Player
Double-click on it to 
view the Internal Block 
Diagram

 
Figure 2 – Audio Player Domain Model 

The “black/filled diamond” association in Figure 2 represents a composition relationship, 
indicating (for example) that the Environment is “composed of” Noise and Weather. 

There are two levels of Block diagramming in SysML:  Block Definition Diagrams (BDDs), and 
Internal Block Diagrams (IBDs).  We’ll explore these in order in the next few sections of this 
chapter. 

Modeling Block Structure (Block Definition Diagrams) 
Figure 3 shows the “child” block definition diagram that details the high-level structure of our 
Audio Player.  The purpose of the BDD is to describe the composition of a block by relating 
nested blocks to each other using the composition relationship. 

As you can see, the Audio Player is composed of four main subsystems; Power, Processing, 
User Interface, and Transport.  Each of these is modeled as a block and further decomposed 
into sub-blocks.  

 



 bdd Design     

«block»
Portable Audio 

Player

«block»
PowerSubsystem

«block»
Transport 
Subsystem

«block»
USB - PL-2528

«block»
Processing 
Subsystem

«block»
Codec with 
Amplifier - 

TLV320AIC3107

«block»
Processor - 

TMS320VC5507

«block»
Panasonic Li-Ion 

CGR18650AF

«block»
Charging Unit - 

ADP2291

«block»
Li-Ion Battery 

Monitoring 
System - AD7230

«block»
User Interface

«block»
Touch-screen - 

TD035STEE1

«block»
Memory - 

MT42L32M64D2KH-25

«block»
Buttons

«block»
RS232

pwr tr

utr

proc

codeccpubat chrg

pmon

ui

tscr

mem

btn rstr

 
Figure 3 – Audio Player Block Structure 

Figure 4 shows the details of the Power Subsystem.  It’s composed of a Lithium-Ion Battery, 
a Charging Unit, and a Monitoring System.  Each of these blocks has a port which represents 
the electric current that operates the Audio Player. 

bdd Energy Flow Definition     

«block»
PowerSubsystem

«flowPort» charger :
FS_ChargeFlow

«block»
Charging Unit - ADP2291

«flowPort» charger :
FS_ChargeFlow

«flowPort» chargeMonitor :
FS_ChargeFlow

«block»
Li-Ion Battery Monitoring 

System - AD7230

«flowPort» chargeMonitor :
FS_ChargeFlow

«flowPort» chargeIndicator :
FS_ChargeFlow

«block»
Panasonic Li-Ion 

CGR18650AF

«flowPort» chargeIndicator :
FS_ChargeFlow

«flowSpecification»
FS_ChargeFlow

«flowProperties»
+ out energyLevel:  Energy
+ out tempLevel:  Temp
+ in energySupply:  Energy

+chrg +pmon +bat

 
Figure 4 – Audio Player Power Subsystem 



Modeling Block Internals (Internal Block Diagrams) 
Figure 5 shows a simple Internal Block Diagram (IBD) for the Power Subsystem.  The 
purpose of the IBD is to describe in detail how each of the block ‘parts’ are connected 
together to form the subsystem in question.  The IBD describes the ‘what and how’ of the 
block composition.  Each of the Parts represents a composition relationship in the 
corresponding BDD in the previous section. 

 

ibd Power SubSystem     

bat : Panasonic
Li-Ion

CGR18650AF

chrg : Charging
Unit - ADP2291

pmon : Li-Ion
Battery Monitoring
System - AD7230

pmon-bat

bat-charg

pmon-chrg

 
Figure 5 – Power Subsystem IBD 

The Internal Block Diagram specifies the connection of Parts within a Block.  As you can see 
in Figure 6, it’s possible to show multiple levels of nesting on a single IBD. 

 ibd Portable Audio Player     

pwr : PowerSubsystem ui : User Interface

tr : Transport Subsystem

proc : Processing Subsystem

cpu : Processor -
TMS320VC5507

codec : Codec with
Amplifier -

TLV320AIC3107

mem : Memory -
MT42L32M64D2KH-25

tscr : Touch-screen -
TD035STEE1 btn : Buttons

bat : Panasonic
Li-Ion

CGR18650AF

chrg : Charging
Unit - ADP2291

pmon : Li-Ion
Battery Monitoring
System - AD7230

pwr-tr

proc-ui

tr-proc

cpu-mem

cpu-codec

codec-mem

pmon-bat

bat-proc

bat-charg

ui-pwr

pmon-chrg

 
Figure 6 – Multi-level IBD showing interconnection of parts for the Audio Player 



Figure 7 shows the internals of the Processing Subsystem. As you can see, the CPU 
connects to a Memory Unit and a Codec/Amplifier. 

ibd Processing Subsystem     

cpu : Processor -
TMS320VC5507

codec : Codec with
Amplifier -

TLV320AIC3107

mem : Memory -
MT42L32M64D2KH-25

cpu-mem

cpu-codec

codec-mem

 
Figure 7 – Audio Player Processing Subsytem Block Internals 

Define Ports 
The final step in our Roadmap for Modeling Structure is to define the Ports.  Figure 8 
illustrates data flow between the User Interface, Processing Subsystem, Transport 
Subsystem, and the USB and RS-232 connectors on the Audio Player. 

 ibd Data Flow Definition     

«flowPort» sData :
FS_RS232

rstr : RS232

«flowPort» sData :
FS_RS232

«flowPort»
uData :FS_USB

utr : USB - PL-2528

«flowPort»
uData :FS_USB

«flowPort»
inst :FS_Data

tr : Transport Subsystem

«flowPort»
inst :FS_Data

«flowPort»
inst :FS_Data

ui : User Interface

«flowPort»
inst :FS_Data

«flowPort»
data :FS_Data

proc : Processing Subsystem

«flowPort»
data :FS_Data

 
Figure 8 – Audio Player Dataflow between Subsystems 

Figure 8 illustrates a type of Port called a flowPort.  The SysML flowPort is typed by a 
FlowSpecification which describes the properties and behavior associated with the port. 

 



A flowPort describes also the directionality of the items flowing through it (in/out/conjugate)  
SysML also includes standardPorts, which can either provide an interface or require an 
interface.  ItemFlows on the connectors (the arrows) describes what is flowing across the 
connections and through the ports. In the example above, it is Data which flows through 
these connections. 

Audio Player Hardware Components 
Finally, Figure 9 shows the hardware components of our Audio Player. 

 bdd Components     

«block»
Codec with 
Amplifier - 

TLV320AIC3107

«block»
Li-Ion Battery 

Monitoring 
System - AD7230

«block»
Memory - 

MT42L32M64D2KH-25

«block»
Panasonic Li-Ion 

CGR18650AF

«block»
Processor - 

TMS320VC5507

«block»
RS232

«block»
Touch-screen - 

TD035STEE1

«block»
USB - PL-2528

 
Figure 9 – Hardware Components are modeled as Blocks 

Modeling the hardware components as blocks makes it possible to allocate requirements to 
hardware.  Enterprise Architect makes it easy to allocate requirements to any of the model 
elements discussed in this chapter. 

This concludes our discussion of Blocks, Parts, and Ports.  We’ve built the foundation for our 
SysML model over the last 3 chapters where we covered Requirements, Behavior Modeling, 
and Structural Modeling.  The last 3 chapters of the book introduce more advanced aspects 
of SysML and powerful capabilities of Enterprise Architect System Engineering Edition.  In 
the next chapter we’ll introduce Constraints and Parametrics, and then proceed to hardware 
and software implementation. 

 

 

 

 

 

 

 

 

 



Chapter 5 

Audio Player Constraints and Parametrics 
One of the biggest differences between SysML and UML is the ability to simulate portions of 
a SysML model, based on mathematical and physical laws that describe key aspects of the 
system.  One of the biggest differences between Enterprise Architect Systems Engineering 
Edition and other SysML modeling tools is Enterprise Architect’s ability to do that simulation 
within the modeling tool, as opposed to simply interfacing to external simulators.  We’ll 
explore these capabilities in this chapter, starting, as usual, with our process roadmap. 

Constraints and Parametrics Roadmap 
Our constraints and parametrics roadmap has two sections. The first step, detailed in Figure 
1, is to define the Constraints and Parametrics.  The second step, shown in Figure 2, is to 
configure and run the Simulation.  This entire process can be done completely within the 
Enterprise Architect Systems Engineering Edition – speeding convergence towards an 
engineering solution that meets the Requirements.  We’ll spend the remainder of this chapter 
following the steps in our roadmap for the Audio Player. 

 
act Define Constraints and Parametrics

Define Constraint Blocks

Define Parametric 
Diagrams

Add Scripts to Constraint 
Blocks

Start defining constraints and parametrics

Simulate Parametric Models

 
Figure 1 – Roadmap: Define Constraints and Parametrics 

SysML parametric models support the engineering analysis of critical system parameters, 
including the evaluation of key metrics such as performance, reliability and other physical 
characteristics. They unite requirements models with system design models by capturing 
executable constraints based on complex mathematical relationships.  In SysML, parametric 



models can also be used to describe the actual requirements themselves (e.g. “The internal 
combustion engine shall deliver its torque in accordance with the ‘attached’ parametric 
characteristics.” The parametric can describe the ‘graph’ used to describe the torque curve 
for the engine). 

As you can see in Figure 1, defining parametric models using Enterprise Architect’s System 
Engineering Edition involves defining Constraint Blocks, Adding Scripts to the Constraint 
Blocks, and Defining Parametric Diagrams.  Once the parametric models are defined, they 
can be simulated, as shown in Figure 2. 

act Simulate

Configure Simulation

Assign Inputs to 
Parameters

Assign Values to Input 
Parameters

Specify Output Value 
Classes

Specify Reporting 
Options

Run the Simulation

Define Constraints and Parametrics

 
Figure 2 – Roadmap: Configure and Run Simulation 

Simulating a SysML parametric model is simply a matter of configuring the simulation, and 
then running it.  Having the ability to do all of this within Enterprise Architect makes it much 
faster and easier to make engineering tradeoffs in the model without having to break away 
from Enterprise Architect into another tool, and tightens the engineering feedback loop, 
making it much faster to converge on a solution that meets your project’s Requirements. 



Define Constraint Blocks 
To build a parametric model, you create a collection of SysML Constraint Blocks that formally 
describe the function of a constraint in a simulation model. Each Constraint Block contains 
properties that describe its input and output parameters, as well as a Script that describes the 
constraint’s executable component.  Figure 3 shows constraint blocks for some of the 
underlying mathematical functions that make our Audio Player work. 

bdd Constraint Blocks     

«constraintBlock»
SineWav e

output :
Real

t : Real

a : Real

f : Real

«constraintBlock»
Mult

output :
Real

b : Real

a : Real

«constraintBlock»
Add2

output :
Real

b : Real

a : Real

«constraintBlock»
Add3

output :
Real

b : Real

c : Real

a : Real

«constraintBlock»
Delay

output :
Real

input :
Real

«constraintBlock»
Buffer

output :
Real

input :
Realdelay :

Real

Audio Player Constraint Blocks
This diagram describes the various Constraint Blocks for the Audio Player model, and their associated behavior.

For a more detailed description of each constraint block, please consult the corresponding notes for each element. To view the behavior for a particular 
Constraint Block, right click on it and select SysML | Edit Element Script from the context menu.

A working example of the Constraint Block implementations can be found in the EchoDSP Parametric Modeling Example diagram.

EchoDSP Parametric Modeling ExampleSee Also:

 
Figure 3 – Constraint Blocks for Audio Player functions 

Next, create a SysML Constraint Block to contain the Parametric model you wish to simulate. 
In Figure 4 we’re going to simulate the Echo Digital Signal Processing (DSP) function. 

bdd Constraint Blocks     

«constraintBlock»
EchoDSP

outEchoOnly : Real

original : Real

amplitude : Sound

t : Time

output : Realf : Frequency

This package contains the constraint blocks that define expected characteristics of the Portable Audio Player. Each of these 
blocks contain simulatable parametric diagrams.

Constraint Blocks

EchoDSP Parametric Diagram

Constraints Model

See Also:

 
Figure 4 – Constraint Block for the Echo DSP function 



As you can see in Figure 4, our Echo function takes an original signal which is a sine wave 
amplitude and frequency, and delays that signal by some amount of time to produce an echo, 
then can output either the echo signal only, or a composite signal that adds the echo to the 
original signal.  To do this, we’ll make use of the “primitive” constraint blocks shown in Figure 
3 for Sinewave, Delay, Add, etc. 

Add Scripts to Constraint Blocks 
Once your constraint blocks have been created, it’s time to add Scripts. This is where you 
express the relationship / behavior of the constraint block as an executable script. In 
Enterprise Architect, right-click on each of the Constraint Blocks and select the SysML | Add 
Element Script context menu option to add a script to the constraint block.  

Figure 5 shows a script for the SineWave constraint block.  Similar scripts exist for the Buffer, 
Delay, Add, and other constraint blocks. 

 

  
Figure 5 – Script for the SineWave Constraint Block 

Attaching scripts to constraint blocks provides the underlying mathematical foundation for 
running simulations.  The precise behavior of each block is specified in equation form, using 
the inputs and outputs by name where appropriate, thus allowing the simulation to take place. 

 

 

Modeling Tip:  Enterprise Architect supports scripting in 
several languages 

Scripts can be written in either JavaScript, Jscript or VBScript, and the user can use any 
other assemblies, components, or APIs in their constraint block script.  

Note that simulating a constraint block requires the script across all constraint blocks to be 
written in the same language. 



Define Parametric Diagrams 
The Parametric model contains properties and occurrences of constraint blocks as Constraint 
Property elements, connected in a Parametric Diagram. 

 
par EchoDSP     

OutputsInputs

outEchoOnly
: Real

amplitude :
Sound

f : Frequency

original :
Real

output : Real

t : Time

 : SineWave output :
Real

t : Real

a : Real
f : Real

: Buffer output :
Real

input :
Real

: Add2 output :
Realb : Real

a : Real

: Buffer output :
Real

input :
Realoffset : Real : Delaydelay :

Real
output :

Real

input :
Real

: Mult

output :
Real

b : Real

a : Real

att : Real

Constraint Block Defini tionsSee Also:

This parametric diagram describes the 'Echo' audio effect used by the DSP.

1. The original sound source is created by the Constraint Block instance of :SineWave. 
2. The echo signal is then generated by scaling the original signal through :Mult and offsetting it by a prescribed amount of time steps in :Delay. 
3. Both the original signal and the echo signal are combined in :Add2 to create the actual output signal.

For more information on particular constraints, inputs or outputs, please consult their corresponding element notes.

To simulate this parametric model right-click on the diagram and select the SysML | Simulate Diagram... command

Example input parameter values:
amplitude: 5 (eg 5 decibels)
f: 0.5 (eg 2 cycles per second = 2 hertz)
t: 0 - 10 [0.05] (eg Simulate from 0 - 10 seconds calculating every 0.05 seconds)
att: 0.5 (eg echo signal will be half of the volume of the original signal)
offset: 1 (eg use the original signal value from 1 timestep ago to calculate the echo signal).

EchoDSP Parametric Modeling Example

 
Figure 6 – Parametric Diagram for Echo DSP 

The parametric diagram connects instances of primitive constraint blocks together to 
transform a set of inputs into a set of outputs.  In Figure 6, we’re taking an input SineWave, 
delaying and attenuating it, then adding that signal to the original input SineWave to produce 
an Echo effect.  You can adjust parameters like attenuation and offset, and simulate, until 
you’ve produced the desired effect.   

This brings us to the second portion of our roadmap, Configuring and Executing the 
Simulation. 



 

Configure Simulation 
 

Now that your constraint blocks, scripts, and parametrics have been defined, you’re ready to 
simulate, so let’s right-click within a Parametric Diagram and select the SysML | Simulate 
Diagram... context menu option. The Simulation Configuration dialog displays (see Figure 7). 

 

 
Figure 7 – Configuring the Simulation 

Fill out the Simulation Configuration dialog as follows: 

• Assign Inputs.  The Parameters panel lists all of the parameters that can be 
assigned input. Select each of the required parameters and click on the right arrow 
button to assign them as input. Parameters designated as input parameters are listed 
in the Inputs panel on the right. There must be at least one input parameter assigned 
for the simulation to execute. 

• Assign a set of values for each of the designated input parameters. For each 
input parameter, in the Input Values panel select one of the two possible value kinds: 
Discrete or Range. 

• Specify the classes of output value: Parameters or Variables. 

• Specify how the simulation results are to be reported. The Output Format panel 
enables you to choose how the simulation outputs the simulation data. Depending on 
your configuration selections, the simulation's results are either written to a comma-
separated CSV file or graphed in a 2-dimensional plot. 

Once you’ve completed configuring your simulation, you’re just about done.



 

Run the Simulation 
To simulate your SysML model, click on the OK button to execute.  

 
Figure 8 – Simulation results can be displayed directly within Enterprise Architect. 

While there is an option to export the simulation results to a CSV file, the ability to display 
simulation results directly within Enterprise Architect is one of the features that sets it apart 
from other SysML modeling tools.  Having everything in a single tool makes it quick and easy 
to tweak design parameters so that your system meets its required performance targets. 

In the next two chapters, we’ll explore how Enterprise Architect helps to transform a SysML 
model into both hardware and software solutions. 

 

 
 
 

 

 

 

 

 

 

 



Chapter 6 

Audio Player Hardware Implementation 
We discussed Behavioral Modeling with State Machines in Chapter 3.  In this Chapter, we’ll 
demonstrate how to generate Hardware Description Language (HDL) code for State 
Machines, using our Audio Player Example.  Then in Chapter 7 we’ll explore software 
implementation. 

Hardware Implementation Roadmap 
Our Roadmap for implementing hardware via generating HDL code provides three parallel 
paths: implementation via VHDL, Verilog, and System-C.  In all three cases, you’ll leverage 
Enterprise Architect’s unique ability to generate code from State Machines, and its powerful 
code-generation template capability. 

act Implement Hardware

Generate State Machines

Generate VHDL Generate Verilog Generate System C

  
Figure 1 – Hardware Implementation Roadmap with support for three popular  Hardware Description 
Langauges 

Audio Player Hardware Implementation 
As usual, we’ll illustrate our Roadmap using the Audio Player example.  In this case, we’ll 
explore the “Playback” operation and illustrate its implementation in VHDL, Verilog, and 
SystemC.  

Figure 2 shows the top level package organization of the “Implementation” part of our Audio 
Player Model.  We’ll explore the software package in the next chapter.  For the remainder of 
this chapter, we’ll discuss code generation for State Machines, and present three flavors of 
generated HDL code for Playback. 

 



pkg Implementation Model

Hardware

+ SystemC
+ Verilog
+ VHDL

Implementation Model

The "Implementation Model" demonstrates how UML can be employed to design both the 
hardware and software aspects of an embedded system.

The "Portable Audio Player" is constructed using computational logic circuits and firmware. 

This model contains a collection of Classes containing properties and behaviors. The behaviors 
are described using State Machines, Activities and Interactions (Sequences).

Software

+ C#
+ C++
+ Java
+ VBNet

(Double Click the Packages to view their contents)

 
Figure 2 – Top Level Implementation Package 

Let’s explore the Hardware package in more detail. 

pkg Hardware

SystemC

+ bool
+ PlayBack
+ Request

VHDL

+ PlayBack
+ Request
+ std_logic

Verilog

+ PlayBack
+ Request
+ wire

Behavioral Modeling

The models contained in these packages illustrate effective usage of various 
behavioral modeling constructs to design hardware components of an embedded 
system. 

In this example, state machine constructs like history state, entry / exit points, 
transition between submachine states are employed to model the "PlayBack" unit.

For more information on "Behavioral Modeling" refer to:

Behavioral Modeling - Hardware

 
Figure 3 – Enterprise Architect can generate HDL code for several languages. 

As you’ll see, all three of our State Machine implementations use a common design pattern.  
In each case, the Playback class contains a state machine with On and Off states.  The On 
state contains a child diagram (sub-state-machine) that contains the actual design.   

There are three steps in building an HDL State Machine model: 

1. Designate Driving Triggers  

2. Establish Port–Trigger Mapping  

3. Define Active State Logic  

Let’s look at each of these in turn. 



1. Designate Driving Triggers  
The top level State Machine diagram should be used to model the different modes of a 
hardware component, and the associated triggers that drive them, as shown in Figure 4.  

stm Controller

Off

On

A "change" trigger is deemed as an asynchronous 
trigger if the following two conditions are satisfied:
1. There is a transition from the actual Submachine 
state ( which encapsulates the actual logic) triggered by 
it.
2. and the target state of that transition has a self 
transition triggered by the same trigger.

This diagram shows how a hardware component is expected to be modeled.
1. The "Off" state represents the reset state of the system
2. The "On" state represents the active state of the system, and the actual 
logic is expected to be here

The trigger to drive the actual system ( 
clock ) is of type "time" and is associated 
with the transition from the reset state(Off 
in this case) to the Submachine State 

The Submachine state, that is intended to 
contain the actual design

For more information on State Machine 
modeling for Hardware languages, refer to

State Machine modeling for HDL

keypress

off

off

 
Figure 4 – The top level state machine is used to designate operating modes and driving triggers 

There are several type of triggers. 

Asynchronous Triggers 
Asynchronous triggers should be modeled according to the following pattern: 

• The trigger should be of type Change (specification: true / false). 

• The active state (Submachine State) should have a transition trigger by it.  

• The target state of the triggered transition should have a self transition with the same 
trigger. 

Clock 
A trigger of type time, which triggers the transitions to the active state (Submachine State) is 
deemed as the Clock. The specification of this trigger should be specific to the target 
language.  

Specification Trigger Language 
Type 

Positive Edge Negative Edge 
Triggered Triggered 

VHDL rising_edge falling_edge   

Verilog posedge negedge Time 

SystemC positive negative 

Figure 5 - Clock Trigger Specifications 



2. Establish Port – Trigger Mapping 
After successfully modeling the different operating modes of the component, and the triggers 
associated with them, you must associate the triggers with the component's ports as shown 
in Figure 6. 

 
Figure 6 – Dependency relationships are used to map ports to triggers 

3. Define Active State Logic  
The first two aspects, above, put in place the preliminaries required for efficient interpretation 
of the hardware components. The actual State Machine logic is now modeled within the 
Active (Submachine) state. 

 
Figure 7 – Active logic is specified on the child submachine for the Active state 

We’ll explore Step 3 in some detail for VHDL, Verilog, and SystemC. 



Implementation in VHDL 
Figure 8 shows a class diagram for Playback, with input and output ports designated.  The 
design of the Playback functionality is contained in a multi-level state machine that’s nested 
within the PlayBack class. 

class VHDL

Supporting Elements

«input»
off

«input»
keypress

PlayBack

- selection:  Request
- repeat:  boolean
- foundMedia:  boolean

«input»
off

«input»
keypress

off

keypress

std_logic

The "Playback" class models a hardware 
component to control audio playback of the player

The State machine in this example i l lustrates modeling timed triggers
(clock) and asynchronous triggers(reset), transitions to history states, entry
/ exit points,  transitions between SubMachineStates, etc.

To visualize the expected pattern to model a hardware system, refer to:

«enumeratio...
Request

 Rec
 Append
 Play
 Pause
 Idle

Classifier used to set 
the Port's "type"

A dependency relationship is 
used to represent association 
between ports and their triggers.

Hardware System - Expected pattern

 
Figure 8 – VHDL code will be generated from substates nested within the Playback class 



stm On

Idle

PlayBack

Pause

Play

LoadPlaylist

+ entry / retrievePlayList
//Do Retrieve Play 
List

+ do / sortPlayList
//Do Sort Play List

SearchExternalMedia

SearchLocalDriv e

Decode

+ do / decodeTrack
//Do Decode Track

SearchOpticalDriv e

Stream
[foundMedia]

[foundMedia]

[repeatTrack] [foundMedia]

History

Stream

LoadPlaylist

+ entry / retrievePlayList
//Do Retrieve Play 
List

+ do / sortPlayList
//Do Sort Play List

[selection ==
Play]

[selection == Pause]

For more information on state machine diagrams, refer to:

State Machine Diagrams

[selection ==
Play]

/selection =
Idle

 
Figure 9 – State Machine for Playback 

The State Machine shown in Figure 9 is essentially the same for the Verilog and SystemC 
implementations.  The differences are so minor that we won’t repeat the diagram in the 
upcoming sections on those HDLs. 



VHDL Code Generation and Reverse Engineering 
 

An Overview of VHDL 

Here’s a brief summary of VHDL that we extracted from Wikipedia.6 

VHDL (VHSIC (Very High Speed Integrated Circuits) hardware description language) is 
commonly used as a design-entry language for field-programmable gate arrays and 
application-specific integrated circuits in electronic design automation of digital circuits. 

VHDL was originally developed at the behest of the US Department of Defense in order to 
document the behavior of the ASICs that supplier companies were including in equipment. 
That is to say, VHDL was developed as an alternative to huge, complex manuals which were 
subject to implementation-specific details. 

The idea of being able to simulate this documentation was so obviously attractive that logic 
simulators were developed that could read the VHDL files. The next step was the 
development of logic synthesis tools that read the VHDL, and output a definition of the 
physical implementation of the circuit. Modern synthesis tools can extract RAM, counter, and 
arithmetic blocks out of the code, and implement them according to what the user specifies. 
Thus, the same VHDL code could be synthesized differently for lowest area, lowest power 
consumption, highest clock speed, or other requirements. 

VHDL is a fairly general-purpose language, and it doesn't require a simulator on which to run 
the code. There are many VHDL compilers, which build executable binaries. It can read and 
write files on the host computer, so a VHDL program can be written that generates another 
VHDL program to be incorporated in the design being developed. Because of this general-
purpose nature, it is possible to use VHDL to write a testbench that verifies the functionality of 
the design using files on the host computer to define stimuli, interacts with the user, and 
compares results with those expected. 

The key advantage of VHDL when used for systems design is that it allows the behavior of 
the required system to be described (modeled) and verified (simulated) before synthesis tools 
translate the design into real hardware (gates and wires). 
Another benefit is that VHDL allows the description of a concurrent system (many parts, each 
with its own sub-behavior, working together at the same time). VHDL is a Dataflow language, 
unlike procedural computing languages such as BASIC, C, and assembly code, which all run 
sequentially, one instruction at a time. 

A final point is that when a VHDL model is translated into the "gates and wires" that are 
mapped onto a programmable logic device such as a CPLD or FPGA, then it is the actual 
hardware being configured, rather than the VHDL code being "executed" as if on some form 
of a processor chip. 

                                                      
6 http://en.wikipedia.org/wiki/VHDL 
 



Enterprise Architect supports round-trip engineering of VHDL, using the following Stereotypes 
and Tagged Values.   

Stereotypes 
Stereotype Applies To Corresponds To 

architecture Class An architecture 

asynchronous Method An asynchronous process 

configuration Method A configuration 

enumeration Inner 
Class 

An enum type 

entity Interface An entity 

part Attribute A component instantiation 

port Attribute A port 

signal Attribute A signal declaration 

struct Inner 
Class 

A record definition 

synchronous Method A synchronous process 

typedef Inner 
Class 

A type or subtype definition 

Figure 10 – VHDL Stereotypes used by Enterprise Architect 

Tagged Values 
Tag Applies To Corresponds To 

isGeneric Attribute 
(port) 

The port declaration in a generic 
interface 

isSubType Inner Class 
(typedef) 

A subtype definition 

kind Attribute 
(signal) 

The signal kind (e.g. register, bus) 

mode Attribute 
(port) 

The port mode (in, out, inout, buffer, 
linkage) 

portmap Attribute 
(part) 

The generic / port map of the 
component instantiated 

sensitivity Method 
(synchronous) 

The sensitivity list of a synchronous 
process 

type Inner Class 
(typedef) 

The type indication of a type 
declaration 

typeNameSpace Attribute 
(part) 

The type namespace of the instantiated 
component 

Figure 11 – VHDL Tagged Values used by Enterprise Architect 

Figures 12 and 13 show a portion of the generated code produced by Enterprise Architect. 



 
Figure 12 – Enterprise Architect generates VHDL code from a state machine 

Note that the VHDL code generated is extremely detailed and robust. 

 
Figure 13 – Enterprise Architect’s state-machine code generator, combined with SysML parts and ports, and 
VHDL stereotypes and tagged values, produces a very complete implementation. 



Implementation in Verilog 
class Verilog

«input»
off

«input»
keypress

PlayBack

- selection:  reg [0..3] {ordered}
- repeatTrack:  reg
- foundMedia:  reg

«input»
off

«input»
keypress

off

keypress

wire

«enumeratio...
Request

 Rec = 0
 Append = 1
 Play = 2
 Pause = 3
 Idle = 4

Supporting Elements

The "Playback" class models a hardware 
component to control audio playback of the player

The State machine in this example i l lustrates modeling timed triggers
(clock) and asynchronous triggers(reset), transitions to history states, entry
/ exit points,  transitions between SubMachineStates, etc.

To visualize the expected pattern to model a hardware system, refer to:

Classifier used to set 
the Port's "type"

A dependency relationship is 
used to represent association 
between ports and their triggers.

Hardware System - Expected pattern

 
Figure 14 – Playback class diagram for Verilog implementation 

 

An Overview of Verilog 
7We consulted Wikipedia again  for an overview of Verilog. 

In the semiconductor and electronic design industry, Verilog is a hardware description 
language (HDL) used to model electronic systems. Verilog HDL, not to be confused with 
VHDL, is most commonly used in the design, verification, and implementation of digital logic 
chips at the Register transfer level (RTL) level of abstraction. It is also used in the verification 
of analog and mixed-signal circuits. 

Hardware descr iption languages, such as Verilog, differ from software programming 
languages because they include ways of describing the propagation of time and signal 
dependencies (sensitivity). There are two assignment operators, a blocking assignment (=), 
and a non-blocking (<=) assignment. The non-blocking assignment allows designers to 
describe a state-machine update without needing to declare and use temporary storage 
variables. Since these concepts are part of the Verilog's language semantics, designers could 

                                                      
7 http://en.wikipedia.org/wiki/Verilog 



quickly write descriptions of large circuits, in a relatively compact and concise form. At the 
time of Verilog's introduction (1984), Verilog represented a tremendous productivity 
improvement for circuit designers who were already using graphical schematic-capture, and 
specially-written software programs to document and simulate electronic circuits. 

A Verilog design consists of a hierarchy of modules. Modules encapsulate design hierarchy, 
and communicate with other modules through a set of declared input, output, and 
bidirectional ports. Internally, a module can contain any combination of the following: 
net/variable declarations (wire, reg, integer, etc.), concurrent and sequential statement blocks 
and instances of other modules (sub-hierarchies). Sequential statements are placed inside a 
begin/end block and executed in sequential order within the block. But the blocks themselves 
are executed concurrently, qualifying Verilog as a Dataflow language. 

Verilog's concept of 'wire' consists of both signal values (4-state: "1, 0, floating, undefined"), 
and strengths ( strong, weak, etc.) This system allows abstract modeling of shared signal-
lines, where multiple sources drive a common net. When a wire has multiple drivers, the 
wire's (readable) value is resolved by a function of the source drivers and their strengths. 

A subset of statements in the Verilog language is synthesizable. Verilog modules that 
conform to a synthsizeable coding-style, known as RTL (register transfer level), can be 
physically realized by synthesis software. Synthesis-software algorithmically transforms the 
(abstract) Verilog source into a netlist, a logically-equivalent description consisting only of 
elementary logic primitives (AND, OR, NOT, flipflops, etc.) that are available in a specific 
VLSI technology. Further manipulations to the netlist ultimately lead to a circuit fabrication 
blueprint (such as a photo mask-set for an ASIC, or a bitstream-file for an FPGA). 

 

Enterprise Architect supports round-trip engineering of Verilog code, using the following 
Stereotypes and Tagged Values.   

Stereotypes 
Stereotype Applies To Corresponds To 

asynchronous Method A concurrent process 

enumeration Inner 
Class 

An enum type 

initializer Method An initializer process 

module Class A module 

part Attribute A component instantiation 

port Attribute A port 

synchronous Method A sequential process 

Figure 15 – Verilog Stereotypes used by Enterprise Architect 

 

 

 

 
 



Tagged Values 
Tag Applies To Corresponds To 

kind Attribute 
(signal) 

The signal kind (such as register, 
bus) 

mode Attribute 
(port) 

The port mode (in, out, inout) 

Attribute 
(part) 

The generic / port map of the 
component instantiated 

Portmap 

The sensitivity list of a sequential 
process 

sensitivity Method 

type Attribute The range or type value of an 
attribute 

Figure 16 – Verilog Tagged Values used by Enterprise Architect 

 

 
Figure 17 – Verilog code generated by Enterprise Architect 



Implementation in SystemC 
class SystemC

Supporting Elements

«input»
off

«input»
keypress

«sc_module»
PlayBack

- selection:  Request
- bRepeat:  bool
- bFoundMedia:  bool

bool

«input»
off

«input»
keypress

off

keypress

«enumeratio...
Request

 Rec
 Append
 Play
 Pause
 Idle

Classifier used to set 
the Port's "type"

The "Playback" class models a hardware 
component to control audio playback of the player

The State machine in this example il lustrates modeling timed triggers
(clock) and asynchronous triggers(reset), transitions to history states, entry
/ exit points,  transitions between SubMachineStates, etc.

To visualize the expected pattern to model a hardware system, refer to:

A dependency relationship is 
used to represent association 
between ports and their triggers.

PlayBack

Hardware System - Expected pattern

 
Figure 18 – Playback class diagram for SystemC implementation 

 

An Overview of SystemC 
8We’ve consulted Wikipedia one final time  for our overview of SystemC. 

SystemC is a set of C++ classes and macros which provide an event-driven simulation kernel 
in C++ (see also discrete event simulation). SystemC makes it possible to simulate 
concurrent processes, each described using plain C++ syntax. SystemC processes can 
communicate in a simulated real-time environment, using signals of all the datatypes offered 
by C++, some additional ones offered by the SystemC library, as well as user defined. In 
certain respects, SystemC deliberately mimics the hardware description languages VHDL 
and Verilog, but is more aptly described as a system- level modeling language. 

SystemC is used for system-level modeling, architectural exploration, performance modeling, 
software development, functional verification, and high-level synthesis. SystemC is often 
associated with Electronic system level (ESL) design, and with Transaction-level modeling 
(TLM). 

                                                      
8 http://en.wikipedia.org/wiki/System_C 



SystemC is defined and promoted by OSCI, the Open SystemC Initiative.  OSCI also provide 
an open-source proof-of-concept simulator (sometimes incorrectly referred to as the 
reference simulator), which can be downloaded from the OSCI website9.  

SystemC has semantic similarities to VHDL and Verilog, but may be said to have a 
syntactical overhead compared to these when used as a hardware description language. On 
the other hand, greater freedom of expressiveness is offered in return, like object oriented 
design partitioning and template classes. Although strictly a C++ class library, SystemC is 
sometimes viewed as being a language in its own right. Source code can be compiled with 
the SystemC library (which includes a simulation kernel) to give an executable. The 
performance of the OSCI open-source implementation is typically less optimal than 
commercial VHDL/Verilog simulators when used for register transfer level simulation. 

SystemC version 1 included common hardware description language features such as 
structural hierarchy and connectivity, clock cycle accuracy, delta cycles, 4-state logic (0, 1, X, 
Z), and bus resolution functions. From version 2 onward, the focus of SystemC has moved to 
communication abstraction, transaction-level modeling, and virtual platform modeling. 
SystemC version 2 added abstract ports, dynamic processes, and timed event notifications. 
 

Enterprise Architect supports round-trip engineering of SystemC code, using the following 
Stereotypes and Tagged Values.   

 

Stereotypes 
Stereotype Applies To Corresponds To 

delegate Method A delegate. 

enumeration Inner 
Class 

An enum type. 

friend Method A friend method. 

property Method A property definition. 

sc_ctor Method A SystemC constructor. 

sc_module Class A SystemC module. 

sc_port Attribute A port. 

sc_signal Attribute A signal 

struct Inner 
Class 

A struct or union. 

Figure 19 – SystemC stereotypes used by Enterprise Architect 

 
 

 
 

 

                                                      
9 http://www.systemc.org/home/ 



Tagged Values 
Tag Applies To Corresponds To 

kind Attribute 
(Port) 

Port kind (clocked, fifo, master, 
slave, resolved, vector). 

mode Attribute 
(Port) 

Port mode (in, out, inout). 

The Inheritance list of a method 
declaration. 

overrides Method 

The exception specification of a 
method. 

throw Method 

Figure 20 – SystemC tagged values used by Enterprise Architect 

 

 
Figure 21 – SystemC code generated by Enterprise Architect 

 

 

 

 

 

 

 

 



Chapter 7 

Audio Player Software Implementation  
Enterprise Architect contains numerous features to help with code generation and reverse 
engineering, and also integrates closely with the Visual Studio and Eclipse development 
environments via its MDG Integration technology. Many of Enterprise Architect’s code 
engineering capabilities, including forward and reverse engineering, and Enterprise 
Architect’s powerful code template framework, are described in detail in the Enterprise 

10Architect for Power Users multimedia tutorial.   This chapter will focus in on Sparx Systems’ 
unique capability for Behavioral Code Generation, and on the MDG Integration capability.  
Figure 1 shows our Roadmap for Software Implementation. 

Software Implementation Roadmap 
act Implement Software

Generate Functional Code 
from Activ ity Diagrams

Generate Functional Code 
from State Machines

Build in Visual Studio 
using MDG Integration

Build in Eclipse using 
MDG Integration

 
Figure 1 – Roadmap for Software Implementation 

Behavioral Models can be code generated 
Enterprise Architect enables you to define an element’s behavior through the element’s 
operations and parameters. You can also define the behavior of more specific behavioral 
elements such as Activities, Interactions, Actions and Interaction Occurrences.   

In this chapter, we’ll explore how to transform behavior models of the type that you saw in 
Chapter 3 into executable source code in C#, C++, Java, and Visual Basic.  Figure 2 shows 
the top level package diagram from our audio player example, which we’ll use to illustrate 
behavioral code generation. 

                                                      
10 Enterprise Architect for Power Users multimedia tutorial: 
www.iconixsw.com/EA/PowerUsers.html 

http://iconixsw.com/EA/PowerUsers.html
http://iconixsw.com/EA/PowerUsers.html


pkg Software

C++

+ IO

Jav a

+ IO

VBNet

+ IO

Behavioral Modeling

Models in this package illustrates usage of various commonly used behavioral constructs. 

States' behaviors to invoke another behavior, Activity diagram constructs like call actions, 
patterns to model control statements, loops and Sequence diagram constructs like 
synchronous messages, return messages, combined fragments, etc are employed to create
the model.

For more information on "Behavioral Modeling" refer to:

Double cl ick packages to view their contents

C#

+ DataProcessor
+ StreamWriter

Behavioral Modeling - Software

 
Figure 2 – Audio Player example organization for behavioral code generation 

In addition to its long-standing ability to generate code for software classes, Enterprise 
Architect supports generation of code from three UML behavioral modeling behavioral 
paradigms: 

• State Machine diagrams  

• Interaction diagrams  

• Activity diagrams 

We’ll explore behavioral code generation in considerable detail in this chapter, and it should 
be an interesting ride to some places you’ve probably never been to before, so fasten your 
seat belts.  We’ll start off with a look at generating C# code from state machines and activity 
diagrams, for the DataProcessor class from our audio player. 

Figure 3 shows a class diagram for the DataProcessor class, which contains a nested state 
machine for Searching External Media, and a nested Activity Diagram for Appending to 
a Buffer.  Figure 4 shows the nesting of behaviors on a Composite Structure Diagram. 



Data Processor: C# code gen from State and Activity 
Diagrams 

class C#

Supporting Elements

DataProcessor

The DataProcessor class reads data from 
external inputs, and processes it.

- bPoll:  bool
- bDataRead:  bool
- iBytesReceived:  int
- bValid:  bool
- sw:  StreamWriter

StreamWriter

+ doReadUSB() : void
+ doReadSerialPort() : void
+ readNextByte() : void
+ interruptListener() : void

Placeholder for C# 
System.IO.StreamWriter class

The State machine in this example i llustrates modeling transitions to 
history states, entry / exit points,  transitions between 
SubMachineStates, etc.

The Activity diagrams shows modeling multithreaded applications using 
fork / join, invoking other behaviors using Call actions, etc.

DataProcessor

 
Figure 3 – DataProcessor Class Diagram 

composite structure DataProcessor

ActivitiesState Machines

SearchExternalMedia doAppendToBuffer

Elements in this Class - Double click the elements or use the hyperlinks 
to navigate to the underlying model

For more information on Code Generation from State Machine Diagrams refer to:

Code Generation - State Machine Diagrams

For more information on Code Generation from Activity Diagrams refer to:

Code Generation - Activity Diagrams

For more information on Code Generation from Sequence Diagrams refer to:

Code Generation - Sequence Diagrams

SearchExternalMedia doAppendToBuffer

DataProcessor::USBDev ice

+ CLEAR_FEATURE() : void
+ GET_STATUS() : void
+ SET_ADDRESS(double) : void
+ SET_FEATURE(int) : void
+ GET_CONFIGURATION(int) : string
+ GET_DESCRIPTOR(int) : string
+ SET_CONFIGURATION(long) : void
+ SET_DESCRIPTOR(long) : void
+ RESET() : void

 
Figure 4 – Composite Structure Diagram illustrating the nested behaviors of DataProcessor 



Behavioral code generation in Enterprise Architect requires the behavioral diagrams to be 
nested within the “Active Class” (the class that gets generated).  Figure 5 shows the 
organization in Enterprise Architect’s project browser. 

 
Figure 5 – Behaviors to be code generated are nested within a parent class 

Behavioral Code Generation from State Machines 

A State Machine that’s nested within a Class generates the following constructs to enable 
effective execution of the States’ do, entry and exit behaviors and also to code the 
appropriate transition’s effect when necessary. 

Enumerations 
StateType – comprises an enumeration for each of the States contained within the State 
Machine  

TransitionType – comprises an enumeration for each transition that has a valid effect 
associated with it, e.g. ProcessOrder_Delivered_to_ProcessOrder_Closed  

CommandType – comprises an enumeration for each of the behavior types that a State can 
contain (Do, Entry, Exit).  

Attributes 
currState:StateType – a variable to hold the current State's information  

nextState:StateType – a variable to hold the next State's information, set by each State's 
transitions accordingly  

currTransition:TransitionType – a variable to hold the current transition information; this is 
set if the transition has a valid effect associated with it  

transcend:Boolean – a flag used to advise if a transition is involved in transcending between 
different State Machines (or Submachine states)  

xx_history:StateType – a history variable for each State Machine/Submachine State, to hold 
information about the last State from which the transition took place.  

Operations 
StatesProc – a States procedure, containing a map between a State's enumeration and its 
operation; it de-references the current State's information to invoke the respective State's 
function  

TransitionsProc – a Transitions procedure, containing a map between the Transition's 
enumeration and its effect; it invokes the respective effect  



<<State>> – an operation for each of the States contained within the State Machine; this 
renders a State's behaviors based on the input CommandType, and also executes its 
transitions  

initializeStateMachine – a function that initializes all the framework-related attributes  

runStateMachine – a function that iterates through each State, and executes their behaviors 
and transitions accordingly.  

 

Figure 6 shows the state machine for SearchExternalMedia, and you can see a bit of the 
automatically generated code for the Do, Entry, and Exit states in Figure 7. The complete 
behavior of the state machine is generated automatically. 

stm SearchExternalMedia

IO

ReadSerialPorts

+ do / Do Read SerialPort
doReadSerialPort()

ReadUSBPorts

+ do / Do Read USB
doReadUSB()

ProcessingUnit

AppendToBuffer

+ do / DoAppendToBuffer
doAppendToBuffer()

DecodeCommand

+ do / DoDecodeCommand
//Decode Command

PollInputPorts

+ do / DoPollInputPorts
//Poll Input Ports

Use States' behaviors to invoke the 
necessary behavior (operation , 
activity , interaction)

[bValid == true]
/iBytesReceived
= 0

[bPoll==true]

PollInputPorts

+ do / DoPollInputPorts
//Poll Input Ports

Idle

ReadSerialPorts

+ do / Do Read SerialPort
doReadSerialPort()

For more information on Code Generation from State 
Machine Diagrams refer to:

Code Generation - State Machine Diagrams

ReadUSBPorts

+ do / Do Read USB
doReadUSB()

[bDataRead==true] [bDataRead==true]

 
Figure 6 – State Machine for Searching External Media 

The ProcessingUnit Polls its Input Ports, Appends to a Buffer, and Decodes Commands.  
We’ll see the nested activity diagram and generated code for AppendToBuffer in Figures 8 
and 9.  But first, Figure 7 shows generated code for the state machine shown in Figure 6. 



 

Figure 7 – Enterprise Architect generates Behavioral Code for State Machines 

Behavioral Code Generation from Activity Diagrams 

Enterprise Architect uses a system engineering graph optimizer to analyze an activity 
diagram and render it into various code-generatable constructs. The constructs are also 
transformed into one of the various action types (if appropriate), similar to Interaction diagram 
constructs.  

Conditional Statements 
To model a conditional statement, you use Decision/Merge nodes. Alternatively, you can 
imply Decisions/Merges internally. The graph optimizer expects an associated Merge node 
for each Decision node, to facilitate efficient tracking of various branches and analysis of the 
code constructs within them.  

Invocation Actions (Call Operation Action, Call Behavior Action)  
Call Actions are handled more efficiently. Each action has arguments relating to the 
parameters of the associated behavior (use the Synchronize button of the Arguments dialog 
to synchronize arguments and parameters). 

Atomic Actions  
Atomic actions contain implementation-specific statements that are rendered ‘in line’ as a 
sequence of code statements in a procedure. 

Loops 

Enterprise Architect's system engineering graph optimizer is also capable of analyzing and 
identifying loops. An identified loop is internally rendered as an Action Loop, which is 
translated by the EASL code generation macros to generate the required code. 

Figure 8 shows an activity diagram for AppendToBuffer, and Figure 9 shows a snip of the 
resulting C# code. 



act doAppendToBuffer

Initialize Buffer
    if(sw == null)  sw = System.IO.File.CreateText("c:\\temp\\dump.txt")    

Sleep
    System.Threading.Thread.Sleep(1000)    

CallReadNextByte
(DataProcessor::readNextByte)

Write To Buffer
    sw.WriteLine(sNextByte)    

New Byte
    string sNextByte = ""    

Decrement
    iBytesReceived--    

Sleep
    System.Threading.Thread.Sleep(1000)    

Use Fork/Join to model parallel execution

CallInterruptListener
(DataProcessor::interruptListener)

For more information on Code Generation from Activity Diagrams refer to:

Code Generation - Activity Diagrams

A Loop pattern

[iBytesReceived > 0]

 
Figure 8 – Activity Diagram for AppendToBuffer 

 

Figure 9 – Generated C# code for AppendToBuffer 

Once again, the full detail of the behavior detailed on the diagram is automatically 
generated into code. 



IO – Code generation in C++, Java, and VB.Net 
In this section, we’ll look inside the IO class and explore behavioral code generation in C++, 
Java, and VB.Net.  Figure 10 shows the class diagram for the C++ branch of the model; 
similar diagrams (not shown here) appear in the Java and VB packages. 

class C++

IO

- selection:  Request
- bDataRead:  bool
- iBytesReceived:  int
- bValid:  bool

+ SetLastError(int) : void
+ SetNoOfBytesReceived(int) : void

IO

The IO class polls different ports for availabil ity of data 
and input them accordingly

The simple state machine in this model explains the usage of states' 
behaviors(do/entry/exit) to invoke another behavior(activity, operation , 
interaction, etc).

The Activity diagram explains, invoking other behaviors using Call actions,
modeling conditional statements, loops, etc.

The Sequence diagram explains usage of synchronous messages, return 
messages, using combined fragments to model loops, breaks, conditional 
statements, using interaction occurrence to invoke another sequence, their 
argument-parameter mapping,etc.

 
Figure 10 – IO class diagram 

As with the DataProcessor example, all behaviors which we’d like to code generate are 
nested within the IO class.   

composite structure IO

SearchExternalMedia

ActivitiesState Machines Interactions

sFileName :
String

createPort

sFileName :
String

doReadSerialPort

iNoOfBytes :Integer

readPort

iNoOfBytes :Integer

int doReadUSB

int setupUSB(Boolean)

For more information on Code Generation from State Machine Diagrams refer to:

Code Generation - State Machine Diagrams

For more information on Code Generation from Activity Diagrams refer to:

Code Generation - Activity Diagrams

For more information on Code Generation from Sequence Diagrams refer to:

Code Generation - Sequence Diagrams

Elements in this Class - Double click the elements or use the hyperlinks 
to navigate to the underlying model

IO::USBDev ice

+ CLEAR_FEATURE() : void
+ GET_STATUS() : void
+ SET_ADDRESS(double) : void
+ SET_FEATURE(int) : void
+ GET_CONFIGURATION(int) : unsigned char
+ GET_DESCRIPTOR(int) : unsigned char
+ SET_CONFIGURATION(unsigned long) : void
+ SET_DESCRIPTOR(unsigned long) : void
+ RESET() : void

createPort

doReadParallelPort

readPort

SearchExternalMedia

doReadUSB

setupUSB

 
Figure 11 – Nested Behaviors of IO 



In this section we’ll explore code generation from Interaction, State, and Activity Diagrams.  
Figure 12 shows the sequence diagram for Setting up the USB port, and Figure 13 shows 
how to Read the USB port.  Figure 14 shows a fragment of the automatically generated C++ 
code. 

 

Code Generation from Sequence Diagrams 

Code generation from sequence diagrams that are nested within a Class uses Enterprise 
Architect's system engineering graph optimizer to transform the diagram into code. 
Messages and Fragments are identified as one of the several action types based on their 
functionality, and the EASL code generation templates are used to render their behavior 
accordingly. For example: 

A Message that invokes an operation is identified as an Action Call and is rendered 
accordingly  

Combined Fragments are identified by their types and conditions; for instance, an Alt 
fragment is identified as an Action If, and a loop fragment is identified as an Action Loop.  

 
sd setupUSB

:IO pUSBDevice
:USBDevice

loop 

[iBytesReceived < 8]

break 

[iBytesReceived >=8]

For more information on Code Generation from Sequence Diagrams refer to:

Code Generation - Sequence Diagrams

RESET()

GET_DESCRIPTOR(1) :unsigned char

SetNoOfBytesReceived(iBytesReceived++)

GET_DESCRIPTOR(1) :unsigned char

SetNoOfBytesReceived(iBytesReceived++)

SET_ADDRESS(11)

GET_DESCRIPTOR(18) :unsigned char

GET_CONFIGURATION(9) :unsigned char

SET_CONFIGURATION(255)

bValidDevice = true()

 
Figure 12 – Sequence diagram for setup USB showing a loop fragment 



sd doReadUSB

:IO pUSBDevic
:USBDevice

ref

setupUSB(arg_bValidDev ice: bValidDev ice)

alt 

[bValid]

For more information on Code Generation from Sequence Diagrams refer to:

Code Generation - Sequence Diagrams

readPort(255)

bDataRead = false()

 
Figure 13 – Reading the USB Port 

 

 
Figure 14 – Generated C++ code for IO 

 
 

 



Generating VB.Net and Java from State and Activity Diagrams 
Hopefully by now you’re getting the idea that Enterprise Architect can generate behavioral 
code in just about any language from state, activity, and sequence diagrams.  We’ll illustrate 
this first by showing VB.Net code (Figure 16) for the Search External Media state machine 
(Figure 15). 

stm SearchExternalMedia

ReadSerialPorts

+ do / Do Read SerialPort
doReadSerialPort()

ReadUSBPorts

+ do / Do Read USB
doReadUSB()

Final

Use States' behaviors to invoke the 
necessary behavior (operation , 
activity , interaction)

For more information on Code Generation from State 
Machine Diagrams refer to:

Code Generation - State Machine Diagrams

[bDataRead == false]

[bDataRead == false]

 
Figure 15 – State Machine for Searching External Media 

 
Figure 16 – VB.Net behavioral code, automatically generated from the state machine above 



Finally, we’ll wrap up this section by showing the activity diagram and generated Java code 
for Read Serial Port in Figures 17 and 18. 

act doReadSerialPort

CallCreatePort :
createPort arg_caption :

sFileName

CallSetLastError
(IO::SetLastError) arg_iErrNo

CallReadPort :
readPort

arg_iNoOfBytes :iNoOfBytes

DataReadSuccess
    bDataRead = true    

ReadComplete
    //ReadComplete    

DataReadFail
    bDataRead = false    

For more information on Code Generation from Activity Diagrams refer to:

Code Generation - Activity Diagrams

Behavior Calls shall be used to 
invoke another behavior.

The arguments shall be one-to-one 
mapped with the associated behaviors 
parameter. For more information refer:

Behavior Call Arguments

Behavior Calls

[bValid ==
true]

[bDataRead == false]

 
Figure 17 – Activity Diagram for Reading the Serial Port 

 
Figure 18 – Behaviorally generated Java code for Read Serial Port 



Customizing The Code Generator 
Enterprise Architect uses a template-driven approach to code generation, and provides an 
editor for tailoring the code templates. 

Enterprise Architect’s code templates specify the transformation from UML elements to the 
various parts of a given programming language. The templates are written as plain text with a 
syntax that shares some aspects of both mark-up languages and scripting languages. 

Figure 19 shows the Code Template Editor being used to tailor how C# code is generated. 

 
Figure 19 – ActionIf Code template for C# 

Code Templates are written as plain text. The template syntax centers on three basic 
constructs: 

• Literal Text  

• Macros  

• Variables   

Templates can contain any or all of these constructs. 

 



Integrating Models and Code in your favorite IDE 
Since the beginning of modeling time, the gap (sometimes a chasm) between models and 
code has always been problematic.  Models, the argument goes, don’t represent reality… 
only the code represents reality… therefore the model must be worthless, and we should just 
skip modeling and jump straight to code. 

Those who have used this argument to avoid modeling probably felt quite safe in doing so 
because nobody has ever managed to make “reverse engineering” or “round-trip 
engineering” a seamless process… until now.  But that’s exactly the problem that the MDG 
Integration technology (available for both Visual Studio and Eclipse) from Sparx Systems 
solves. 

So… here’s the six million dollar question: how do we keep the model and the code 
synchronized over the lifetime of the project?  You can see the answer in Figure 20. 

 
Figure 20 – Generated C# code for DataProcessor in Microsoft Visual Studio 2008 

Here’s how it works:  

1) Connect your UML model to a Visual Studio or Eclipse Project 

2) Link a package in your model to the project in your IDE 

3) Browse the source code by clicking on operations on the classes 

4) Edit the source code in your IDE 

MDG Integration keeps the model and code in-synch for you.  Problem solved. 



Wrapping up 
That concludes our roadmap for embedded systems development using SysML and the 
Enterprise Architect System Engineering Edition.  Our roadmap has taken us through 
Requirements definition, allocation, and traceability, hardware and software design, 
constraints and parametrics, and through implementation using behavioral code generation 
for software and for hardware using hardware-description languages.   

 

 

 
 
We hope you've found this eBook useful.  You can contact ICONIX with comments or 
questions at SysMLTraining@iconixsw.com, or explore our "SysML JumpStart Training" on 
our website.  
 
We wish you success in your development efforts! 

 
 

 

 

mailto:%20SysMLTraining@iconixsw.com
http://www.iconixsw.com/sysmljumpstart.html
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